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Abstract. A cascade of two-pole–two-zero filters with level-dependent pole and zero dampings,
with few parameters, can provide a good match to human psychophysical and physiological data.
The model has been fitted to data on detection threshold for tones in notched-noise masking, in-
cluding bandwidth and filter shape changes over a wide range of levels, and has been shown to
provide better fits with fewer parameters compared to other auditory filter models such as gam-
machirps. Originally motivated as an efficient machine implementation of auditory filtering related
to the WKB analysis method of cochlear wave propagation, such filter cascades also provide good
fits to mechanical basilar membrane data, and to auditory nerve data, including linear low-frequency
tail response, level-dependent peak gain, sharp tuning curves, nonlinear compression curves, level-
independent zero-crossing times in the impulse response, realistic instantaneous frequency glides,
and appropriate level-dependent group delay even with minimum-phase response. As part of explor-
ing different level-dependent parameterizations of such filter cascades, we have identified a simple
sufficient condition for stable zero-crossing times, based on the shifting property of the Laplace
transform: simply move all the s-domain poles and zeros by equal amounts in the real-s direction.
Such pole-zero filter cascades are efficient front ends for machine hearing applications, such as
music information retrieval, content identification, speech recognition, and sound indexing.
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INTRODUCTION
Filter cascades, such as the pole–zero filter cascade (PZFC, cascades of two-pole–two-
zero stages), are a good basis for modeling the filtering due to the cochlear traveling-
wave structure. Psychoacoustic data can be used to fit the parameters of such models
to predict tone-in-masker thresholds, and the models can also be adjusted to match
physiological data that imply stable zero-crossing times in the impulse responses at
different levels. The results are not far from results with other rational-transfer-function
models, such as one-zero gammatone filters (OZGF), but the cascade structure provides
a better basis for efficient machine-hearing systems, and a better basis for incorporating
nonlinear effects that propagate toward lower-CF places.

Two large datasets of human tone detection thresholds in the presence of notched-
noise maskers, covering a range of frequency patterns and levels, with several subjects
in each set, have previously been used to fit and compare different auditory filter models;
we have used the same datasets. The first [1] used nine subjects and seven tone frequen-
cies, with noises that were flat (white) within the noise bands; the second [4] used four
subjects and five tone frequencies, with a “uniformly exciting” noise, that is, spectrally
shaped to provide approximately equal excitation per critical band. For this work, we
used only the mean thresholds across the subjects. Both datasets, totalling 1277 mean



TABLE 1. A PZFC model with 9 filter parameters (fit 530); the channel
density is fixed at 2 per ERB and not counted. The pole damping b2 is
computed from the CF-dependent B2 as modified by the output power level
(in dB) times B1

2. In this version of the model, the zeros do not move with
level.

Name Function f dependence params
b1 Zero bandwidth Quadratic 3
B2 Pole bandwidth Quadratic 3
B1

2 Pole BW level dependence Constant 1
n2 Channel density (channels per ERB) 2 (fixed) 0
frat Ratio of zero freq. to pole freq. Linear 2

detection threshold data points, can be accommodated together in fitting auditory filter
parameters.

For the nonlinear optimization process, we follow Irino, Patterson, and Unoki [5, 10,
13] in using the Levenberg–Marquardt algorithm and the combined datasets [1, 4]. Each
auditory filter model has its own parameters that need to be adjusted; in addition, there
are several non-filter parameters to find in the search (detection threshold K and absolute
threshold P0 [10], treated as an effective noise floor).

In the filter fitting framework and MATLAB code provided by Unoki, we made
several changes to get better fits, and to fit to a wider class of models, including using
only the noise-only filter output levels in a feedback configuration to set the level-
dependent parameters, and improving the search for best CF to make the fits converge
more accurately.

In all cases, only a few parameters (one to three in each model) were allowed to
depend on level, and those only with a dependence that is linear in the filter output
level in dB. We also adopted the strategy for simultaneously fitting at multiple probe
frequencies [10]. Generally, we seek models that lead to a low rms error with few filter
parameters.

The parameterization of one good-fitting PZFC, fit 530, is described in Tab. 1.

FITTED PSYCHOACOUSTIC FILTER SHAPES
We have fitted the all-pole filter cascade (APFC), the OZGF (including the special case
with the zero at infinity, the all-pole gammatone filter, APGF, and the case with the zero
at DC, the differentiated APGF or DAPGF), and the PZFC, and new feedback versions
of the parallel and cascade compressive gammachirp (PrlGC and CasGC) models, to the
data described above.

We have found that the APGF, OZGF, and PZFC can provide better fits with fewer
parameters than the gammachirp versions. At the lowest numbers of parameters, two
extremes of the OZGF—the APGF with 3 parameters and DAPGF with 4 parameters—
with output level controlling pole damping via feedback, are the best-fitting models. At
5 parameters, the OZGF with optimized zero location is best. With more parameters, the
PZFC is best.

These experiments confirm the usefulness of the AGC feedback configuration [2, 8],
where the filter’s own output is the signal whose level controls its parameters. The



FIGURE 1. The rms error from fitting on the combined dataset. At each number of parameters,
only the best result of each filter model is shown. The fits on the combined data suggest some
winners and losers, but in their respective best cases, all of the different filter models generalize
from the training to testing datasets nearly equally well (not shown). Fit 120 is an APGF, and fit 119
is a DAPGF, special cases of the OZGF with the zero at infinity and at DC; they provide fair fits with
just 3 and 4 parameters. The PZFC5 model (zeros moving along with poles) is generally not quite
as good as the original PZFC, but some cases such as fit 625 with 7 parameters are not bad.

filter models based on feedback from the output always provided better fits with fewer
parameters than the models with forward control from the input noise spectrum. In the
typical alternative to using the filter’s own output to control its parameters, others have
used a control-path filter whose output controls the parameters of the signal path. This
approach can be easier to implement, as it is a feed-forward computation, but the idea
of a separate control-path filter is hard to reconcile with the structure of the auditory
system.

In our PZFC model, the zero frequency is a parameterized ratio times the pole
frequency (the ratio that maps pole frequency to zero frequency can optionally be
allowed to vary linearly or quadratically with pole frequency, using the available fitting
parameters). For the frequency dependence, we use Glasberg and Moore’s formula
for the equivalent rectangular bandwidth (ERB) as a function of frequency. Then we
compute a pole bandwidth proportional to it, using a factor that may itself be frequency
dependent and level dependent.

We predicted that “the DAPGF or OZGF will provide a significant benefit in applica-
tions that need a better model of level dependence or a better low-frequency tail behav-
ior” [7]; this prediction is somewhat confirmed with respect to human masked-threshold
data. As shown in Fig. 1, the best fits at each number of parameters are always OZGF or
PZFC models.

With 6 and more parameters, the PZFC provides the best fits. The OZGF is “simplest,”
but the connection of the PZFC to the underlying traveling wave mechanics makes it
most “realistic” with not much additional complexity.



FIGURE 2. Auditory filter gain plots for a selected representative of each of six model types. The
frequency axes are on the ERB-rate scale. In each case, the curves represent filter gain when the tone
detection thresholds are 30 dB (highest curves), 50 dB, and 70 dB (lowest curves). The curve spacing
is related to the input–output compression: curves close together, as at 250 Hz, correspond to a nearly
linear response, while curve tips 15 dB apart represent a 4:1 compressive response (15 dB gain
decrease per 20 dB level increase). The effective rectangular bandwidths range from approximately
the nominal ERB to more than twice that.

However, we must temper this interpretation, in light of the possibility of over-
fitting that is a common issue in machine learning and other modeling paradigms.
We investigated this possibility by training the models on just one data set (the one
from Baker et al.), and then testing on the other (Glasberg & Moore), to see how well
the retrained model generalizes from the training set to the test set. The models that
generalize well are very often not the ones with the lowest fitting error on the combined
dataset. The OZGF and PZFC5 with 4 to 8 parameters yield the best generalization to
the G&M data at frequencies below 4000 Hz, with PZFC close behind; but at 4000 Hz
the gammachirps do best at 6 and more parameters (it has previously been shown that
fits to the G&M data behave very differently at the five different probe frequencies [10]).
These results suggest that the PZFC5 has no net disadvantage relative to the PZFC, but
otherwise do not tell us which model is best.

IMPULSE RESPONSES FROM PHYSIOLOGICAL DATA
In neural experiments, impulse responses are estimated as revcor functions. We want
filter models whose impulse responses resemble the neural revcor data, or corresponding
mechanical data. Data from mechanical and neural experiments [3, 11, 12] show that
the zero-crossing times, or local phases, of the filter’s output in response to impulses
are variably spaced, (unlike the zero-crossings of the gammatone, but like those of the
models considered here), and do not change much with signal level. This observation
puts an important constraint on how the auditory filter model should behave as its level-



dependent parameters are varied.
In the case of the gammatone, gammachirp, and APGF models, the zero-crossing

times of the impulse responses remain fixed as the exponential decay time parameter is
varied; this variation corresponds to moving the poles of filters horizontally (varying real
part) in the s plane. In the basic gammachirp (and its special case, the gammatone), this
stability is apparent from the time-domain description in which a decay-time-dependent
envelope multiplies a fixed oscillating term that determines the zero crossings, as has
been pointed out by Irino and Patterson [6] (but in the case of the CasGC, the level-
dependent stage has its poles and zeros moving orthogonal to that direction). In the case
of the APGF, a similar relationship is apparent when the impulse response is written in
a similar way, which involves a Bessel function in place of the sinusoid.

Similarly, for the APFC, OZGF, PZFC, and other filters representable as rational
transfer functions, the zero crossings are exactly fixed if the poles and zeros are all
moved horizontally in the s plane by equal amounts. This observation follows from
the shifting property of the Laplace transform, which says that shifting the Laplace
transform by d corresponds to multiplying the impulse response by exp(dt). For real
d, corresponding to horizontal movement, this change of envelope will not affect the
zero crossings.

FIGURE 3. The impulse responses for the 1 kHz channel of two versions of the PZFC, at three
tone threshold levels. The large (off-scale) curves are for the noise level that leads to 30 dB SPL tone
threshold, the medium (full-scale) curves for 50 dB, and the small curves for 70 dB. The PZFC5
variant is designed to have more stable zero-crossing times; the difference is apparent in the plots.

In the filter cascade models, we assume that poles and zeros of the different stages
move in a coordinated way, but in amounts proportional to their frequencies, so the
shifting property does not exactly apply. Nevertheless, reasonable choices of pole and
zero motion directions and amounts lead to stable zero crossings, as illustrated in Fig. 3.
The first fitted PZFC model, in which the zeros are fixed and the poles move, does not
achieve stable zero crossings—the zeros need to move about as much as the poles do. In
a modified model called PZFC5, the bandwidths of the zeros change in proportion to the
bandwidth of the poles, at each stage, with the constant of proportionality being a fitted
parameter that is optimized at about 1.14; the resulting fits to the masking data are not
quite as good as the original PZFC is. In such a cascade, the zeros stay close to the poles
of an earlier stage, approximately canceling out most of the effects of the cascade except
for a few uncanceled poles in stages just basal to the place under consideration; the net
filter is close to an all-pole model, and the fitted shapes are very close to the APGF or
OZGF fitting results, as shown in Fig. 2.

In our machine hearing work to date, we have not needed stable zero crossing times,
since we have not been doing binaural ITD extraction or other operations that might
depend on it [9].



CONCLUSION
Modeling cochlear wave propagation as a filter cascade has given rise to the PZFC,
which provides better fits to human masked-threshold data than any other known audi-
tory filter models. The model is easily modified to have approximately level-independent
zero-crossing times as seen in auditory nerve physiology. These two good fits do not ap-
pear to be achieved simultaneously, as they require different treatment of the positions
of the zeros in the cascaded filter stages, but the generalization experiments suggest that
the PZFC5 with stable zero crossings is at least an excellent compromise.

The cascade structure can also provide a good basis for modeling distortion products
that propagate to their own lower-CF place, and for modeling suppression via instan-
taneous compression and cross-channel-coupled automatic gain control. Future work
should tie down the parameters to make these effects match experimental data.
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