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Abstract

Every day, machines process many thousands of
hours of audio signals through a realistic cochlear
model. They extract features, inform classifiers
and recommenders, and identify copyrighted mate-
rial. The machine-hearing approach to such tasks
has taken root in recent years, because hearing-
based approaches perform better than we can do
with more conventional sound-analysis approaches.
We use a bio-mimetic “cascade of asymmetric
resonators with fast-acting compression” (CAR-
FAC)—an efficient sound analyzer that incorporates
the hearing research community’s findings on non-
linear auditory filter models and cochlear wave me-
chanics. The CAR-FAC is based on a pole—zero filter
cascade (PZFC) model of auditory filtering, in com-
bination with a multi-time-scale coupled automatic-
gain-control (AGC) network. It uses simple nonlin-
ear extensions of conventional digital filter stages,
and runs fast due to its low complexity. The PZFC
plus AGC network, the CAR-FAC, mimics features
of auditory physiology, such as masking, compres-
sive traveling-wave response, and the stability of
zero-crossing times with signal level. Its output
“neural activity pattern” is converted to a “stabi-
lized auditory image” to capture pitch, melody, and
other temporal and spectral features of the sound.

1 Introduction

Large-scale commercial applications of machine
hearing are no longer just about speech. Sound
similarity measures of various kinds, based on bio-
mimetic auditory models, are used in applications
such as music recommendation, content identifica-
tion, and categorization of audio content. These
applications are often integrated with similar video
applications; for example, in analyzing YouTube
videos and soundtracks.

To support machine-hearing applications, we have
developed models of hearing that both run fast and
realistically mimic the human cochlea. The filter
cascade approach that we have developed is an ef-
ficient alternative to the more conventional paral-
lel filterbank, and is also very closely connected to
the way sound information propagates as traveling
waves in the cochlea. We find that it also works well
in sound-processing applications.

At the output of the cochlear model, information
about sound is still encoded in the time domain,
but spread across many frequency channels. The

fine temporal structure of sound is extracted by fur-
ther processing, mimicking the auditory brainstem,
into movie-like representations known as stabilized
auditory images, or correllograms. The frames of
this movie are pictures that represent what a signal
“sounds like.” From these image frames, we extract
the features that relate to tasks. Various kinds of
machine learning then map these features to deci-
sions, or to embeddings in a space with simple dis-
tance properties, to complete the task.

2 Modeling Cochlear Function

The PZFC is related to traveling-wave propaga-
tion in the cochlea, via methods inspired by the
WKB approximation used in solving nonuniform
distributed wave systems [1]. In the cascade of
filters, each filter stage models a segment of the
nonuniform distributed system. The stage trans-
fer function is a pole—zero approximation to the
transfer function corresponding to the local complex
wavenumber. The cascade produces samples of the
traveling wave at a discrete set of outputs, as shown
in Fig. 1. Feedback from level detectors controls
the tuning of the PZFC stages in response to sound
level and spectrum, causing fast-acting compression.
We refer to this combined filtering and compression
model as the CAR-FAC.
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Fig. 1 Schematic of the CAR-FAC model of pe-
ripheral auditory filtering. The cascaded filter
stages, or PZFC, (top) provide a variable peak gain
via a variable pole damping. The pole damping is
adjusted by slowly varying feedback control signals
from the automatic gain control (AGC) smoothing
network (bottom). The AGC loop corresponds to
control of the cochlea’s outer hair cell activity by ef-
ferent neurons from the olivary complex in the brain-
stem. Instantaneous local compression can also be
included in the stages, to model the saturating ac-
tivity of outer hair cells in the cochlea.
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Fig. 2 The transfer functions and impulse re-
sponses at one output of the PZFC, with the fixed
zeros (left) and with movable zeros (right), are plot-
ted for three different sound levels (levels corre-
sponding to 30, 50, and 70 dB SPL tone detection
threshold in broadband noise). The main differences
are the high-side rolloff and the zero-crossing stabil-

1ty.

We have shown that the parameters of the model
can be adjusted to fit human psychophysical data,
in a task designed to show the properties of audi-
tory filters over a range of frequencies and levels.
Following Patterson, Irino, and Unoki [2, 3, 4], we
use a nonlinear optimization procedure to fit the
data from two labs [5, 6], covering many subjects
and conditions, on the task of detecting tones in
notched-spectrum masking noise. The result is that
the PZFC fits the data better, with fewer param-
eters, than any previously considered models; al-
though it fits best when the zeros are fixed, it still
fits the data at least as well as previous models when
the zeros are allowed to move, which is the condition
needed to also match impulse-response or “revcor”
data from the auditory nerve [7].

The model-parameter fitting procedure leads to
detailed transfer functions and impulse responses,
such as those illustrated in Fig. 2 for two different
variants of the PZFC. The first version varies with
level according to the pole motion shown in Fig. 3,
along with the corresponding transfer function of
a single stage from the cascade. Earlier and later
stages look the same, but shifted to higher and lower
frequencies, respectively. The other variant that we
consider moves the zeros along with the poles, as
shown in Fig. 4, corresponding to the right side of
Fig. 2.

With the dynamic AGC connected, the dampings
of the stages can vary somewhat independently, re-
ducing the gain in those parts of the spectrum that
have a lot of energy. The resulting shift in the trans-
fer functions to a set of outputs is illustrated in
Fig. 5, for the case of the model adapting to a speech
sound.
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Fig. 3 Diagram of the motion of the poles of a
PZFC stage in response to a gain-control feedback
signal, and the effect on the resonator gain. The po-
sitions indicated by crosses at fixed radius (natural
frequency) in the s-plane plot (left) correspond to
pole damping ratios (¢) of 0.1, 0.2, and 0.3, while
the zero’s damping ratio remains fixed at 0.1. Cor-
responding transfer function gains (right) of this
asymmetric resonator stage do not change at low
frequencies, but vary by several decibels near the
pole frequency. The fact that the stage gain comes
back up after the dip has little effect in the transfer
function of a long cascade of such stages.
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Fig. 4 The PZFC5 variant of the stage has the ze-
ros moving along with the poles, giving it a slightly
different high-frequency rolloff behavior: when the
peak is high, the dip is deep. This is the version that
more accurately reproduces observed stable zero-
crossing behavior.

3 The Auditory Brain

Connecting the ear to high-level decision making,
or extraction of meaning, requires at least another
level or two of feature extraction. These layers can
be considered to be abstract models of processing in
the auditory brainstem and auditory cortex.

At the brainstem level, we assume the existence of
structures that perform as hypothesized by Licklider
in his “duplex theory of pitch perception”, and as
developed by Patterson as the “stabilized auditory
image” (SAI). This mechanism converts the neural
activity pattern from the peripheral model into a
movie-like sequence of auditory images. See Fig. 6
for an example of one frame of an SAI. These images
can be imagined as projecting to auditory cortex, in
much the same way as visual images project from
retina to visual cortex.

At the next level up, to abstractly model the cor-
tex, we have adopted techniques used in machine
vision, extracting local multi-scale sparse features
via vector quantization of patterns in different re-
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Fig. 5 CAR-FAC transfer functions when adapted
to silence (higher curves) have very high peak gains,
especially in the mid frequencies, due to the low
pole dampings. When adapted to a moderate-level
speech sound (lower curves), the gains reduce, com-
pressing the dynamic range of the output compared
to the input.
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Fig. 6 Example of an auditory image frame in re-
sponse to a spoken vowel sound. The periodicity
along the time-lag dimension is a prominent feature
of voiced speech, while the message, the vowel iden-
tity, is in the formants, the frequency bands in which
the energy is concentrated. The image shows a low
first formant, and high second and upper formants,
indicating a high front vowel such as “ee.”

gions of the SAI. The one-of-N code vectors from
the VQ codebooks for each region are concatenated
to make very large sparse-code vectors. These are
accumulated over an entire sound file to make a
“bag of features” representing the file, as summa-
rized in Fig. 7. Using this feature vector, vari-
ous machine-learning techniques are applied to make
classifiers, application-specific distance measures or
embeddings, and such.

4 Why It Works

The described models do well at many things. We
understand some of these, such as why the CAR-
FAC runs fast—the computational load is not much
more than a second-order filter per output channel.
And we believe that the CAR-FAC fits psychophys-
ical data and neural revcor data well because it is
closely related to wave propagation in the cochlea.
But why do these models do well on machine-hearing
tasks?

We have assumed that incorporating mechanisms
and effects from biological hearing into our machine
models will be helpful. Let us consider some of these
mechanisms, and review why they might help.

The filter-cascade approach leads to realistic
asymmetric transfer functions, and provides an easy
way to incorporate dynamic level dependence as well
as instantaneous distortion nonlinearities. The AGC
filter network models the adaptation of cochlear
gain, at several different time scales. In combina-
tion, these mechanisms do a good job of modeling at
least some masking effects; the output of the model
will therefore represent audible differences, and sup-
press inaudible differences. The coupled AGC tends
to make the model response emphasize changes rela-
tive to recent spectral history, adapting out channel
effects such as spectral tilt and overall loudness—
as in “relative spectral” (RASTA) filtering of short-
time spectral representations [8].

But the output of the cochlear model contains
much more than spectral information. As Patter-
son et al. have shown, the SAI captures fine tem-
poral structure in a way that explains many pitch
phenomena, and in a way that seems optimized for
recognizing and characterizing animal communica-
tion sounds, including speech and music [9, 10].

The extraction of features from the SAI is only
very abstractly a bio-mimetic model, but can be
viewed as analogous to the multiscale visual features
thought to be extracted in early visual cortical ar-
eas. By using regions of different sizes and positions,
we get features at different scales, and in different
parts of the frequency/periodicity plane, such that
sounds that are interfered with in one region may
still come through by dominating in another region.
Our reported experiments on sound retrieval in in-
terference suggest that this approach pays off [11].

The high-dimensional sparse feature space that
we construct by concatenating and counting sparse
local codes allows linear decision boundaries to sep-
arate classes of sounds, in many cases. Thus, reg-
ularized linear machine-learning techniques can be
applied efficiently and effectively. Even with feature
spaces of 100,000 dimensions, and even with learning
of 300 million coefficients to map abstract features
to a vocabulary of 3000 words, training is fast and
over-fitting is not a problem, if appropriate learning
algorithms are used [12].

Besides the retrieval task, we have experimented
with audio fingerprinting, cover-song detection, mu-
sic recommendation, beat tracking, speech recogni-
tion, and a variety of classifiers, using the described
features and other more specialized features. We
have deployed several successful applications based
on these experiments. Many of these tasks have
the property that they don’t need to work perfectly
to be valuable, and they are more valuable as we
make them work better. In many cases, making
them work better seems to depend on representa-
tions of what the sounds “sound like,” so we hope
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Fig. 7 Generating sparse features from an audio
file, in four steps: (1) cochlea simulation using the
CAR-FAC; (2) stabilized auditory image creation
via triggered temporal integration; (3) sparse cod-
ing by vector quantization of multi-scale patches; (4)
aggregation into a “bag of features” representation
of the entire audio file. The application of this sys-
tem to audio-file retrieval from text queries resulted
in better performance than with other representa-
tions tried [12]. It was especially better for retriev-
ing sounds mixed with other interfering sounds [11].

to find continuing success in using auditory models
for these purposes.

5 Conclusion

The filter-cascade approach to cochlear modeling is
efficient and realistic. It connects to the under-
lying mechanics, to psychophysical results, and to
auditory-nerve physiology. Used at large scale to
analyze, classify, and recognize sounds, it results in
better accuracy than other sound feature-extraction
approaches that we have tried. We are working to
determine precisely what factors contribute to its
success. Results so far are encouraging for this bio-
mimetic approach to machine hearing, and machine
perception more generally. More work to under-
stand and improve this approach is needed, and we
invite others to join in and help.
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