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Abstract
Language models are important components of speech recog-
nition and machine translation systems. Trained on billions of
words, and consisting of billions of parameters, language mod-
els often are the single largest components of these systems.
There have been many proposed techniques to reduce the stor-
age requirements for language models. A technique based upon
pointer-free compact storage of ordinal trees shows compres-
sion competitive with the best proposed systems, while retain-
ing the full finite state structure, and without using computation-
ally expensive block compression schemes or lossy quantization
techniques.
Index Terms: n-gram language models, unary data structures

1. Introduction
Models of language constitute one of the largest components of
contemporary speech recognition and machine translation sys-
tems. Typically, language models are based upon n-gram mod-
els which provide probability estimates for seeing words fol-
lowing a partial history of preceding words, or an n-gram con-
text.

P{wt|wt−1, . . . , w1} ≈ P{ wt︸︷︷︸
future

|wt−1 . . . wt−n+1︸ ︷︷ ︸
context

} (1)

By assuming the language being modeled is an n-th order
Markov process, we make tractable the number of parameters
that comprise the model. Even so, language models still contain
massive numbers of parameters which are difficult to estimate,
even when extraordinarily large corpora are used.

The art and science of estimating parameters is an area well
represented in the speech processing community, and [1] pro-
vides an excellent introduction. Language model compression
and storage is an entire subgenre in itself. Many approaches to
compressing language models have been proposed, both loss-
less and lossy [2, 3, 4, 5, 6], and most of these techniques are
complementary to what we present here.

A typical format that is used for static finite state acceptors
in OpenFst [7] is illustrated in Figure 1. This format makes clear
the set of arcs and weights associated with a particular state, but
it does not make clear which state corresponds to a particular
context, and it uses nearly half of its space to store the indices
to the next state numbers and their offsets.
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Figure 1: A typical language model storage format

\data\
ngram 1=7
ngram 2=9
ngram 3=8

\1-grams:
-99 <s> -0.30
-0.81 </s>
-0.41 a -0.43
-0.81 b -0.48
-0.81 r -0.48
-1.11 c -0.30
-1.11 d -0.30

\2-grams:
-0.51 a </s>
-0.51 a b -0.48
-0.81 a d -0.30
-0.14 b r -0.48
-0.10 r a -0.48
-0.16 c a -0.30
-0.16 d a -0.30
-0.35 <s> a -0.30
-0.54 <s> c -0.30

\3-grams:
-0.04 a b r
-0.07 a d a
-0.03 b r a
-0.11 r a </s>
-0.24 c a d
-0.18 d a b
-0.18 <s> a b
-0.07 <s> c a

\end\
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Figure 2: A trivial, but complete, trigram language model

Language models are cyclic and non-deterministic, with
both properties serving to complicate attempts to compress their
representations. In order to illustrate the ideas and principles put
forth in the paper, we introduce a complete, but trivial, language
model based upon two “sentences” and a vocabulary of just five
“words”: a b r a and c a d a b r a.

We have added a link from the ε unigram state to the <s>
start state in order to make our presentation clearer. This is
not normally an allowed transition in typical applications, but
without loss of generality we can assign a transition weight of
∞.

2. Succinct Tree Structures

Storing trees, asymptotically optimally, in a boolean array was
first proposed in [8], who termed these data structures level-
order unary degree sequences, or LOUDS. This was later gen-
eralized for application to labeled, ordinal trees by [9] and oth-
ers. Succinct data structures differ from more traditional data
structures, in part, because they avoid the use of indices and
pointers, and [10] presents a good overview of the engineering
issues. Using these data structures to store a language model
was proposed in [11], although their structure does not use the
decomposition we propose, nor does it provide a finite state ac-
ceptor structure.
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Figure 3: Decomposed Language Model and its LOUDS representation

3. Decomposed Language Model

The language model in Figure 2 has states that have been la-
beled according to the context they represent. This property,
while not an explicit part of standard language model notation,
can easily be computed using the single-source shortest-path al-
gorithm from [12] over the string semiring. The state labeled ε
represents the unigram context or the probability of seeing each
symbol without any context conditioning. The start state, in
bold, represents the probability of seeing symbols in the initial
context. Here the symbols a and c both have arcs leading to the
appropriate context.

As language models must also admit strings that were not
observed in the training corpus, we also have an failure arc to
the unigram state. This arc is labeled with a back-off penalty
that is dependent upon the smoothing algorithm chosen to build
this model (this model was built using Witten-Bell [13] smooth-
ing).

The language model is a cyclic graph with failure arcs,
which we treat as ε arcs, on all states except the unigram state.
The techniques of [8] cannot be applied to non-planar graphs,
and typical language models are not planar (no graph with three
times as many arcs as states is planar [14]). However, language
models can be decomposed.

If you consider only the back-off arcs, the language model
in Figure 2 can be represented by a tree of contexts. Figure 3
shows the subtree created by extracting all of the back-off arcs.
Here we have relabeled the arcs (and removed the directional-
ity) using the prefix of the state labels as determined from the
shortest path above. And, we sorted the arcs lexicographically
to support searching for a particular arc. This yields a tree of
contexts, where each context is connected by an arc from a less
specific to more specific context.

3.1. LOUDS Tree of Contexts

The LOUDS tree represents a tree by performing a breadth-first,
or level-order, walk creating a bit vector that encodes the graph
structure. Starting from the root node, we create a bit vector de-
scribing the tree by writing ones corresponding to the number of
children at a node, followed by a zero. The resulting bit vector
contains a one bit and a zero bit for each node, thus the stor-
age required is two times the number of states in the language
model.

In addition to the geometry of the tree, we must store the
back-off weights, and the labels for the context arc transitions.
These are stored, densely, in separate arrays, with values for
each arc. In order to navigate the context tree, we make use of
rank and select operations on the bit vector.

rankq(b, i) Returns the count of q valued bits in bitstring b for
all j < i

selectq(b, c) Returns the index i of the bit in b such that c =
rankq(b, i)

Using these two operators navigation from context to context
can be done bidirectionally.

Because context arc labels, for each node, are stored con-
tiguously, it makes cache-sensitive binary searches practical.
Although there are several methods, for simplicity we use 1
based indexing, where each node in the tree is referred to by
specifying the offset to its corresponding 1 in the bitstring for
the tree. To illustrate, let us chose the a context which is identi-
fied by the second 1 bit, or offset i = 2.

is-leaf(b, i) = b[select0 (rank1(b, i)) + 1] (2)

To find the context ba, starting from the index, we can check
if the node is a leaf using in this case, rank1(b, 2) = 1, and
select0(b, 1) = 8. b[9] is a 1 bit, and it happens to be the bit
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function NextState(context, future)
node = findChild(root, future)
if numChildren(node) == 0 return node
from = context
i = 0
while (from != root)

history[i] = label[rank1(from)]
from = rank1(select0(from)− 1)
i = i+ 1

while true
nextNode = findChild(node, history[i])
if (nextNode == null) break
i = i− 1
node = nextNode

return node
Figure 4: Algorithm to find next context

corresponding to the first child of context a. Thus, for non-
leaves

first-child(b, i) = select0 [rank1(b, i)] + 1 (3)

and

last-child(b, i) = select0 [rank1(b, i) + 1]− 1 (4)

which tells us that the children of a span from 9 to 12 in the
label array. The value b does not appear in this span, which is
not surprising because the sequence ba does not occur in our
training corpus.

Unlike techniques based on hashing, bidirectional naviga-
tion to arbitrary contexts is also supported, via

parent(b, i) = select1 [rank0(b, i)] (5)

and, finally, the arc labels and weights are simply done by ac-
cessing the rank1(b, i)th element of the back-off and label ar-
rays. We discuss how to implement rank and select efficiently
in Section 3.3.

The LOUDS tree of context provides an invertible one-to-
one mapping between state numbers and the sequence of inputs
required to reach that state. This is important for decoding and
allows us to remove entirely the next state value from the lan-
guage model arcs.

3.2. Future Words

In addition to the tree of contexts, the non-epsilon arcs, which
form a partition of the entire language model, cannot be repre-
sented as a tree. For our example language model, due to the
limit of n previous terms, there are many states that are reach-
able from many different contexts.

The list of future words does not need to store the identity
of the next state for any of the arcs, because the tree of contexts
allows these to be determined on-the-fly using the state tran-
sition algorithm in Figure 4. Thus, the only information that
needs to be stored for each arc is the sorted list of outbound arc
labels (for fast searching) and the probability associated with
each label. We use a simple bit vector indicating the number of
outbound arcs for each state with a sequence of ones, followed
by a zero. The word ids and the probabilities for each of these
arcs are stored in dense auxiliary arrays, which are indexed us-
ing rank1 [i+ select0(s)] for arc i of state s.

3.3. Fast Algorithms for Tree Access

While we have presented the data structures used to store the
language model, there are many engineering details that also

need to be addressed to make the proposed data structures com-
petitive with more conventional approaches based on sorted
lists, hash tables, or other index based approaches.

The bitstrings used to store the tree geometry in our lan-
guage model can be billions of bits long. A naive implementa-
tions of rank, even using contemporary special purpose instruc-
tions like popcnt, would require O

(
|b|
)

time to compute. To
make these operations practical, we use the highly tuned imple-
mentation by [15] which adds to the bitstring both a primary
and secondary index that provide constant time access. These
techniques are based upon the idea of breaking the bitstring into
blocks of 64 bits (as is already done by the processor) and then
maintaining a running count of the number of one bits per block.
This second level count, itself of fixed size, is accumulated into
a 64 bit first level count.

This index, of course, requires an additional storage, using
0.25|b| bits. Implementation of select can be done, naively,
using a binary search with rank operations. However, [15]
presents a constant time algorithm that requires at most 0.375|b|
bits of index data.

4. Experimental Results
We performed two seperate experiments to compare the pro-
posed LOUDS based language model in typical decoding ap-
plications. The first experiment was a simple composition of
4K voice search utterances consisting of 17K total words with
a 5-gram, 1M word vocabulary, 11M n-gram language model.

In order to evaluate our proposed LOUDS data format in
a decoder, we compared the composition speed of a variety of
FST representations of a language model consisting of arcs and
states. We compare 4 representations for the LM, the proposed
LOUDS format, and the const, compact acceptor, and vector
formats of OpenFst with the decoding time (composition and
shortest path) normalized to the speed of the vector fst format.

Model Format Storage Time
vector ≈500 MB 1.0
const 292 MB 0.97
compact acceptor 206 MB 1.02
LOUDS fst 148 MB 0.87

Table 1: Storage requirement and average recognition time per
utterance.

To test the LOUDS language model in a more realistic
speech recognition application, a 4-gram language model was
constructed using Katz backoff trained from a variety of sources
[16]. The model consists of 14.3 million n-grams: 1 million un-
igrams, 7.5 million bigrams, 8 million trigrams and 0.8 million
4-grams.

The acoustic model is a tied-state triphone GMM-based
HMM whose input features are 13 PLP-cepstral coeffi-
cients, frame-stacked and projected onto 39 dimensions using
LDA/STC, trained using ML, MMI, and boosted-MMI objec-
tive functions as described in [17].

Model Format Storage Time
const fst 307 MB 4.03s
compact acceptor fst 204 MB 4.15s
LOUDS fst 132 MB 3.77s

Table 2: Storage requirement and average recognition time per
utterance.
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At recognition time, for each utterance, a new instance of
the on-demand composition of the context-dependent lexicon
transducer and the language model is created and searched us-
ing a open-pass Viterbi decoder. The composition is performed
using the algorithm from [18] using the label-lookeahead filter
with weight pushing. The results are presented in Table 2.

5. Asymptotic Storage Requirements
If we use a simple percentage n-gram frequency threshold to
build a language model from a corpus of N words, the empiri-
cally observed distribution of n-grams [19] suggests

|V | ∝ logN n ∝ logN (6)

with n growing substantially slower than |V | as the size of the
corpus grows without bound. We consider the asymptotic stor-
age requirements for three different alternatives. Data structures
that use a format similar to OpenFst’s const format, or any data
structure that indexes the n-grams via pointers or tables, require
O
(
N logN

)
storage. This can be shown by noting that each arc

contains the state id of the next state, and the number of states
grows with N , and state id’s require logN storage.

A potentially effective technique, storing the n-grams
in hash tables, which supports fast queries but not fast
arc iteration, requires storing the n-gram keys for each arc
which require O

(
log |V |n

)
space, making the total storage

O
(
N logN log logN

)
.

The storage of arcs for our proposed model does not depend
upon the n-gram depth. But, the vocabulary items stored in
the auxiliary arrays need O

(
log |V |

)
storage, making the total

storage requirements O
(
N log logN

)
.

This is not to say that the format, as presented, would be
competitive with the state-of-the-art compression schemes pre-
sented in [2, 6], both of which use variable length block en-
coding schemes. Certainly, nothing precludes the use of simi-
lar compression techniques with our format. However, variable
length encoding comes at great additional cost in terms of ac-
cess time.

6. Conclusion and Future Work
The proposed LOUDS format provides considerable savings
over the existing OpenFst language model formats. And, unlike
previous proposed systems for compressing language models, it
does so while simultaneously improving access time. The use
of quantization or block compression should be easy to incor-
porate into our proposed data structure. More easily, in fact,
considering that these data values are stored in densely packed
auxiliary arrays.

For a vocabulary of size V , the potential number of n-grams
of order n is V n. The set of bigrams is denser than all other n-
gram orders. Even so, for a typical language model, the number
of bigrams is much less than V 2. And, under reasonable prun-
ing constraints, the set of higher order n-gram arcs is a subset
of the n− 1 state’s arcs.

This enables us to employ a similar tree based storage tech-
nique for storing these arcs. As the unigrams probabilities have
already been addressed, we need to store the list of extensions,
or next words, for each unigram context. For all higher order
n-grams, the list of futures for any state is a subset of the arcs
of the back-off context. For example, state ca contains only
one of the two arcs from the a context. In order to avoid storing
the arc labels again, we refer to the back-off context and store

a boolean for each bigram indicating which bits survived to the
next level.

This could be done at the expense of a slightly more com-
plicated lookup. Searching bigrams first could turn out to be
an effective strategy, instead of doing binary searches at each
n-gram order, as binary searches have demonstrably bad cache
behavior. We intend to explore this, and more traditional com-
pression schemes in the future, and their effect on composition
speed in decoders.
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