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Abstract. Document analysis often starts with robust signatures, for
instance for document lookup from low-quality photographs, or similar-
ity analysis between scanned books. Signatures based on OCR typically
work well, but require good quality OCR, which is not always available
and can be very costly. In this paper we describe a novel scheme for ex-
tracting discrete signatures from document images. It operates on points
that describe the position of words, typically the centroid. Each point is
extracted using one of several techniques and assigned a signature based
on its relation to the nearest neighbors. We will discuss the benefits of
this approach, and demonstrate its application to multiple problems in-
cluding fast image similarity calculation and document lookup.
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1 Introduction

Over the past decade vast amounts of digitalized documents have become avail-
able. Projects like Google Books and Internet Archive have brought millions
of books online, extremely diverse in form and content. Such a corpus requires
fast and robust document image analysis. This starts with image morphology
techniques, which are very effective for various image processing tasks such as
extraction of word bounding boxes, de-skewing, connected component analysis,
and page segmentation into text, graphics and pictures [1].

Image feature extraction is a well studied problem. Many techniques like
SURF [2] and SIFT [3], [4], FIT [5] perform well at point matching across im-
ages, and image lookup from a database. However these techniques do not fare
as well on repetitive patterns, such as text in document images. In addition,
both SURF and SIFT extract thousands of key features per image, and features
are matched by nearest neighbor search in the feature space which requires so-
phisticated indexing mechanisms. Unlike images of 3D objects, document images
are projections of 2D image (paper) on the 3D scene (with significant warping
caused by camera proximity and paper curvature). Locally Likely Arrangement
Hashing (LLAH) [6] exploits this by making signatures from affine invariant fea-
tures. This was shown to work well and achieves high precision in document page
retrieval from a corpus of 10k pages. LLAH uses discrete features which are di-
rectly used for indexing, thus simplifying the process. Other retrieval techniques
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use word shape coding [7], which should be robust to image deformation, but
still suffer significant degradation in performance on non-synthetic document
images.

In this paper we describe a novel method for extracting signatures based
solely on the pixels of the page, and show how it can be applied to a range of
problems in document matching. Our signatures are created from either centroids
of the words, or centers of word bounding boxes. Because of this, we can use them
to match documents for which we only have word bounding box information. The
number of signatures extracted per page is the same as the number of words,
which results in an order of magnitude less features than previous techniques.

We will demonstrate the use of these signatures in two applications: page
similarity detection and image lookup from a database of indexed images. This
work complements similar techniques based on OCR’d text to find similar pages
or similar regions between two books, but works independently of language. In
particular it can be applied to documents where OCR usually performs poorly
(Chinese text, old text, etc.).

2 Algorithm Overview

In this section we cover point cloud extraction from the raw image and creation
of signatures. We also describe two possible improvements: filtering high-risk
signatures and superposition for ambiguous signatures.

2.1 Word Position Extraction

In order to perform signature extraction on a point cloud, the first step is to ex-
tract word centroids from the document image. For this, we use an open source
image processing library named Leptonica [8]. We use a number of steps, includ-
ing conversion of the raw image (Fig. 1a) to grayscale, background normalization
(Fig. 1b), binarization (Fig. 1c), deskewing (Fig. 1d), and a series of morpho-
logical operations to extract the connected components representing words (Fig.
1e). The final step is to extract the centroids (Fig. 1f). This approach assumes
that the document image has either vertical or horizontal text lines, which is
typically the case in printed material and digital books (or we can correct for).

The benefit of operating on word positions is that it only requires the word
bounding boxes, not the image. This way we can use, PDF or OCR word bound-
ing box information as a source of points, which greatly reduces the cost of
computing signatures when working with a large number of pages.

2.2 Signature Calculation From Point Cloud

An overview of signature extraction is shown in Algorithm 1. The basic idea
is, for each point, to select kNNCount nearest neighbors, sort them in radial
distance order, and compute the angle between the selected and neighbor point.
The angle is discretized based on how many bits we decide to use. Discretized



3

(a) Raw (b) Background normalized
gray

(c) Binary

(d) Deskew (e) Word-like connected
components

(f) Word-like connected
components centroids

Fig. 1: Examples of image processing steps while extracting the word centroids.

angles (sub-signatures) are concatenated together in order of radial distance,
creating the final signature. An illustration of this process is shown on Fig. 2. In
this paper a single angle is represented by 4 bits, i.e. using buckets of 22.5◦.

Distortions such as skew are corrected for during word extraction. Other
types of distortion like severe warping due to lens distortion or paper curvature
are more challenging to deal with. However, the signature extraction algorithm
achieves a reasonable degree of robustness to those. The main failure mode for
matching signatures is actually word segmentation errors leading to changes in
the neighborhood of a point. For example the merging of two words into one
causes a word centroid to be shifted and another one to be missing. Flips in
discretized values of the angle or reordering of the radial distances can also
modify the signature. However in practice, such failures have limited impact on
the result since they only affect small regions.

2.3 Signature Filtering Based on Estimated Risk

The idea is to only keep signatures that are stable with high confidence. We filter
out signatures with high probability of bits shifting or flipping. Each signature
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Algorithm 1 Signature calculation from point cloud

1: kNNCount← 8 . How many nearest neighbors we care about
2: kBitPerAngle← 4 . How many bits per neighbor to neighbor we dedicate
3: kMask ← 1 << kBitPerAngle
4: points . Word positions for a given image (image or word box based)
5: signatures← ∅
6: for all point ∈ points do
7: nn points← NearestNeighbors(point, kNNCount)
8: nn points← SortByRadiusInIncreasingOrder(point, nn points)
9: signature← 0

10: for all neighbor ∈ nn points do
11: alpha← CalculateAngle(point, neighbor)
12: alpha discrete← floor(kMask × alpha/2 PI)
13: signature← signature << kBitPerAngle
14: signature← signature | alpha discrete
15: end for
16: signatures.push back(signature)
17: end for
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Fig. 2: Overview of signature creation from word centroids

S is composed of smaller sub-signatures S = [s(0)][s(1)]..[s(N)]. We consider
signature variations that comes from slight shifts of word positions. Small shifts
may lead to changes in discretized angle value, e.g. s(0) flipping from 13 to 14
due to small word position shifts, or in the order of sub-signatures, e.g. s(0) and
s(1) swapping as they had almost same radial distance. If we can estimate the
confidence of a given signature, we can filter out weaker ones.

Let’s consider the probability of a discretized angle flipping. If we have angle
α and its discrete value a, where for example a ≤ α < a + 1 then we can say
that distance of from the edge is ε = | α − (a + 0.5) | assuming that a + 0.5 is
edge of discretization. One can easily see that if ε = 0 a random perturbation of
points will lead to a flip in 50% of the cases. If we say that probability of flip is
p(ε), then the probability that the entire signature changes due to at least one
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sub signature flipping can be expressed as:

Pflip = 1−
N∏
i=1

(1− p(εi)) (1)

Similarly we can estimate the probability of two neighboring points swapping as
p(δr) where δr = | r1 − r2 | / ( 1

2 (| r1 | + | r2 |)) is the relative radial distance
between consecutive neighbor points from the choosen point. The probability
that the signature changes can be expressed as:

Pswap = 1−
N−1∏
i=1

(1− p( | ri − ri+1 |
1
2 (| ri | + | ri+1 |)

)) (2)

Finally the chance of a signature changing due to swap or flip is Pflip or swap =
1− (1− Pflip)× (1− Pswap).

In this paper we naively modeled the probability distribution as p(x,w) =
0.5 × (w − x) if x ∈ [0, w) and 0 otherwise. x is variable, while w is a thresh-
old parameter. For angular discretization wangle = 0.05, and for radius risk
wradius = 0.01. In experiments where we use signature filtering, signatures with
Pflip or swap > 0.6 are filtered out.

2.4 Superposition of Ambiguous Signatures

Let us consider the problem of angle discretization. We often end up on one side
or the other side an edge in the discretization function. One option is to use both
values when composing the signature. We can consider a signature to be a super-
position of states (angles), and by calculating the signature we project mixtures
to their discrete values. But we can also create all possible projections; i.e. the set
of all signatures. For example if the 1st and 3rd sub-signatures have two possible
states then we have 4 possible signatures. For example [{s1, s′1}][s2][{s3, s′3}][s4]
would lead to {[s1][s2][s3][s4], [s1][s2][s′3][s4], [s′1][s2][s3][s4], [s′1][s2][s′3][s4]}. In
the following, superposition was used only where indicated for angles within
ε < 0.05 of a discretization edge.

3 Evaluation on Synthetic Data

In this section we evaluate precision and recall of signatures for the task of
matching two pages. The evaluation is done on synthetic data. All the signatures
used were 32bit (generated based on 8 nearest neighbors). We start from an
‘original’ point cloud and a ’copy’ point cloud derived from the original with
some added distortions. All points are within H = 1200 pixels, W = 1600 pixels,
and we use a fixed number of points per page for the original page (Noriginal =
300) (on average one point per 80 × 80 pixel square). The ‘copy’ page then
has (Ncopy = Noriginal × (1 − Cdrop) points where Noriginal × Cdrop points are
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(a) Recall in function of Cdrop for
fixed Cdrift = 0
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(c) Recall/precision in function of
Cdrop for fixed Cdrift = 0
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(d) Recall/precision in function of
Cdrift for fixed Cdrop = 4%

Fig. 3: Signature precision/recall evaluation for the random (3a, 3b) and grid (3c,
3c) point cloud distribution. Four scenarios: (A) original signatures, (B) risky
signatures filtered, (C) superposition of ambiguous signatures, (D) only using
unique signatures

randomly be dropped to simulate word segmentation errors. Each copy point is
also moved from its original position as follows:

(xcopy, ycopy) = (xoriginal + rand()× Cdrift, yoriginal + rand()× Cdrift) (3)

where rand() is random float from [0 , 1). In this way we try to emulate realistic
differences that may occur between two sets of point clouds.

We experimented first with randomly distributed point clouds, and then with
points aligned on a square grid (e.g. Chinese texts) with small x and y variations
(less than 5 pixels). These two sets are called random and grid set.
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Random Distribution: on Fig. 3a, 3b we see that precision for this set
remains 100% even as the amount of drop increases. This is expected, because
signatures in this case are fairly unique and can withstand some amount of
perturbations. For variable drop at Cdrop = 10% recall is 40% (Fig. 3a), while
for variable drift (drop fixed at 4%) at Cdrift = 5% pixels recall recall is 20% (Fig.
3b). In both cases recall shows a steep drop, but there is significant robustness
to points being dropped and shifted around. Also it’s interesting to note that
there is practically no difference in results between scenarios A-D.

Grid Distribution: This is probably the hardest type of distribution for
our algorithm. It is so regular that unrelated signatures are likely to collide
since neighborhoods all look similar. This is verified in Fig. 3d, where starting
precision is 50% (curve A). This means that many unrelated signatures match
across two identical point clouds. Note that precision is constant as we randomly
drop points, and it seems to perform best in the case where we filter out weak
signatures, but also pretty well when we filter out signatures that occur multiple
times on one page. However in Fig. 3d, 3c we see that increased precision when
filtering comes at the expense of recall.

4 Document Image Similarity Application

A common application of analysis is the detection of similar pages. For instance,
one may want to cluster duplicate pages when merging multiple scans of a doc-
ument, or find corresponding pages between 2 different versions. This can be
done based on OCR text, but OCR is an expensive operation, which does not
work well on all scripts. Document digitization is typically done using sheetfed
scanners or other techniques in which acquired images have little warping, mod-
erate skew (±3◦), no scale difference, and small translation variation. These are
optimal conditions for our signatures, although we have shown how we could cor-
rect for imperfect conditions. Jaccard J similarity is used to estimate document
image similarity. The similarity between two pages is calculated as:

Js(p1, p2) =
| S(p1) ∩ S(p2) |
| S(p1) ∪ S(p2) |

(4)

where S(p) is the set of extracted signatures from page p. Depending on image
distortion and word segmentation discrepancy between pages, the number of
matching signatures may be low compared to the total number of signatures.
We can get better estimate using matching signatures to calculate an affine
transform from one image to another, and then use that transform to align
word bounding boxes between pages. We declare that boxes match when their
centroid is close after transformation and they have roughly the same size. From
the matching box count we calculate similarity Jb as:

Jb(p1, p2) =
|MatchCount(p1, p2) |

| BoxCount(p1) +BoxCount(p2)−MatchCount(p1, p2) |
(5)

In Fig. 4 we show both signature matches and box matches. The two example
pages we use are in Chinese and Arabic. Initially few signatures match (Fig.
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4a, 4c), but the number improves significantly after alignment. Similarities were
initially 19% for Chinese, and 5% for Arabic. After alignment and similarity
recalculation, we measured 93% for Chinese and 37% for Arabic. Note that in
Arabic we still fail to align many boxes due to inconsistent word segmentation,
but we align enough to have confidence in the measurement. With Chinese,
similarity is high because segmentation is consistent despite being wrong.

(a) Matching signatures (Chinese text) (b) Matching boxes (Chi-
nese text)

(c) Matching signatures (Arabic text) (d) Matching boxes (Arabic
text)

Fig. 4: Examples of matching signatures and aligned boxes in the page similarity
calculation. Shown on example of Chinnese (4a, 4b), and Arabic (4c, 4d) scripts.
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Fig. 5: Examples of image lookups

5 Document Image Lookup Application

Document retrieval based on a photograph of a page is another common appli-
cation. For example, a user takes a photo with his mobile phone, sends it to a
server, and the digital reference to the page is returned. We ran two experiments.
The first with a small set of English language classics for a total of 4.1K pages.
The second with a much wider variety of books, totalling 1M pages. In both
cases, we queried for 120 photographs of book pages taken with a NexusOne
Phone camera (5MP). Our server runs on a 2.2GHz PC with 8GB of RAM.

The pipeline is straightforward. We built an index based on OCR bounding
boxes since we had them available (instead of running the image processing).
The signature calculation and indexing takes on average 8.6ms per page (for
32bit signatures, for the 4.1K set). The index maps the signature to a list of
< book, page, position > tuples. At query time, we first process the input image
using Leptonica to extract word centroids from which we generate signatures.
We look up each signature in the index and bucket hits per book page. Finally
we pick the page with the largest number of matching signatures. We only need
to look up around 200 signatures, so queries run very quickly.

Overall accuracy exceeds 95% on the 4.1K set, as shown in Table 1. We
tried various signature sizes and found that they had little impact on the results
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Table 1: Image lookup results
Index Size Accuracy Signature size [bits]

4.1K 0.966 16

4.1K 0.949 32

1M 0.871 32

themselves. The downside of small signatures is that lookup takes longer because
we run into many more false positives. Lookup times are sub-millisecond, once
we have the list of query signatures.

We then ran the same experiment on a set of 1M pages, which is orders of
magnitude larger than other sets that we know of, e.g [6],[5]. Accuracy degraded
only a little to 87%, demonstrating that this technique works well with tens of
thousands of books worth of data in the index. The index is also compact: 1M
pages resulted in about 386M signatures, allowing us to store the entire index
in memory on a single machine (< 4GB). We filtered out 0.8% of signatures,
which were shared by over 1000 pages, to prevent false positives. On average
each query results in about 2000 candidate matches, most of which agree.

6 Conclusion

We have presented a method for extracting signatures from document pages,
that works using bounding boxes found from either OCR, or image process-
ing independent of either language or the age of the document. We showed the
robustness of this technique on synthetic data, including post-processing to im-
prove the results in various cases. We then presented two simple applications of
these signatures: one related to page similarity measurement, and the other to
the retrieval of documents from camera pictures on a large corpus. The latter
was shown to be efficient on a large corpus of 1M pages.
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