Subset feedback vertex set is fixed-parameter tractable”

Marek Cygan' Marcin Pilipczuk? ~ Michat Pilipczuk® Jakub Onufry Wojtaszczyk’
August 1, 2011

Abstract

The classical FEEDBACK VERTEX SET problem asks, for a given undirected graph G and an integer k, to find a
set of at most k vertices that hits all the cycles in the graph G. FEEDBACK VERTEX SET has attracted a large amount
of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a
rich source of ideas in the field.

In this paper we consider a more general and difficult version of the problem, named SUBSET FEEDBACK VER-
TEX SET (SUBSET-FVS in short) where an instance comes additionally with a set S C V of vertices, and we ask for
a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing
and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et
al. [SICOMP’00, SIDMA’00].

The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawara-
bayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is
fixed-parameter tractable when parametrized by |.S|. Next we present an algorithm which reduces the given instance
to 2°n°™) instances with the size of S bounded by O(k?), using kernelization techniques such as the 2-Expansion
Lemma, Menger’s theorem and Gallai’s theorem. These two facts allow us to give a 20(klog k) p O(1) time algorithm
solving the SUBSET FEEDBACK VERTEX SET problem, proving that it is indeed fixed-parameter tractable.

1 Introduction

FEEDBACK VERTEX SET (FVS) is one of the long—studied problems in the algorithms area. It can be stated as follows:
given an undirected graph G on n vertices and a parameter k decide if one can remove at most k vertices from G so
that the remaining graph does not contain a cycle, i.e., is a forest. The problem of finding feedback sets in undirected
graphs arises in a variety of applications in genetics, circuit testing, artificial intelligence, deadlock resolution, and
analysis of manufacturing processes [16].

Because of its importance the feedback vertex set problem was studied from the approximation algorithms perspec-
tive in different variants and generalisations including DIRECTED FEEDBACK VERTEX SET and SUBSET FEEDBACK
VERTEX SET (see [15] and [17] for further references). In this paper we will study the SUBSET FEEDBACK VERTEX
SET problem from the parametrized complexity perspective.

In the parameterized complexity setting, an instance comes with an integer parameter £ — formally, a parameter-
ized problem () is a subset of ¥* x N for some finite alphabet 3. We say that a problem is fixed-parameter tractable
(FPT) if there exists an algorithm solving any instance (x, k) in time f(k)poly(|z|) for some (usually exponential)
computable function f. Intuitively, the parameter k measures the hardness of the instance. Fixed-parameter tractability

*A preliminary version of this paper was presented at the 38th International Colloquium on Automata, Languages and Programming, Ziirich,
Switzerland, 2011.

TInstitute of Informatics, University of Warsaw, Poland, e-mail: cygan@mimuw.edu.pl. Partially supported by Foundation for Polish
Science and Polish Ministry of Science grant no. N206 491238

Institute of Informatics, University of Warsaw, Poland, e-mail: malcin@mimuw.edu.pl. Partially supported by Foundation for Polish
Science and Polish Ministry of Science graph no. N206 491038

§Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland, e-mail: mp248287@students.mimuw.edu.pl

nstitute of Mathematics, University of Warsaw, Poland and Google Inc., Cracow, Poland, e-mail: onufry@google.com

has received much notice as a method of effectively solving NP-hard problems for instances with a small parameter
value.

The long line of research concerning FVS in the parameterized complexity setting contains [1, 2, 6, 7, 11, 13,
14, 21, 22, 28]. Currently the fastest known algorithm works in 3kn%M) time [9]. Thomassé [31] has shown a
quadratic kernel for this problem improving previous results [3, 5]. The directed version has been proved to be FPT
in 2008 by Chen et al. [8], closing a long-standing open problem in the parameterized complexity community. The
natural question concerning the parameterized complexity of the SUBSET FEEDBACK VERTEX SET problem was
posed independently by Kawarabayashi at the 4th workshop on Graph Classes, Optimization, and Width Parameters
(GROW 2009) and by Saurabh at the Dagstuhl seminar 09511 [12].

Notation Let us now introduce some notation. Let G = (V, E) be a simple undirected graph with n vertices. A
cycle in G is a sequence of vertices v1vs ... v, € V such that v;v;11 € E and v,,v1 € E. We say a cycle is simple
if m > 2 and the vertices v; are pairwise different. We will also consider multigraphs (i.e., graphs with multiple
edges and loops), in which a simple cycle can have two vertices if there is a multiple edge between them, or a single
vertex if there is a loop attached to it. We call an edge vw € E a bridge if in (V, E'\ {vw}) the vertices v and w
are in different connected components. Note that no simple cycle can contain a bridge as one of its edges. Given
subsets X, Y C V, by E(X,Y) we denote the set of edges with one endpoint in X and the other in Y. By G[X] we
denote the subgraph induced by X with the edge set £(X, X). By N(X) we denote the neighbourhood of X, i.e.
{u € V\ X : Jyexuv € E}. For a subset of edges £/ C E by V(E’) we denote the set of all endpoints of edges
from the set E'.

Problem definitions In this paper we study the SUBSET FEEDBACK VERTEX SET problem (SUBSET-FVS), where
an instance comes with a subset of vertices .S, and we ask for a set of at most k vertices that hits all simple cycles
passing through S. It is easy to see that SUBSET-FVS is a generalisation of FVS by putting S = V. The weighted
version of SUBSET-FVS was introduced by Even et al. [16] as a generalization of two problems: FEEDBACK VERTEX
SET and NODE MULTIWAY CUT. Even et al. motivate SUBSET-FV'S problem by explaining its applicability to genetic
linkage.

SUBSET FEEDBACK VERTEX SET (SUBSET-FVS) Parameter: &
Input: An undirected graph G = (V, E), aset S C V and a positive integer k
Question: Does there exist a set 7' C V such that |T'| < k and no simple cycle in G[V \ T contains a vertex of
S?

We also define a variant of SUBSET-FVS, where the set .S is a subset of edges of G.

EDGE SUBSET FEEDBACK VERTEX SET (EDGE-SUBSET-FVS) Parameter: &
Input: An undirected graph G = (V, E), aset S C E and a positive integer k

Question: Does there exist a set 7' C V with |T'| < k, such that no simple cycle in G[V \ T'] contains an edge
from S?

The two problems stated above are equivalent. To see this, note that if (G, S, k) is an instance of SUBSET-FV'S, we
create an instance (G, S, k) of EDGE-SUBSET-FVS by selecting as S’ all the edges incident to any vertex of S. Then
any simple cycle passing through a vertex of S has to pass through an edge of S’, and conversely, any cycle passing
through an edge of S’ contains a vertex from S. In the other direction, if (G, S’, k) is an instance of EDGE-SUBSET-
FVS, obtain G’ by replacing each edge uv € S’ by a path u — z,,, — v of length 2, and solve the SUBSET-FVS
instance (G', S, k) where S = {z. : e € S’}. Clearly both reductions work in polynomial time and do not change
the parameter. Thus, in the rest of this paper we focus on solving EDGE SUBSET FEEDBACK VERTEX SET. A simple
cycle containing an edge from S is called an S—cycle.

Let us recall here the definitions of two other problems related to SUBSET-FVS.

NODE MULTIWAY CUT Parameter: &
Input: An undirected graph G = (V, E), a set of vertices 7 C V, called terminals, and a positive integer k
Question: Does there exist a set " C V' of at most k& non-terminals, such that no two terminals are in the same
connected component of G[V \ T?

NODE MULTICUT Parameter: &
Input: An undirected graph G = (V, E), a set of pairs of vertices T C V x V, called terminal pairs, and a
positive integer k

Question: Does there exist a set 7' C V' of at most k non-terminals, such that no terminal pair is contained in
one connected component of G[V \ T']?

Our contributions The main result of the paper is the following.

Theorem 1.1. There exists a 20198) nOW) _time and polynomial space algorithm for EDGE-SUBSET-FVS (which
implies an algorithm of the same time complexity for SUBSET-FVS).

This result resolves an open problem posted in 2009 independently by Kawarabayashi and by Saurabh. To achieve
this result we use several tools such as iterative compression, the 2-Expansion Lemma, Menger’s theorem, Gallai’s
theorem and the algorithm for the MULTIWAY CUT problem. Some of our ideas were inspired by previous FPT results:
the algorithm for MULTICUT parameterized by (|77, k) by Guillemot [20], the 37.7*n°(")—time algorithm for FVS
by Guo et al. [21] and the quadratic kernel for FVS by Thomassé [31].

We do not analyze the value of the exponent in the term n®(1), as in our algorithm it is far from being linear. The
most important reasons for this dependency on n is that the usage of Gallai’s theorem requires finding of a maximum
matching in an auxiliary graph, and the use of iterative compression gives additional multiplicative factor of n.

Related work As observed by Even et al. [16] the weighted version of SUBSET-FVS is a generalisation of NODE
MULTIWAY CUT. It is straightforward to adjust their reduction to the unweighted parameterized case; for sake of
completeness, we include the reduction in Section 4.

Recently a lot of effort was put into developing kernelization and FPT algorithms for terminal separation problems,
including the quadratic kernel [31] and the fast FPT algorithm [9] for FVS and the results resolving the parametrized
complexity status of MULTICUT independently obtained by Bousquet et al. [4] and by Marx and Razgon [27]. To the
best of our knowledge, though, none of those results implies an FPT algorithm for SUBSET-FVS.

SUBSET-FVS was studied from the approximation perspective and the best known approximation algorithm by
Even at al. [17] gives approximation ratio equal to 8.

We were recently informed that an FPT algorithm for SUBSET-FV'S was independently discovered by Kawarabayashi
and Kobayashi [23]. Their algorithm uses significantly different techniques (minor theory) and its dependency on k in
the running time is worse than 20(klog %),

Outline of the paper In Section 2 we present an FPT algorithm for EDGE-SUBSET-FVS when parameterized by
|S|. For the sake of presentation, we first give an easy-to-describe f(|S|)n®() algorithm at the cost of a fast growing
function f (Section 2.1). Then we enhance this algorithm using techniques of Guillemot [20] so that the function f is
replaced by 20(k102151) (Section 2.2). Later, in Section 3 we develop an algorithm that produces 2¥1n°(1) subinstances
with the size of S bounded by O(k3). In Section 4 we include a reduction from NODE MULTIWAY CUT to SUBSET-
FVS in the parameterized setting. Finally, Section 5 contains conclusions and open problems.

2 EDGE-SUBSET-FVS parameterized by |5/

In this section we concentrate on solving the EDGE-SUBSET-FVS problem parameterized by |.S|, which means that
our complexity function can be exponentially dependent on the number of edges in the set S. This is the first step
towards obtaining an FPT algorithm when parameterized by k. Observe that we may assume k < |S| since otherwise
we may delete one vertex from each edge from the set S thus removing all edges from the set .S from our graph.

Let us first introduce some notation. For G = (V, E) denote Gg = (V, E \ S). By a partition of a set Z we
mean such a family P = {Py, ..., P,,}, that P;s are pairwise disjoint and their union is Z. We say a partition P’ is a
subpartition of P if every element of P’ is contained in some element of P, in this case we call P a superpartition of

P

2.1 Simpler and slower algorithm

We begin by showing an FPT algorithm which is easy to understand and later we present methods to improve the
time complexity. We use the fact that NODE MULTICUT is FPT when parameterized by (k, |7|) which was shown by
Marx [26].

Theorem 2.1. There exists an algorithm solving the EDGE SUBSET FEEDBACK VERTEX SET problem in f(|S|)n®™)
time, for some computable function f.

Proof. Let T be some solution of EDGE-SUBSET-FVS. Our new parametrization, by |S|, allows us to guess, by
checking all possibilities, the subset Ts = T N V(S) that is removed by the solution 7. Moreover, our algorithm
guesses how the set V(.S) \ T is partitioned into connected components in the graph Gg[V \ T]. Clearly both the
number of subsets and of possible partitions is a function of |S|. For a partition P = {Py, ..., P,,} of V(S) \ Ts we
form a multigraph Gp onthe set { P, ..., Py, } by adding an edge P; P; for every edge uv € S, where u € P;,v € P;.
Now we check whether there exists an edge in G» which is not a bridge. If that is the case we know that the partition P
does not correspond to any solution of EDGE-SUBSET-FVS, as any simple cycle in Gp can be converted into a simple
cycle in G — hence we skip this partition. Otherwise we create a set of pairs 7, containing all pairs of vertices from
the set V(.S) \ T's that belong to different sets in the partition P. Formally 7 = {(v;,v;) : v; € Py, v; € Py, i’ # j'}.
Because of the properties of the multigraph G'p it is sufficient to ensure that no pair from the set 7 is contained in one
connected component, hence the last step is calling an algorithm for the NODE MULTICUT problem with parameter
k — |Ts|. If the call returns a positive answer and a solution X, the set Ts U X is a solution to EDGE-SUBSET-FVS:
the connected components of Gg[V'\ (T's U X)] induce a partition of V' (.5) \ (Ts U X)) that is a subpartition of P and
thus all remaining edges of S are bridges in G[V \ (T's U X)]. Note that we do not require here that X NV (S) = ()
nor that the induced partition of V'(S) \ (T's U X)) is exactly the partition P (being a subpartition is sufficient). On the
other hand, if the answer to EDGE-SUBSET-FVS is positive, the NODE MULTICUT call returns a solution for at least
one choice of Ts and P, the one implied by the EDGE-SUBSET-FVS solution. Observe that | 7| = O(]S|?) so we
obtain an FPT algorithm for the EDGE SUBSET FEEDBACK VERTEX SET problem parameterized by |S].

Function EdgeSubsetFeedbackVertexSet(G, S, k) {parameterized by (|.S|, k)}
1: for all subsets T's C V(5),|Ts| < k do
2: for all partitions P = {Py,..., Pn} of V(S) \ Ts do

3 form a multigraph G'» on the set { P, ..., P} by adding an edge P; P; for every edge uv € S, u € P;,v € P;.
4 if all edges in Gp are bridges then

5 letT:{(vi,v]-) 1v; € Py,vj EPj/,i/#j/}

6: if MultiCut(Gs[V \ Ts], T,k — |Ts|) returns (Y ES, X') then

7: return T's U X

8: return NO

2.2 Improving the time complexity

Our whole approach in this subsection is closely based to the arguments of Guillemot [20] for MULTICUT. We
first recall that NODE MULTIWAY CUT is fixed-parameter tractable when parameterized by the solution size k, and
currently the best running time is 279 (%) [10].

Our main result in this section is the following:

Theorem 2.2. There exists an algorithm solving the EDGE SUBSET FEEDBACK VERTEX SET problem in 20 (F10&151),0(1)
time.

Proof. The algorithm works in three phases. In the first two phases we aim to divide the set of all endpoints of edges
from S into a family of subsets. We prove that for each set T of at most & vertices from V' there exists a generated
partition of V'(S) that is the same as the partition of V' (.S) induced by the connected components of Gg[V \ T]. In
the third phase we check whether we can, in fact, achieve a generated partition of the endpoints of edges from .S into
connected components by removing at most k vertices, and whether such a partition implies that we removed all cycles
passing through S from G.

Initialize R = (). The first phase works as follows:

1. Select a spanning forest F' of Gg[V \ R],let U = V(S) \ R be the set of endpoints of edges from .S outside R;
2. If k = |R| proceed directly to phase two;
3. As long as there are isolated vertices not from U or leaves not from U in F', remove them from F;

4. As long as there are vertices of degree 2 not from U in F', remove them from F’, and connect the two neighbours
of the removed vertex with an edge in F’;

5. Branch out — one branch passes the resultant forest ' and sets U and R to the second phase. In other |F|
branches we select a vertex from F', add it to R and go back to Point 1.

Note that after the first four steps of phase one F' has at most 2|V (.S)| vertices (as all its vertices of degree at most
2 are from U C V/(S)). Thus in the fifth step we have at most 2|V (S)| 4 1 branches. As we can branch out into phase
one at most k times due to steps 2 and 5, this assures we have at most (2|V(S)| + 1)* entries into phase two from
phase one. The internal workings of the first phase are obviously polynomial-time.

The second phase is somewhat more complicated, and aims at arriving at a partition of the set U = V(S) \ R,
based on the forest F' received from phase one. Informally speaking, the set R is to be included in the solution and in
the second phase we choose a subgraph of F' that corresponds to connected components of Gg[V '\ T).

Let P = {P,..., P} be the partition of U given by phase one — that is if we denote the connected components
of Fby Cq,Cs,...,Cpp, then P, = C; N U for 1 < i < m. Note that the P;s are non—empty, since if some connected
component of F' contained no vertex from U, then it would be removed from F' completely during the third step of
phase one. Now we proceed as follows:

1. Select at most k — | R| edges from F';
2. Let P’ denote the partition of U given (as above) by F' with the selected edges removed;

3. For each partition P” of U being at the same time a subpartition of P and a superpartition of P’ start phase
three.

We want to check how many times each application of phase two enters phase three. As F' has at most 2|U| <
2|V (S)| edges, we have at most (2|V'(S)|)* choices in the first step. Now, consider a connected component C; of F,
from which we removed s; edges. There are exactly s; + 1 elements of P’ which are subsets of C;. The number of
ways to combine these elements into a partition of C; N U is the (s; + 1)-st Bell number By, 11 < (s; + 1)*T1. The
product of these is

HBsqu < 1_[(5Z + 1)574+1 = exp <Z(sl + 1) log(s; + 1))

< exp ((14—231) log (1—}—251)) = (1+k)l+k,

where the last inequality follows from the standard Jensen’s inequality corollary f(>", z;) < >, f(x;) for a convex
function f with f(0) = 0 and non-negative x; applied for f(x) = (1 + z)log(1 4+). Thus for each execution of
phase two, phase three is executed at most (2|V (S)|)*(k + 1)¥*+1 times.

Phase three works as follows:

1. Take the partition P” of U = V(S) \ R given by phase two, form a multigraph on the set { Py, Ps, ..., P, } by
adding an edge P; P; for every edge uv € S, where u € P;, v € P;. If any of these edges is not a bridge, return
a negative answer from this branch;

2. Otherwise create a graph G’ by adding to G a vertex w; for every P; € P”, ¢ > 1 and adding edges connecting
w; to u; foreach u; € Ppslet W = {w; }72,;

3. Apply NODE MULTIWAY CUT to (G5[(V U W) \ R|,W,k — |R|). If it returns a negative answer, we return
a negative answer from this branch, otherwise we return (Q U R as a solution, where @ is the set returned by
NODE MULTIWAY CUT.

The execution of this phase takes 2¥n°(1) time [10]. Thus, as the first phase branches out into at most (2|V(S)| +
1)* executions of phase two, phase two branches out into at most (2|V'(S)|)*(k 4 1)¥*1 instances of phase three, and
phase three executes in 2791 the runtime of the whole algorithm is at most 20 10&1V(5)DpO() (we may assume
k < |V (S)| — if otherwise, removing V'(5) from V' gives a trivial positive solution).

Now we prove the correctness of this algorithm. First assume the algorithm returns a solution. It was then found
by phase three. Consider the graph G'[(V U W) \ (Q U R)]. As Q was returned by the NODE MULTIWAY CUT
algorithm, we know |@Q| < k — | R| (and thus |Q U R| < k). We prove there are no simple cycles through edges of S
in G'[(VUW)\ (Q U R)], which implies the same for its subgraph G[V \ (Q U R)]. As) was returned by NODE
MULTIWAY CUT, each vertex w; is in a distinct connected component of G's[(V U W) \ (Q U R)]. Consider a simple
cycle in G'[(V UW) \ (Q U R)] passing through some edge e € S. This means there is a path connecting the two
endpoints of e in G'[(VUW)\ (QU R)] not passing through e. We may contract connected components containing the
w;s to single vertices, thus receiving a graph isomorphic to the graph considered in the first step of phase three. The
existence of the simple path, however, means e was not a bridge in this graph, contrary to the assumption our algorithm
returned QQU R as a solution. Thus any solution found by our algorithm is indeed a solution of the EDGE-SUBSET-FVS
problem.

On the other hand, assume there exists some solution 7' of the EDGE-SUBSET-FVS problem. We show how our
algorithm arrives at a positive answer in this case. In the first phase, if any vertex ¢ € T remains in the forest F'
constructed in this phase in Point 4, we select the branch that adds ¢ to R. If no vertex from 7" remains in F' at some
iteration of the first phase, we branch out to the second phase. Note that R C T'. In the second phase, we choose the
edges into which the vertices from 7" were contracted (if some were dropped due to being leaves or isolated vertices
in F, we simply choose fewer edges). Now consider the partition P of U = V(S) \ R given by the relation of
being in the same connected component of Gg[V \ T. It is a subpartition of P, as P is simply the partition given by
Gs[V \ R], and R C T. It is also a superpartition of P’, as P’ is given by removing the whole T and all the edges
which are not edges of the forest F. Thus P” is one of the partitions considered in the second phase, and thus enters
the third phase. Now for this partition the edges of S are bridges in the sense of the first step of phase three, as the
vertices of the graph considered there correspond exactly to connected components of Gs[V \ T, and G[V \ T has
no simple cycles through edges in S. Moreover, T\ R is a solution for the NODE MULTIWAY CUT problem by its
definition. Thus NODE MULTIWAY CUT returns some positive answer (not necessarily 7'\ R) in this branch, and thus
the algorithm gives the correct answer. O

3 EDGE-SUBSET-FVS parameterized by £

In this section we show an FPT algorithm for EDGE SUBSET FEEDBACK VERTEX SET.

We begin by noting that, using standard arguments, one can show that EDGE-SUBSET-FVS is self-reducible —
i.e., if we have an algorithm that solves EDGE-SUBSET-FVS, we can also find a witness: a set ' that intersects all
cycles passing through S. The procedure is standard: Assume the answer is positive. For every vertex we check
whether it can be a part of the solution by removing it from the graph, decreasing k by one and running our algorithm
on the reduced instance. For at least one vertex the answer has to be positive, we greedily take any such vertex into
the solution and proceed inductively.

We now follow the idea of iterative compression proposed by Reed et al. [29]. First, note that if V! C V
and T is a feasible solution to an EDGE-SUBSET-FVS instance (G, S, k), then V' N T is a feasible solution to the
instance (G[V'], 5", k), where S’ = S N E(G[V’]). Thus, if the answer for (G[V’], 5", k) is negative, so is the
answer for (G, S, k). Let V = {v1,vs,...,v,} be an arbitrary ordering of the set of vertices of G. We consecutively
construct solutions to EDGE-SUBSET-FVS for instances Z; = (G[V;], Si, k), where V; = {v1,v9,...,v;} and S; =
S N E(G[V;]). When looking for a solution for graph G[V;41], we use the fact that if 7} is a solution for Z;, then
Zi+1 = T;U{v;11} is a solution for (G[V;41], Si+1, k+1) — a solution for our problem with the parameter increased
by one.

We start with a standard branching into 2/Z:+1] subcases, guessing which vertices from Z;,; are taken into a
solution to the instance Z; . Let us focus on a fixed branch, where we decided to take 7z C Z;; into a solution and
denote Z = Z; 1 \ Tz. We delete Tz from the graph G, reduce S to SN E(G \ T), and decrease k by |T|, arriving
at the following subproblem.

Di1SJOINT EDGE-SUBSET-FVS Parameter: k and | Z|
Input: A EDGE-SUBSET-FVS instance (G, S, k) together with a set Z C V(G) that is a solution to the EDGE-
SUBSET-FVS instance (G, S, |Z])

Question: Does there exist a solution to (G, S, k) that is disjoint with Z?

However, we are not going to provide an algorithm that solves any DISJOINT EDGE-SUBSET-FVS instance, but
only a maximal one. Informally speaking, we are only interested in those of 2/Zi+1| branches, where the guessed set
Tz is (inclusion-wise) maximal. Formally:

Definition 3.1. We say that a DISJIOINT EDGE-SUBSET-FVS instance (G, S, k, Z) is a maximal instance if every
feasible solution to EDGE-SUBSET-FVS instance (G, S, k) is disjoint with Z.

We provide a set of reductions that reduce the size of S to polynomial in k. However, we do not require that
the reductions are sound with respect to any DISJOINT EDGE-SUBSET-FVS instance, but only to the maximal ones.
Formally, we define the reductions as follows.

Definition 3.2. We say that a DISJIOINT EDGE-SUBSET-FVS instance (G', S’, k', Z') is a properly reduced instance
(G, S, k, Z) if the following holds:

1 V(G <|V(G)| and k' < k;

2. if (G, S, k) is a EDGE-SUBSET-FVS NO-instance, so is (G',S", k'),

3. if (G, S, k, Z) is a maximal DISJOINT EDGE-SUBSET-FVS YES-instance, so is (G', S’ k', Z").
We are now ready to state the main theorem of this section.

Theorem 3.3. There exists a polynomial-time algorithm R that, given a DISJIOINT EDGE-SUBSET-FVS instance
(G, S, k, Z), either:

1. returns a properly reduced instance (G', S’ k', Z') with k' < k, |Z'| < |Z| and |S’| = O(K'|Z'|?);

2. or returns IGNORE, in this case (G, S, k, Z) is not a maximal DISJOINT EDGE-SUBSET-FVS YES-instance.

We first show that Theorem 3.3 leads to the desired FPT algorithm for EDGE-SUBSET-FVS, i.e., we now prove
Theorem 1.1.

Proof of Theorem 1.1. In each step of the iterative compression, in each of 2/Z+1| branches, we run the algorithm
R. If it gives the second answer, we ignore this branch. In case of the first answer, we invoke the algorithm from
Theorem 2.2 on EDGE-SUBSET-FVS instance (G’, S, k'), leading to running time 2°(F1°8%),0(1) " Note that if
(G',S’, k") is a EDGE-SUBSET-FVS YES-instance, so is (G, S, k) (by the second property of Definition 3.2), and
any solution (even not disjoint with Z) to (G, S, k) can be extended to a solution of Z;,1 by taking its union with
Ty. Thus if Z;,; is a NO-instance, the algorithm cannot find a solution. Otherwise, let T" be a solution to Z; 1 with
maximum possible intersection with Z; ;. We claim that the algorithm finds a solution in the branch T, =T N Z; ;.
Indeed, then (G, S, k, Z) is a maximal YES-instance to DISJOINT EDGE-SUBSET-FVS and the algorithm R cannot
return IGNORE. Thus we obtain a EDGE-SUBSET-FVS YES-instance (G’, S’, k'), and the algorithm from Theorem
2.2 finds a solution.

The proof of Theorem 3.3 consists of a set of polynomial-time proper reductions (in the sense of Definition 3.2),
each either decreasing |V (G)| or decreasing | E(G)| while not changing |V(G)|. Some reductions may result with
an IGNORE answer, in which case the answer is immediately returned from this branch. Note that in this case the
last property of Definition 3.2 implies that all DISTOINT EDGE-SUBSET-FVS instances in the current sequence of
reductions are not maximal YES-instances. We assume that at each step, the lowest-numbered applicable reduction is
used. If no reduction is applicable, we claim that |S| = O(k|Z|?).

We start with an obvious reduction. Note that if it is not applicable, every edge in S is contained in some simple
cycle.

Reduction 1. Remove all bridges and all connected components not containing any edge from S.

3.1 The outer-abundant lemma

In this section we consider an instance of DISJOINT EDGE-SUBSET-FVS (G, S, k, Z), where G = (V, E). We assume
that Reduction 1 is not applicable, i.e., every edge in S belongs to some simple cycle. The approach here is based on
ideas from the quadratic kernel for the classical FEEDBACK VERTEX SET problem [31], however, a few aspects need
to be adjusted to better fit our needs.

Definition 3.4. A set ' C V is called outer—abundant iff-
(a) G|F] is connected,
(b) there are no edges from S in G[F),
(c) there at least 10k edges from S incident with I

Lemma 3.5 (The outer—abundant lemma). Let F' be an outer—abundant set. If Reduction 1 is not applicable, then in
polynomial time one can either:

e find a nonempty set X C V' \ F such that the following condition is satisfied: if there exists a solution A for
EDGE-SUBSET-FVS on (G, S, k) such that AN F = (), then there exists a solution A" such that A’ N F = ()
and X C A';

e or correctly state that any solution for EDGE-SUBSET-FVS on (G, S, k) is not disjoint with F.

Before we start proving Lemma 3.5, let us recall a few tools used in the quadratic kernel for FEEDBACK VERTEX
SET [31]. First, we recall the result of Gallai on finding disjoint A—paths.

Theorem 3.6 (Gallai [19]). Let A be a subset of vertices of a graph G. A path is called an A—path if its endpoints are
different vertices in A. If the maximum number of vertex disjoint A—paths is strictly less than k + 1, there exists a set
of vertices B C'V of size at most 2k intersecting every A—path.

Moreover, it follows from Schrijver’s proof of the Gallai’s theorem [30] that Theorem 3.6 can be algorithmized:
in polynomial time we can find either (k + 1) disjoint A—paths or the set B’.
The other theorem we need is the 2-Expansion Lemma:

Theorem 3.7 (2-Expansion Lemma, Theorem 2.3 in [31]). Let H be a nonempty bipartite graph on bipartition (X,Y)
with |Y| > 2|X| and such that every vertex of Y has at least one neighbour in X. Then there exists nonempty subsets
X' CX,Y' CY suchthat N(Y')NX = X' and one can assign to each x € X' two private neighbours y,y% € Y’
(i.e., eachy € Y' is assigned to at most one x € X'). In addition, such pair of subsets X', Y’ can be computed in
polynomial time in the size of H.

Proof of Lemma 3.5. An S—cycle is called important if it contains an edge from SNE(F, V' \ F'). A set of important
cycles {C1, Cy, ..., Cy} is called a t—flower, if the sets of vertices C; \ F are pairwise disjoint.

Note that if there exists a vertex v € V' \ F such that |[E({v}, F')| > 2 and E({v}, F) NS # 0, then one can take
X = {v}. Indeed, any solution disjoint with F" has to include v, since by connectivity of G[F] there is an important
cycle contained in G[F' U {v}] passing through v via at least one edge from S. Thus we can assume that each vertex
from V' \ F'is connected to F' by a number of edges (possibly zero) not belonging to S or by a single edge from S.

Now we prove that in polynomial time we can find one of the following structures: either a (k 4+ 1)-flower, or a
set B of at most 3k vertices belonging to V' \ F such that each important cycle passes through at least one of them
(further called a 3k—blocker).

Let C be the set of those important cycles, which contain exactly two edges between F and V' \ F (intuitively,
visiting F' only once). Note that due to connectedness of G[F, a set is a 3k—blocker iff any cycle from C passes
through at least one of its elements. For C' € C let us examine these two edges between F' and V \ F. As C is

important, one or two of them belong to S. We say that such a cycle is of type I iff exactly one of these edges belong
to S and of type II otherwise.

Firstly, we sort out the type I cycles. We remove F' from the graph and replace it with two vertices s and t. Also
we add edges incident with s and ¢t — for every vw € E(F,V \ F) with v € F, we add edge sw if vw € S and edge
wt otherwise. By a simple application of the vertex max—flow algorithm and Menger’s theorem one obtains either a
vertex—disjoint set of paths between s and ¢ of cardinality k£ + 1, or a set of at most k vertices such that each such a
path passes through at least one of them. Returning to the original graph transforms each path between s and ¢ into a
type I cycle, so we have found either a (k 4 1)-flower or a k-blocker of type I cycles.

Now, we deal with the type II cycles. Let J C V' \ F be the set of vertices that are connected to F' by an edge
from S. We remove temporarily F' from the graph and apply Theorem 3.6 to the set .J. Note that a set of & + 1
vertex—disjoint J—paths correspond to a (k + 1)-flower, and the set B’ is a 2k-blocker of type II cycles.

Using both of these methods we obtain either a (k + 1)-flower or, by taking a union of blockers, a 3k—blocker.
Note that both algorithms run in polynomial time.

The existence of a (k+1)—flower immediately shows that a solution A disjoint with F’ does not exists, as each cycle
belonging to a flower has to include at least one vertex from A. Thus we are left only with the case of a 3k-blocker.
Let us denote it by B.

Let us examine G[V'\ (FUB)]. Let H = (Vg, Exr) be any of its connected components. Note that H is connected
to F' by a number of edges (possibly zero) not belonging to .S or by a single edge from S. Indeed, otherwise, due to
connectedness of H and of G[F, there would be an important cycle contained in G[F'U V] not blocked by B. Using
observation from the second paragraph of this proof, we may assume that each vertex from B is connected to F' by at
most one edge from S. So there are at most 3k edges from S between B and F'. As there are at least 10k edges from
S between F and V' \ F, we have at least 7k connected components of G[V \ (F U B)] connected to F' by a single
edge from S.

We call a component H easy if there is an S—cycle fully contained in H. If the number of easy components is
larger than k, there is more than k vertex—disjoint S—cycles, so A does not exist. Thus we may assume that there are
at least 6k non—easy components connected to F' by a single edge from .S. We call them fough components.

Let H = (Vg, Ey) be a tough component. Observe that N(Vz) N B # (). Indeed, otherwise the only edge
between Vi and V' \ Vi would be the edge from .S connecting H with F and thus a bridge sorted out by Reduction 1.

Let T be the set of tough components. We construct a bipartite graph (B U T, E,,,) such that vH € E.,, iff
v € N(Vg). Note that due to observation in the previous paragraph, (B U T, E.,,,) satisfy assumptions of Theorem
3.7,as |T| > 6k = 2- 3k > 2|B|. So we have nonempty sets X C B and Y C T such that for every v € B there are
two private tough components H., 1, H,2 € Y withv € N(Vy, ;) fori=1,2and BNUycy N(H) = X.

Let v € X. Note that due to the connectedness of H, ; and G[F], there is an S—cycle C,, passing through v — it
goes from v to H,, 1, then to F' through an edge from S, then to H, 5 through an edge from .S and back to v. Assume
that A is a solution to the EDGE-SUBSET-FVS on (G, S, k) and AN F = (. We see that cycles C, for v € X form
a | X|-flower, so there are at least | X| vertices in A N (X U Jycy Var). On the other hand, each S—cycle passing
through any vertex from X UJ <y Vi passes through a vertex from X. Indeed, each H € Y is connected to V'\ Vi
with a single edge incident with F" and a number of edges incident with X . Hence each cycle passing through a vertex
from (J oy Vi is fully contained in some H € Y or goes from some H € Y to X. As each H € Y is non—easy,
cycles not incident with X do not contain any edge from S.

These observations prove that if we construct

A= (A\ U VH> UX,

Hey

A’ will be still a solution to EDGE-SUBSET-FVS. Thus the set X satisfies all the required conditions.

Lemma 3.5 allows us to greedily assume X is in the solution we are looking for (after we ensure that it is disjoint
with F'), and either take it into the solution (if X N Z = () or return IGNORE (if X N Z # ()). As a direct application
of Lemma 3.5, we obtain the following reduction rule. Note that if it is not applicable, there are at most 10k|Z| edges
from S incident with Z.

Reduction 2. Let v € Z be a vertex that is incident to at least 10k edges from S. Apply Lemma 3.5 to the outer—
abundant set F = {v}, If a set X is returned and X N Z = (), we remove X and decrease k by |X|, otherwise we
return IGNORE.

3.2 Bubbles

Recall that our goal is to reduce the size of S. After Reduction 2, there are O(k|Z|) edges from S incident with Z.
Thus, we need to care only about S N E(G[V \ Z]).

As Z is a feasible solution to EDGE-SUBSET-FVS on (G, S, |Z|), every edge from S N E(G[V \ Z]) has to be a
bridge in G[V \ Z]. After removing those bridges G[V \ Z] becomes an union of connected components not having
any edge from S. We call each such a component a bubble. Denote the set of bubbles by D. On D we have a natural
structure of a graph H = (D, Ep), where I.J € Ep iff components I and J are connected by an edge from S. As Z
is a solution, H is a forest and each I, J connected in H are connected in G by a single edge from S.

Consider I € D. Denote the set of vertices of I by V;. Note that if at most a single edge leaves I (that is,
|E(Vi,V \ Vi)| < 1) then V; would be removed while processing Reduction 1. The following reduction sorts out
bubbles with exactly two outgoing edges and later we assume that for every I € D we have |E(V;,V \ V)| > 3.

Reduction 3. Let us assume that |E(V;,V \ Vi)| = 2 and let {u,v} = N(V7) (possibly u = v). Each cycle passing
through a vertex from Vi is either fully contained in I and thus non—S—cycle, or exits Vi through u and v. We remove
Vi from the graph and replace it with a single edge uv, belonging to S iff any one of the two edges in E(Vi,V \ Vi)
isin S.

If the addition of the edge uv lead to a multiple edge or a loop, we immediately resolve it:

e Ifuvisaloop anduv ¢ S, we delete it.

e Ifuvisaloop and uv € S, we return IGNORE, as the fact that Z is a solution to (G, S, | Z|) implies that u € Z.

o [fuv is a multiple edge and no edge between u and v is from S, we delete the new edge uv.

o [fuv is a multiple edge and one of the edges between u and v is S, we first note that, since Z is a solution to
(G,S,|Z|), worvisin Z. If both are in Z, we return IGNORE, otherwise we delete {u,v} \ Z from the graph
and decrease k by one.

O O O ®

O O--B---F [§---F---F]

Figure 1: Set of vertices Z and a forest of bubbles. Ellipse-shaped bubbles represent leaf bubbles, white squares
represent edge bubbles and squares filled with gray represent inner bubbles. Dashed edges belong to the set S.

We are now left with bubbles that have at least three outgoing edges. We classify those bubbles according to the
number of edges that connect them to other bubbles, that is deg;; (I).

Definition 3.8. We say that a bubble I € D is
(a) asolitary bubble if deg (I) = 0,
(b) aleaf bubble ifdegy (I) =1,
(c) an edge bubble if degy (1) = 2,

10

(d) an inner bubble if deg (I) > 3.
Denote by Ds, Dy, D., D; the sets of appropriate types of bubbles.

We show that we can do some reductions to make following inequalities hold:
[Dil = O(k|ZP), D <[Dil, [Del <3(1Z] + k) + [Di] + | Dil.

Note that these conditions imply that |D \ D,| = O(k|Z|?). As edges of H create a forest over D \ Dj, this bounds
the number of edges from S not incident with Z by O(k|Z|?), as desired.

Lemma 3.9. |DIL‘ < "Dl|

Proof. As H is a forest, then |[Ep| < |D| — |Ds| = |D;| + |De| + |Di|. Moreover, 2|Ep| = >, .pdegy(I) >
3|D;| + 2|De| + |Dy|. Therefore |D;| > |D;|. O

Reduction 4. If |D.| > 3(|1Z| + k) + |D;| + | D

, then return IGNORE.
Lemma 3.10. Reduction 4 is a proper reduction.

Proof. We first show that the number of edge bubbles not adjacent to any other edge bubble in H is at most |D;|+|D|.
Let us root each connected component of H in an arbitrary leaf and for any bubble I € D, let ¢(I) be the only child
of I. Observe that this mapping is injective and maps the set of edge bubbles isolated in H[D,] into D; U D;.

We now prove by contradiction if the reduction is applicable, every feasible solution of (G, S, k) contains a vertex
from Z. As edge bubbles have degree 2 in H, H[D,] is a set of paths of non-zero length and isolated vertices. There
are at least 3(|Z| + k) vertices contained in the paths. Let M be a maximal matching in H[D,]. If a path contains !
vertices (for [> 2), it has a matching of cardinality |] > é Therefore, in H|[D.] we have a matching of cardinality
at least | Z| 4 k. Let us examine an arbitrary IJ € M. Recall that at least three edges leave each bubble. As each of
V1, V7 is adjacent to two other bubbles by single edges, it has to be connected to Z as well. Choose uy, u; — vertices
from Z such that uy € N(V;) and uy € N (V). We see that there is a path from u; to u; passing through an edge
from S: it goes from w; to I, then to J through an edge from .S, and then to w ;. As M is a matching, such paths are
vertex—disjoint for all I.J € M, except for endpoints u; and ;.

If we have a solution disjoint with Z of cardinality at most k, there are at least | Z| pairs I.J € M, where neither
I nor J contains a vertex from the solution. Now we construct a graph P = (Z, Ep) such that uyuy € Ep if ur,uy
have been chosen for some I.J € M, where I and J are solution—free. We prove that P has to be a forest. Indeed,
otherwise there would be a cycle in P — and by replacing each edge from it by associated path, we construct an
S-cycle in G (as paths in which edges from Ep originated are vertex—disjoint). This cycle does not contain any vertex
from the solution, as it passes only through Z and solution—free bubbles. However, as |[Ep| > |Z|, P cannot be a
forest; the contradiction ends the proof. O

3.3 The leaf bubble reduction

We are left with the leaf bubbles and we need to show reductions that lead to |D;| = O(k|Z|?). We do this by a
single large reduction described in this subsection. It proceeds in a number of steps. Each step either returns IGNORE
(thus ending the reduction) or — after, possibly, modifying G — passes to the next step. Each step is not a standalone
reduction, as it may increase |E(G)|. However, if the reduction below is fully applied, it either returns IGNORE or
reduces |V (G)].

Let I be a leaf bubble. As there are at least three edges leaving I, each leaf bubble is connected to Z by at least
two edges. We begin with a bit of preprocessing:

Step 1. As long as there are two vertices v,v' in Z with vv' ¢ E, and at least k + 1 bubbles, each connected to both
v and v' by edges not in S, we add an edge vv' to E, with vv' ¢ S.

Lemma 3.11. The output (G', S, k) of Step 1 and the input (G, S, k), as EDGE-SUBSET-FVS instances, have equal
sets of feasible solutions.

11

Proof. Obviously any solution to (G’, S, k) is a solution to (G, S, k), as we only added edges (and thus only added
potential S—cycles). On the other hand, suppose we have a solution 7" to (G, S, k) which is not a solution to (G, S, k).
Then there is some S—cycle C'in (G’, S, k) not passing through any vertex of 7. C' has to pass through the edge vv’
(otherwise it would also be an S—cycle in (G, S, k)).

As |T'| < E, there is at least one bubble I; which is disjoint with T'. Thus we can find a simple path P connecting v
and v/, the interior vertices of which are all in I ;. Note that as I is a bubble and the edges to v and v’ were notin S, P
does not contain any edge from S. Consider the cycle C’ (not necessarily simple) in G' which is formed by replacing
the edge vv’ in C by the path P’. As C was an S—cycle, there is some edge e € S N C. This edge is visited by C’
exactly once — as we took out vv’ ¢ S and added edges from P, which is disjoint with S. If we consider the graph
spanned by edges from C’, the edge e is not a bridge in this graph, as the endpoints of e are connected by C’ \ {e}.
Therefore, e lies on some simple cycle contained in C”, a contradiction. O

Now for each bubble I with vertex set V; we choose arbitrarily two of the edges connecting it to Z: e and e’.
Additionally assume that if SN E(V;, Z) # O then ey € S. Let vy and v} be the endpoints of ey and ¢/ in Z (possibly
vy = v}). We say that a bubble I is associated with vertices vy, v7. If two leaf bubbles I, I are connected in H
(form a Ky in H), by an edge ey, 1, € S, we call them a bubble—bar. The proofs of the following lemmata proceed
along lines similar to the proof of correctness for Reduction 4:

Lemma 3.12. If there are at least | Z|*(k + 2) leaf bubbles I such that e; € S then every feasible solution of EDGE-
SUBSET-FVS on (G, S, k) contains a vertex from Z.

Proof. By the Pigeonhole Principle, there exist v, v’ € Z associated with at least k + 2 of the considered leaf bubbles.
If v = v/, there are k 4+ 2 S—cycles sharing only v, each constructed from a different bubble I by closing a path
contained in I with edges e; and €. Therefore, v needs to be part of any feasible solution. If v # v’, one can similarly
choose a path between v and v’ which contains an edge from S through each bubble I. These k + 2 paths are vertex—
disjoint apart from v and v’, so any feasible solution disjoint with Z leaves at least two of them solution—free. These
two paths can be arranged into a solution—free S—cycle, so any feasible solution is not disjoint with Z, as it contains v
orv'. O

Lemma 3.13. [f there are at least |Z|*(k + 1) leaf bubbles I such that viv), € S, then every feasible solution of
EDGE-SUBSET-FVS on (G, S, k) contains a vertex from Z.

Proof. As before, there exist v, v’ € Z associated with at least k& + 1 considered leaf bubbles. These bubbles generate
at least k + 1 S—cycles, which are vertex—disjoint apart from v, v’. Therefore, any feasible solution needs to include v
orv'. O

Lemma 3.14. [f there are at least | Z|?(k + 2) bubble—bars, then any feasible solution of EDGE-SUBSET-FVS on
(G, S, k) contains a vertex from Z.

Proof. By the Pigeonhole Principle, there exist v, v’ € Z such that there exist at least k 4 2 bubble-bars (11, I5) with
vy, =vand vy, = v'. If v = v/, there are k + 2 S—cycles having only v in common (one through each bubble-bar), so
any feasible solution has to contain v. If v # v/, there are k + 2 paths connecting v and v’ and sharing only v and v’.
Any solution disjoint with Z would leave at least two of them solution—free. Then these two paths could be arranged
into a solution—free S—cycle. O

The above lemmata justify our next step.
Step 2. If any of the situations from Lemmata 3.12, 3.13 and 3.14 occur; return IGNORE.

Summing all the obtained bounds, we can count almost all the leaf bubbles (possibly more than once) and bound
their number by O(k|Z|?). The ones that are left satisfy the following definition:

Definition 3.15. A leaf bubble I satisfying the following three conditions is called a clique bubble:

(a) GIN(Vy)N Z]is a clique not containing any edge from S,

12

(b) I is connected to Z by edges not belonging to S,
(c) I is connected to a non—leaf bubble.
Denote the only edge from S connecting a given clique bubble I with its neighbour bubble by ww/, withw; € V7.

Lemma 3.16. If there exists a feasible solution T for EDGE-SUBSET-FVS on (G, S, k), then there exists a feasible
solution T', which is disjoint from all clique bubbles in G. Moreover, if T is disjoint with Z, so is T".

Proof. Let I be aclique bubble. Assume we have a feasible solution 7', with TNV # (0. We show T" = (T'\V7)U{w} }
is also a feasible solution. Consider any S—cycle C' in G[V \ T"]. This cycle has to pass through V; (possibly multiple
times), or it would be an S—cycle in G[V \ T, contrary to the assumption 7" was a feasible solution. Note that C' has
to enter and exit V; through N (V;) N Z, as the only vertex in N (V7) \ Z is w’, which is removed by 7”. But then C
can be shortened to C’ by replacing every part contained in V; by a single edge in Z (as N(V7) N Z is a clique). Now
(' is disjoint from V; and is an S—cycle due to the definition of the clique bubble. So C’ is an S—cycle in G[V \ T, a
contradiction.

Note that the only vertex we added to 7" was w7, which does not belong to a clique bubble (it does not belong even
to a leaf bubble, from property (c) in the definition of clique bubbles). Thus we can apply this procedure inductively,

at each step reducing the number of vertices in 7" contained in clique bubbles, until none are left. O
Assume there is a vertex v € Z such thatv € N (VI_].) for some distinct clique—bubbles I, I, . .., I1o;. We show
that the set F' = {v} U U;O:kl Vi, is outer-abundant in G. Indeed, it is connected and due to the definition of bubbles

and properties of the clique bubble definition, the subgraph G[F'] does not contain edges from S. Moreover, there are
at least 10k edges from .S incident with G[F] — these are the edges connecting bubbles I; with other bubbles, not
contained in F' as they are non—leaf ones due to property (c). This enables us to formulate the key step:

Step 3. If there is a vertex v € Z which is adjacent to at least 10k clique bubbles, we apply Lemma 3.5 to the set
F={v}U U;O:kl Vi,. If a set X is returned and X N Z = (), we remove X from the graph and decrease k by | X|,
otherwise we return IGNORE.

Suppose there is a feasible solution 7" to (G, S, k). Due to Lemma 3.16 we may assume 7" to be disjoint with
F'\ {v}. Thus either T' contains v, or it is disjoint with F', and by Lemma 3.5 there exists a solution containing X.
This justifies the correctness of Step 3.

Now we summarize the steps made in this section to show clearly that the number of leaf bubbles is bounded by
O(k|Z|?).

Assume no reduction is applicable. Note that in the last run, the last reduction may add some edges in Step 1. Let
G’ denote the modified graph. Let us check that the graph G’ indeed has O(k|Z|?) edges from S:

1. The decomposition of V(G) \ Z into bubbles is the same as the decomposition of V(G’) \ Z and bubbles that
were inner or edge bubbles in G are, respectively, inner or edge bubbles in G';

2. If Step 2 is not applicable, there are at most | Z|?(k + 2) — 1 leaf bubbles connected to Z by an edge from S, at
most | Z|?(k + 1) — 1 leaf bubbles associated with a pair of vertices connected with an edge from S, and at most
2|Z|%(k + 2) leaf bubbles connected to other leaf bubbles.

3. If Step 1 is not applicable, for any pair v, v’ of vertices in Z with vv’ ¢ F there are at most k leaf bubbles
adjacent to both vertices of that pair through edges not in S.

4. If aleaf bubble is not a clique bubble, it either is connected to a leaf bubble (forming a bubble—bar), is connected
to Z by an edge in .S, has an edge from S between some two of its neighbours in Z, or has some two neighbours
in Z not connected by an edge. The number of such bubbles in all four cases was estimated above. Thus, in
total, there are at most O(k|Z|?) bubbles which are not clique bubbles.

5. Finally, if Step 3 is not applicable, there are at most (10k — 1)|Z| clique bubbles.

13

6. Thus |D;| = O(k|Z|?), moreover |D;| < |D;| by Lemma 3.9 and |D.| < 3(|Z| + k) + |D;| + | D;| by Reduction
4 — thus the number of edges in S not incident with Z is bounded by O(k|Z|?). We added no new edges to
S, and the number of edges in .S incident to Z was bounded by O(k|Z|) in the input graph, thus in the output
graph there are O(k|Z|?) edges from S, as desired.

Thus we managed to reach the state when the number of leaf bubbles is bounded by O(k|Z|?). As we modified
only the subgraph G[Z], the sets D;, D., D; remain the same after modifications and we obtain a graph with |S| =
O(k|Z|?). This completes the description of the 20k 108 %), O(1) algorithm for EDGE-SUBSET-FVS.

4 The relationship of SUBSET-FVS and terminal separation

It is known (e.g. [17]) that in the weighted case the NODE MULTIWAY CUT problem can be reduced to weighted
SUBSET-FVS by adding a vertex s (with infinite weight) to the graph and connecting it to all the terminals, where
S = {s}. Here we present a modified version, adjusted to the unweighted parameterized setting. Both the node and
edge versions of the MULTIWAY CUT problem are known to be FPT since 2004 [26].

Theorem 4.1. An instance (G, T, k) of the NODE MULTIWAY CUT problem can be transformed in polynomial time
into an equivalent instance (G', S, k) of the EDGE SUBSET FEEDBACK VERTEX SET problem.

Proof. Let T = {vy,...,v:}. Weadd aset T’ = vf,...,v; of t vertices to the graph G obtaining a new graph G’.
Together with the vertices from the set 7' we add a set of edges S = {v;v] : 1 < i < ¢}. Moreover, we add an
edge between every pair of vertices from the set 7" so that G[7”] becomes a clique. Assume that (G, T, k) is a YES-
instance of NODE MULTIWAY CUT where ' C V is a solution. Clearly T is a solution for the instance (G’, S, k) of
EDGE-SUBSET-FVS since an S-cycle in G'[(V U T”) \ T] implies a path between terminals in G[V \ T (see Fig. 2).

In the other direction, assume that (G', S, k) is a YES-instance of EDGE-SUBSET-FV'S where T' C V is a set of
removed vertices. Let 7/ = T\ T’ U {v; : v, € T'}. We now prove that 7’ is a solution for the NODE MULTIWAY
Curt instance (G, T, k). Clearly |[T’| < |T'| < k. Assume that there exists a path P in G[V \ T"] between terminals
v;, and vy,. In particular, this means that v;,, vs, ¢ T", s0 vy, , viy, vj,, v, ¢ T. Thus the path P together with the

path v;, v; v; v;, forms an S-cycle that is not hit by 7', a contradiction. O

clique 7’

Figure 2: Reduction used in Theorem 4.1

5 Conclusions

In this paper we presented a fixed-parameter algorithm for SUBSET FEEDBACK VERTEX SET, making extensive
use of recently discovered tools in parameterized complexity such as iterative compression, Gallai’s theorem and c-
Expansion Lemma. To settle down the exact parameterized complexity of SUBSET-FV'S, one question remains: does
this problem admit a polynomial kernel? Kratsch and Wahlstrom [24] very recently gave a polynomial kernel for ODD
CYCLE TRANSVERSAL, using a compact representation of special classes of matroids. These tools may be useful in
our problem as well.

Second, can we improve the time complexity of our algorithm? In particular: is there a ¢*n®®) algorithm for
SUBSET FEEDBACK VERTEX SET? Or maybe we can show that this is unlikely, using the recent framework of
Lokshtanov et al. [25]?

14

References

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]

[12]
[13]

(14]
(15]

(16]
(17]
(18]
(19]
(20]
(21]

(22]

(23]
[24]
(25]

[26]
(27]

Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res.
(JAIR), 12:219-234, 2000.

Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59-68, 1994.

Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and loop cutset. Theory Comput. Syst.,
46(3):566-597, 2010.

Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. In Fortnow and Vadhan [18], pages 459-468.
Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac, and Frances A. Rosamond.
The undirected feedback vertex set problem has a poly() kernel. In Hans L. Bodlaender and Michael A. Langston, editors,
IWPEC, volume 4169 of Lecture Notes in Computer Science, pages 192-202. Springer, 2006.

Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set new measure and new structures. In Haim Kaplan, editor,
SWAT, volume 6139 of Lecture Notes in Computer Science, pages 93—104. Springer, 2010.

Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved algorithms for feedback vertex set
problems. J. Comput. Syst. Sci., 74(7):1188-1198, 2008.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed
feedback vertex set problem. In Cynthia Dwork, editor, STOC, pages 177-186. ACM, 2008.

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk.
Solving connectivity problems parameterized by treewidth in single exponential time. CoRR, abs/1103.0534, 2011.

Marek Cygan, Marcin Pilipczuk, Micha Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above
lower bounds. CoRR, abs/1107.1585, 2011.

Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Kim Stevens. An 0(20(k)n3)
fpt algorithm for the undirected feedback vertex set problem. Theory Comput. Syst., 41(3):479-492, 2007.

Eric D. Demaine, Mohammad Taghi Hajiaghayi, and Daniel Marx. Open problems from dagstuhl seminar 09511, 20009.
Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and completeness. In Complexity Theory: Current
Research, pages 191-225, 1992.

Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.

Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum feedback sets and multicuts in
directed graphs. Algorithmica, 20(2):151-174, 1998.

Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin. Approximating minimum subset feedback sets in undirected
graphs with applications. SIAM J. Discrete Math, 13(2):255-267, 2000.

Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset feedback vertex set problem. SIAM
J. Comput., 30(4):1231-1252, 2000.

Lance Fortnow and Salil P. Vadhan, editors. Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011. ACM, 2011.

Tibor Gallai. Maximum-minimum sitze und verallgemeinerte faktorem von graphen. Acta. Math. Acad. Sci. Hungaricae,
2:131-173, 1961.

Sylvain Guillemot. Fpt algorithms for path-transversal and cycle-transversal problems. Discrete Optimization, 8(1):61-71,
2011.

Jiong Guo, Jens Gramm, Falk Hiiffner, Rolf Niedermeier, and Sebastian Wernicke. Compression-based fixed-parameter
algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci., 72(8):1386—1396, 2006.

Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameterized algorithms for feedback vertex set. In Rodney G.
Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors, IWPEC, volume 3162 of Lecture Notes in Computer
Science, pages 235-247. Springer, 2004.

K. Kawarabayashi and Y. Kobayashi. Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing
problem (manuscript), 2010.

Stefan Kratsch and Magnus Wahlstrom. Compression via matroids: A randomized polynomial kernel for odd cycle transver-
sal. CoRR, abs/1107.3068, 2011.

Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. In Dana Randall,
editor, SODA, pages 760-776. SIAM, 2011.

Daéniel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006.

Daniel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. In Fortnow
and Vadhan [18], pages 469-478.

15

[28] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable algorithms for finding feedback
vertex sets. ACM Transactions on Algorithms, 2(3):403—-415, 2006.

[29] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004.

[30] Alexander Schrijver. A short proof of mader’s sigma-paths theorem. J. Comb. Theory, Ser. B, 82(2):319-321, 2001.

[31] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2), 2010.

16

