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consumption.1 Although this is a small fraction of the com-
mercial market, these ICs are essential to national security. 
Having a separate, “secure” supply chain for such chips is 
desirable but economically prohibitive. Inevitably, critical 
systems will depend on electronics made in untrusted 
factories.

A breakdown in security can occur at various stages in 
the electronics supply chain, not just at the factory. An FBI 
investigation in 2004-2006 found counterfeit Cisco routers 
in US defense, finance, and university networks.2 These 
fakes had low manufacturing quality and high field failure 
rates. What made it so easy for counterfeits to pollute the 
supply chain? The FBI determined that US companies were 
procuring these electronics directly or through interme-
diaries from untrustworthy sources in foreign countries; 
they were also buying online from auction sites and resell-
ers. Although the infiltrators’ motivation appears to have 
been simply to make money, the example vividly illustrates 
the vulnerability of typical supply chains.

Concern about the low quality of counterfeit elec-
tronics is secondary to the security threat possessed by 
vulnerabilities in the supply chain. Examples of possible 
malicious activities conducted by inauthentic ICs include 
disabling a system by acting as a silicon time bomb, leak-
ing secrets using a side channel, or providing an adversary 
with remote control over a system. As “design for manufac-

F
or decades, digital systems have been designed 
based on asumptions that the underlying hard-
ware, though not perfectly reliable, is free of 
malicious elements. This assumption is increas-
ingly questionable. Throughout the digital 

hardware industry, outsourced alternatives have gradu-
ally replaced in-house processes. Commercial software 
has supplanted homegrown CAD software. Third-party 
intellectual property (IP) cores have displaced in-house 
libraries of logic cells for synthesis. Mask production and 
fabrication are being outsourced, along with testing of the 
devices after manufacturing. Having relinquished so much 
control in the interest of economy, how can we establish 
a basis for trust in the systems we construct? 

According to a 2005 Defense Science Board study, 
the US Department of Defense’s integrated circuit (IC) 
consumption is only about one to two percent of global 

For reasons of economy, critical systems 
will inevitably depend on electronics made 
in untrusted factories. A proposed new 
hardware Trojan taxonomy provides a first 
step in better understanding existing and 
potential threats.
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turability” and “design for testability” were past mantras, 
design for trust must be the new mantra. The “Hardware 
Trust” sidebar gives an overview of research aimed at in-
creasing hardware trustworthiness.

To be trustworthy, hardware must

•• exhibit only the functionality for which it was de-
signed, nothing more and nothing less;

S everal areas of study inform the field of hardware trust.
Reliability and fault tolerance examines how to engineer sys-

tems so that the natural failure of individual components does not 
bring down the whole system. One example is the majority voter 
scheme used to build fault-tolerant computing systems. In design-
ing critical software such as flight control systems, designers use 
N-version programming. In the case of the Boeing 777, they pro-
gram the system independently three times and run the three 
versions concurrently in the plane on three computers with differ-
ent microarchitectures.1 Fault-tolerant techniques are effective 
against natural failures and mistakes, but less so at withstanding 
deliberate faults. An intelligent attacker can focus on the non-fault-
tolerant parts of the system, such as the majority voter circuit itself. 

Hardware trust also draws heavily from design for test. DFT pro-
vides a set of design techniques that enables efficient verification 
that a digital system is free of manufacturing defects. If there are 
defects, the DFT structures help engineers determine their loca-
tion and nature. DFT’s principal goals are controllability and 
observability of internal signals. Automatic test pattern generation 
(ATPG) algorithms assume a model of the faults that can result 
from flaws in manufacturing and produce test patterns that will 
detect those faults if they are present in chips or systems. Test cov-
erage is the fraction of faults within the fault model that a given set 
of tests can detect. Typical models used in the IC industry focus on 
naturally occurring faults such as broken wires. Hardware Trojans 
lie outside the usual fault model. Consequently, a system can pass 
a set of tests that has 100 percent coverage for naturally occurring 
faults but can still contain a hardware Trojan. 

Tamper resistance is another area of hardware trust. Designers 
of tamper resistant devices assume that an adversary aims to 
modify an object in some way without destroying it. Closely 
related is the notion of tamper-evident objects, which assumes 
that an adversary aims to modify without detection. Making a 
system tamper-evident is usually easier than making it tamper-
resistant. Efforts at tamper resistance can raise the adversary’s 
cost of executing a tampering attack but cannot negate it.2 Vari-
ous tamper-resistant computing devices have been deployed over 
the years, ranging from $1 trusted-platform modules to the $2,000 
IBM 4758 Cryptographic Coprocessor.3

Logic verification aims to determine whether a design meets a 
specification. This class of techniques was developed to catch acci-
dental errors that occur during logic design. Logic verification does 
not address malicious modifications at the specification phase, nor 
does it address modifications made during fabrication.

Side channels let an adversary gain information about a system’s 
internal states without defeating its access control mechanisms. For 
example, the electrical current that a microprocessor consumes is 
affected by the operations it performs and the operands involved. 
An attacker who can monitor the current waveform can perform 
power analysis4 to learn the cryptographic key being used. Design 
techniques to avoid side-channel information leakage are available, 
but they rely on faithful fabrication of the system.

In the field, systems are vulnerable not only to passive observa-
tion but also to active techniques such as fault injection.5 For example, 

heating nonvolatile memory containing a key somewhat above its 
rated temperature range may erase the key, causing all key bits to 
become ones. If this is done slowly, the bits can change, one by one. 
An attacker who can observe the faulty computation at each stage 
while the memory is being corrupted can gain information about the 
original key. Fault attack countermeasures exist5 but are mostly 
design-level techniques and rely on trustworthy fabrication. 

Watermarking protects against unauthorized copying of de-
signs.6 The techniques are designed to be robust—small changes 
in the watermarked logic should not cause the watermark to fail 
detection. Unfortunately, this robustness makes watermarks 
unsuitable for protecting against Trojans inserted during fabrica-
tion, which requires sensitivity to small changes. 

Reverse-engineering starts with a device such as a chip and docu-
ments its design, how it works, what it does, and how it is made. 
Because the IC reverse-engineering process involves analyzing chips 
layer by layer under a microscope, which is very expensive, reverse-
engineering entire chips to check for Trojans usually is not practical. 

In some applications, defending against cloning is important. 
In a stored-value card system, for example, card cloning generates 
value for the attacker while depriving the system’s operators of 
their income. In access systems that use physical-token-based 
authentication, cloning of the token lets an attacker access a 
building, for example, after returning the access card. This threat 
led to the development of physical unclonable functions.7 A PUF is 
a low-cost hardware module that takes in a challenge and returns 
a response. The challenge-response mapping is unclonable and 
unique to each PUF example, making PUFs suitable for authentica-
tion and key generation. PUF security depends on correct 
fabrication. No amount of black-box testing can distinguish a gen-
uine PUF from a maliciously modified one—an attacker who 
replaces a PUF with a message authentication code and chooses 
the MAC key can create a challenge-response mapping that is pre-
dictable to the attacker but seemingly random to others.
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Figure 1. Simple Trojan. During normal operation, the chip 
sends encrypted data to the output. When the Trojan is 
active, the chip bypasses the crypto module and sends plain-
text to the output, betraying the chip designer’s intentions. 
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Figure 2. Proposed hardware Trojan taxonomy based on five different attributes.

•• conceal any information about the computation per-
formed through any side channels such as power and 
delay; and

•• be transparent only to the designer while remaining 
opaque to others, who should know nothing about its 
design and internal states. 

As a first step in creating a roadmap for trusted hard-
ware, we must strive to better understand the threats, 
among the greatest of which are hardware Trojans. A 
hardware Trojan is a malicious and deliberately stealthy 
modification made to an electronic device such as an IC. It 
can change the chip’s functionality and thereby undermine 
trust in the systems using that trojaned chip. In the simple 
example shown in Figure 1, the Trojan in the datapath is 
a single multiplexer. During normal operation, the chip 
sends encrypted data through the output. When the Trojan 
is active, it bypasses the crypto module and sends plaintext 
to the output, betraying the chip designer’s intentions. 

HARDWARE TROJAN TAXONOMY 
Developing a better understanding of hardware Trojans 

and creating effective defenses requires a framework that 
groups similar Trojans together to enable a systematic 
study of their characteristics. Detection, mitigation, and 
protection techniques can then be developed for each 
Trojan class along with benchmarks to serve as the basis 
for comparing countermeasures. In addition, experimental 
implementations can be created for Trojan classes yet to be 
observed in the wild, thereby fostering proactive defense. 

The framework should provide terminology and de-
scriptive names for each class. Thus, the hardware Trojan 
taxonomy must meet two key criteria:

••  coverage—it should classify all Trojans; none should 
exist “outside” the taxonomy; and

•• resolution—it should distinguish Trojans with 
significantly different capabilities or required 
countermeasures. 

Several researchers have proposed a taxonomy based 
on hardware Trojans’ physical, activation, and functional 
characteristics.3,4 Trojan taxonomies that group Trojans 
based on their triggering and leaking mechanisms have 
also been developed. Still other researchers have pro-
posed classifying hardware Trojans according to their 
damage objectives, attack components and mecha-
nisms, insertion and mechanism phases, and triggering 
mechanism.6,7

All of these taxonomies assume that hardware Trojans 
are inserted only at the fabrication phase; however, they 
can be inserted at other phases and have different func-
tionalities. Hence, we propose a new taxonomy that has 
a broader set of attributes. As Figure 2 shows, we classify 
hardware Trojans according to the insertion phase—the 
point at which alteration takes place; abstraction level at 
which the alteration occurs; activation mechanism; effects; 
and location. 
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Figure 3. IC development cycle and hardware abstraction levels. (a) A chip’s design is vulnerable to modifications throughout 
the development cycle. The center boxes show the different phases, while the outer boxes show possible vulnerabilities.  
(b) Trojan circuits can be inserted at various hardware abstraction levels. The center boxes show abstractions in a top-down  
VLSI design flow, while the red boxes show example Trojans on that level.

Insertion phase
Figure 3a shows the typical development cycle of an 

IC. The design is vulnerable to modifications throughout 
the cycle. 

Specification phase. In this phase, chip designers 
define the system’s characteristics: the target environ-
ment, expected function, size, power, and delay. While the 
IC’s development is in this phase, functional specifications 
or other design constraints can be altered. For example, a 
Trojan at the specification phase might change the hard-
ware’s timing requirements. 

Design phase. Developers consider functional, logical, 
timing, and physical constraints as they map the design 
onto the target technology. At this point, they can use 
third-party IP blocks and standard cells. Trojans might be 
in any of the components that aid the design. For example, 
a standard cell library can be infested with Trojans.

Fabrication phase. During this phase, developers 
create a mask set and use wafers to produce the masks. 
Subtle mask changes can have serious effects. In an 
extreme case, an adversary can substitute a different 
mask set. Alternatively, chemical compositions might be 
altered during fabrication to increase the electromigration 
in critical circuitry such as power supplies and clock grids, 
which would accelerate failures.8 

Testing phase. The IC testing phase is important for 
hardware trust not because it is a likely phase for Trojan 
insertion but because it provides an opportunity for Trojan 
detection. Testing is only useful for such detection if trust-
worthy. For example, an adversary who inserted a Trojan 
in the fabrication phase would want to have control over 
the test vectors to ensure that the Trojan is not detected 
during testing. Trustworthy testing ensures that the test 
vectors will be kept secret and faithfully applied, and that 
the specified actions—accept/reject, binning—will be 
faithfully followed. Additionally, an attacker can identify 

strategic faults, which, if they were to occur, would give 
the attacker an advantage. Here, an attacker can either 
omit the test vectors used to detect the strategic faults or 
he can craft the design so that these faults are untestable.

Assembly phase. Developers assemble the tested chip 
and other hardware components on a printed circuit 
board (PCB). Every interface in a system where two or 
more components interact is a potential Trojan inser-
tion site. Even if all the ICs in a system are trustworthy, 
malicious assembly can introduce security flaws in the 
system. For example, an unshielded wire connected to a 
node on the PCB can introduce unintended electromag-
netic coupling between the signal on the board and its 
electromagnetic surroundings. An adversary can exploit 
this for information leakage and fault injection.

Abstraction level
Trojan circuits can be inserted at various hardware ab-

straction levels, as Figure 3b shows. 
System level. At this level, chip developers define the 

various hardware modules, interconnections, and com-
munication protocols used. Trojans might be triggered by 
the target hardware modules—for example, interchanging 
the ASCII values of the keyboard inputs. 

Development environment. A typical IC development 
tool chain includes synthesis, simulation, verification, and 
validation tools. An attacker can use CAD tools and scripts 
to insert Trojans.9 Software Trojans inserted into these 
CAD tools can mask the effects of the hardware Trojans. 
For example, a synthesis tool might not reveal a circuit’s 
Trojan components to the user.

Register-transfer level. At the RTL, chip developers 
describe each functional module in terms of registers, 
signals, and Boolean functions. A Trojan can be easily 
designed and inserted at the RTL because the attacker has 
full control over the hardware’s functionality. For exam-
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ple, a Trojan implemented at this level might halve the 
rounds of a cryptographic algorithm by making a round 
counter to advance in two steps instead of one.

Gate level. At this level, an IC is represented as an 
interconnection of logic gates. An attacker can carefully 
control all aspects of the inserted Trojan, including its 
size and location. For example, a Trojan might be a simple 
comparator consisting of XOR gates that monitor the 
chip’s internal signals.

Transistor level. Chip designers use transistors to build 
logic gates. This level gives the Trojan designer control 
over circuit characteristics like power and timing. The 
attacker can insert or remove individual transistors, alter-
ing the circuit functionality, or modify transistor sizes to 
alter circuit parameters. For example, a transistor-level 
Trojan might be a transistor with low gate width that can 
cause more delay in the critical path.

Physical level. This level describes all circuit com-
ponents and their dimensions and locations, and is the 
design’s physical level—where a Trojan can be inserted. 
An attacker can insert Trojans by modifying the size of the 
wires and distances between circuit elements and reas-
signing metal layers. For example, changing the width of 
the clock grids’ metal wires in the chip can cause clock 
skew. 

Activation mechanism
Some Trojans are designed to be always on, while others 

remain dormant until triggered. A triggered Trojan needs 
an internal or external event to be activated. Once the trig-
ger activates a Trojan, it can remain active forever or return 
to a dormant state after a specified time. 

An event that occurs within the target device activates 
an internally triggered Trojan. The event might be either 
time-based or physical-condition-based. A counter in the 
design can trigger a Trojan at a predetermined time, result-
ing in a time bomb. Similarly, a Trojan can trigger when 
the chip temperature exceeds 55°C. 

An externally triggered Trojan requires external input 
to the target module to activate. The external trigger can 
be user input or component output. User-input triggers in-
clude pushbuttons, switches, keyboards, or keywords and 
phrases in the input data stream. Component-output trig-
gers might be from any of the components that interact 
with the target device. For example, data coming through 
external interfaces such as RS-232 can trigger a Trojan.

Effects 
Trojans can also be characterized by their undesirable 

effects. The severity of these effects on target hardware 
or systems can range from subtle disturbances to cata-
strophic system failures. 

A Trojan can change the functionality of the target device 
and cause subtle errors that might be difficult to detect. For 

example, a Trojan might cause an error detection module 
to accept inputs that should be rejected. 

In addition, a Trojan can downgrade performance by 
intentionally changing device parameters. These include 
functional, interface, or parametric characteristics such as 
power and delay. For example, a Trojan might insert more 
buffers in the chip’s interconnections and hence consume 
more power, which in turn could drain the battery quickly.

A Trojan can also leak information through both covert 
and overt channels. Sensitive data can be leaked via radio 
frequency, optical or thermal power, timing side channels, 
and interfaces such as RS-232 and JTAG (Joint Test Action 
Group). For example, a Trojan might leak a cryptographic 
algorithm’s secret key through unused RS-232 ports.

Denial-of-service Trojans prevent operation of a function 
or resource. A DoS Trojan can cause the target module to 
exhaust scarce resources like bandwidth, computation, 
and battery power. It could also physically destroy, disable, 
or alter the device’s configuration—for example, caus-
ing the processor to ignore the interrupt from a specific 
peripheral. DoS can be either temporary or permanent. 

Location
A hardware Trojan can be inserted in a single com-

ponent or spread across multiple components—the 
processor, memory, input/output, power supply, or clock 
grid. Trojans distributed across multiple components can 
act independently of one another or together as a group to 
accomplish their attack objectives.

Processor. Any Trojan embedded into the logic units 
that are part of the processor can be grouped under this 
category. A Trojan in the processor might, for example, 
change the instructions’ execution order. 

Memory. Trojans in the memory blocks and their inter-
face units fall in this category. These Trojans might alter 
the value stored in the memory and also block read or 
write access to certain memory locations—for exam-
ple, change the contents of a programmable read-only 
memory in an IC. 

I/O. Trojans can reside in a chip’s peripherals or within 
the PCB. These peripherals interface with the external 
components and can give the Trojan control over data 
communication between the processor and the system’s 
external components. For example, a Trojan might alter 
the data coming through an RS-232 port.

Power supply. Trojans can alter the voltage and current 
supplied to the chip, causing failures. 

The effects of Trojans on target 
hardware or systems can range from 
subtle disturbances to catastrophic 
system failures.
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Clock grid. Trojans in the clock grid can change the 
clock’s frequency, insert glitches in the clock supplied to 
the chip, and launch fault attacks. These Trojans can also 
freeze the clock signal supplied to the rest of the chip’s 
functional modules. For example, a Trojan might increase 
the clock signal skew supplied to specific parts of a chip.

TAXONOMY VALIDATION 
To validate our proposed hardware Trojan taxonomy, 

we tested whether it meets the coverage and resolution 
criteria described earlier. We used the 38 Trojans submit-
ted to the 2008 Embedded Systems Challenge, described 

in the “Embedded Systems Challenge” sidebar, along with 
18 Trojans identified in previous work. 

As Table 1 shows, the taxonomy covers all 56 observed 
Trojans. To determine whether the taxonomy meets the 
resolution criterion, we examined the Trojans to determine 
whether they can be classified according to significantly 
different abilities or required countermeasures. In all, the 
Trojans occupy 17 classes in the taxonomy. The vast ma-
jority—37 of 56—are inserted in the design phase and 
triggered by user input, and among these we were able to 
distinguish 12 classes (2-13 in Table 1).

The same countermeasure can detect Trojans in the 
same class. For example, checking the RTL code of the 
I/O unit for changes in the I/O protocol can detect Tro-
jans in class 2. Performing exhaustive memory testing 
can detect Trojans in class 3. Analyzing the side chan-
nels can detect Trojans in class 4. Exhaustive checking for 
resource-utilization changes can detect Trojans in class 5. 
Periodically communicating with the device, even after 
its deployment, can detect Trojans in class 6. Skewing the 
clocks and observing the IC’s transient behavior can detect 
Trojans in class 7. Checking for transient characteristics 
while dynamically scaling the chip’s supply voltage can 
detect Trojans in class 8. Concurrent detection for soft 
errors can detect Trojans in class 9.

Sometimes a generic countermeasure can detect Tro-
jans from different classes. For example, checking for 
side-channel interfaces to the processor unit can detect 
Trojans in classes 10 and 12. Checking the chip’s “fin-
gerprints,” such as power and delay characteristics, can 
enable Trojan detection in classes 14 through 17.

Table 1 also lists potential Trojan classes for which 
examples have yet to be reported. These classes are as 
important as those with known examples and should 
be considered while designing benchmarks and coun-
termeasures. For example, a proactive countermeasure 
for class 24 Trojans is complete verification of interface 
protocols for possible trapdoors; a proactive measure to 
detect class 25 Trojans is to periodically check the periph-
erals’ integrity.

H
ardware Trojans present a very real threat. 
Our proposed taxonomy can serve as a useful 
tool to study existing Trojans and to develop 
systematic Trojan detection methods. Equally 
important, it provides a view of potential 

hardware Trojans so that proactive hardware security 
measures can be taken today to protect against the attacks 
of tomorrow. 

The taxonomy presented here captures the spectrum 
of Trojans we have seen at the time of writing. To broaden 
the spectrum of our awareness, we are organizing an up-
coming hardware hacking competition (www.poly.edu/

T he Embedded Systems Challenge (www.poly.edu/csaw-
embedded) is an annual hardware hacking competition 

organized by Polytechnic Institute of New York University. Students 
of all levels from universities across the country are invited to 
compete. For the past three years, the challenge has focused on 
embedding and detecting hardware Trojans. Participants received 
the Hardware Description Language (HDL) code for a reference 
design electronically and a field-programmable gate array board 
and development tools by mail. As a sponsor, Xilinx provided FPGA 
boards for the 2008, 2009 and 2010 competitions. 

The Alpha reference design for the 2008 challenge (www.isis.
poly.edu/esc08.pdf) was a cryptographic encoder for interactive 
use by a human operator. The design targeted the Digilent Basys 
board, which contains a Xilinx Spartan-3 FPGA. The keyboard is 
used as an input device for plaintext, and a video port is used as 
an output device for ciphertext. The cryptographic keys were 
hardcoded in the Alpha’s HDL code. The design filled the target 
FPGA’s hardware resources. 

The challenge’s requirements were to embed one or more Tro-
jans that leak a key, leak plaintext, or create a DoS—all without 
being detected during normal testing. The participants fully doc-
umented their Trojans and demonstrated some of them at the 
final judging held at NYU-Poly. A panel of independent judges 
from industry scored the teams based on their submissions’ 
effectiveness and inventiveness. This set of submissions served 
as a sample for studying and classifying Trojans. 

After the 2008 challenge ended, we collected some statistics 
on the submitted Trojans and found that 59 percent were trig-
gered on user input, 34 percent were always on, 4 percent were 
time bombs, and the rest were mostly triggered by physical con-
ditions such as temperature. Some Trojans were triggered by a 
single character in the input stream; others required a sequence 
of characters. Some added timing constraints on the symbols’ 
arrival, further reducing the likelihood of detection during 
normal testing or operation. Some Trojans made use of second-
ary inputs such as an input pin that is part of the VGA output port. 

Half of the submitted Trojans changed the system’s functional 
behavior, while 36 percent only leaked information. The remain-
ing 14 percent created various DoS conditions. The most 
frequently observed method of leaking information involved 
using regular I/O ports, but other side channels were also used. 
One Trojan slowly leaked the key thermally by deliberately dissi-
pating extra power to transmit a 1 and regular power to transmit 
a 0. Another Trojan deliberately emitted radio-frequency signals 
that encoded the key.

  EMBEDDED SYSTEMS CHALLENGE
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csaw-embedded). By creating an environment where par-
ticipants are rewarded for new Trojan techniques, we can 
continually update the taxonomy ahead of the attacks 
reported in the field. 

Like many areas of security, hardware trust requires 
constant effort and a proactive approach. To foster co-
operation and progress in the research community, the 
Trojans we collected are available through Trusthub (www.
trust-hub.org). 
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Table 1. Hardware Trojans used to verify proposed taxonomy.

Trojan 
status

Class 
no. Trojan class

No. of 
Trojans

Observed 1 Specification phase–RTL–external-component triggered–leak information–in the I/O  1

2 Design phase–RTL–user-input triggered–leak information–in the I/O 12

3 Design phase–RTL–user-input triggered–change function–in the memory 2

4 Design phase–RTL–user-input triggered–leak information–in the processor 2

5 Design phase–RTL–user-input triggered–permanently deny service–in the processor 2

6 Design phase–RTL–user-input triggered–permanently deny service–in the I/O 1

7 Design phase–RTL–user-input triggered–permanently deny service–in the clock grid 1

8 Design phase–RTL–user-input triggered–permanently deny service–in the power supply 1

9 Design phase–RTL–user-input triggered–temporarily deny service–in the processor 1

10 Design phase–RTL–always on–leak information–in the processor 4

11 Design phase–RTL–always on–leak information–in the I/O 9

12 Design phase–RTL–physical-parameter triggered–permanently deny service–in the processor 1

13 Design phase–RTL–time triggered–temporarily deny service–in the I/O 1

14 Fabrication phase–transistor level–user-input triggered–change function–in the processor 12

15 Fabrication phase–transistor level–always on–change function–in the processor 4

16 Fabrication phase–transistor level–time triggered–change function–in the processor 1

17 Fabrication phase–physical level–always on–change function–in the processor 1

Potential 18 Specification phase–system level–user-input triggered–change function–in the processor —

19 Specification phase–system level–time triggered–temporarily deny service–in the clock grid —

20 Design phase–RTL–physical-parameter triggered–change function–in the processor —

21 Design phase–RTL–physical-parameter triggered–permanently deny service–in the memory —

22 Design phase–RTL–time triggered–change function–in the I/O —

23 Design phase–RTL–time triggered–temporarily deny service–in the memory —

24 Assembly and package phase–system level–external-component triggered–leak information–in the I/O —

25 Assembly and package phase–system level–external-component triggered–permanently deny service–in the 
power supply 

—

26 Fabrication phase–transistor level–time triggered–permanently deny service–in the clock grid —

27 Fabrication phase–transistor level–always on–temporarily deny service–in the clock grid —

28 Fabrication phase–physical level–always on–temporarily deny service–in the clock grid —

29 Fabrication phase–physical level–physical-parameter triggered–permanently deny service–in the power supply —
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