
39OCTOBER 2010Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE	

COVER FE ATURE

consumption.1 Although this is a small fraction of the com-
mercial market, these ICs are essential to national security.
Having a separate, “secure” supply chain for such chips is
desirable but economically prohibitive. Inevitably, critical
systems will depend on electronics made in untrusted
factories.

A breakdown in security can occur at various stages in
the electronics supply chain, not just at the factory. An FBI
investigation in 2004-2006 found counterfeit Cisco routers
in US defense, finance, and university networks.2 These
fakes had low manufacturing quality and high field failure
rates. What made it so easy for counterfeits to pollute the
supply chain? The FBI determined that US companies were
procuring these electronics directly or through interme-
diaries from untrustworthy sources in foreign countries;
they were also buying online from auction sites and resell-
ers. Although the infiltrators’ motivation appears to have
been simply to make money, the example vividly illustrates
the vulnerability of typical supply chains.

Concern about the low quality of counterfeit elec-
tronics is secondary to the security threat possessed by
vulnerabilities in the supply chain. Examples of possible
malicious activities conducted by inauthentic ICs include
disabling a system by acting as a silicon time bomb, leak-
ing secrets using a side channel, or providing an adversary
with remote control over a system. As “design for manufac-

F
or decades, digital systems have been designed
based on asumptions that the underlying hard-
ware, though not perfectly reliable, is free of
malicious elements. This assumption is increas-
ingly questionable. Throughout the digital

hardware industry, outsourced alternatives have gradu-
ally replaced in-house processes. Commercial software
has supplanted homegrown CAD software. Third-party
intellectual property (IP) cores have displaced in-house
libraries of logic cells for synthesis. Mask production and
fabrication are being outsourced, along with testing of the
devices after manufacturing. Having relinquished so much
control in the interest of economy, how can we establish
a basis for trust in the systems we construct?

According to a 2005 Defense Science Board study,
the US Department of Defense’s integrated circuit (IC)
consumption is only about one to two percent of global

For reasons of economy, critical systems
will inevitably depend on electronics made
in untrusted factories. A proposed new
hardware Trojan taxonomy provides a first
step in better understanding existing and
potential threats.

Ramesh Karri and Jeyavijayan Rajendran, Polytechnic Institute of New York University

Kurt Rosenfeld, Google

Mohammad Tehranipoor, University of Connecticut

TRUSTWORTHY
HARDWARE:
IDENTIFYING AND
CLASSIFYING
HARDWARE
TROJANS

COVER FE ATURE

COMPUTER	40

turability” and “design for testability” were past mantras,
design for trust must be the new mantra. The “Hardware
Trust” sidebar gives an overview of research aimed at in-
creasing hardware trustworthiness.

To be trustworthy, hardware must

•• exhibit only the functionality for which it was de-
signed, nothing more and nothing less;

S everal areas of study inform the field of hardware trust.
Reliability and fault tolerance examines how to engineer sys-

tems so that the natural failure of individual components does not
bring down the whole system. One example is the majority voter
scheme used to build fault-tolerant computing systems. In design-
ing critical software such as flight control systems, designers use
N-version programming. In the case of the Boeing 777, they pro-
gram the system independently three times and run the three
versions concurrently in the plane on three computers with differ-
ent microarchitectures.1 Fault-tolerant techniques are effective
against natural failures and mistakes, but less so at withstanding
deliberate faults. An intelligent attacker can focus on the non-fault-
tolerant parts of the system, such as the majority voter circuit itself.

Hardware trust also draws heavily from design for test. DFT pro-
vides a set of design techniques that enables efficient verification
that a digital system is free of manufacturing defects. If there are
defects, the DFT structures help engineers determine their loca-
tion and nature. DFT’s principal goals are controllability and
observability of internal signals. Automatic test pattern generation
(ATPG) algorithms assume a model of the faults that can result
from flaws in manufacturing and produce test patterns that will
detect those faults if they are present in chips or systems. Test cov-
erage is the fraction of faults within the fault model that a given set
of tests can detect. Typical models used in the IC industry focus on
naturally occurring faults such as broken wires. Hardware Trojans
lie outside the usual fault model. Consequently, a system can pass
a set of tests that has 100 percent coverage for naturally occurring
faults but can still contain a hardware Trojan.

Tamper resistance is another area of hardware trust. Designers
of tamper resistant devices assume that an adversary aims to
modify an object in some way without destroying it. Closely
related is the notion of tamper-evident objects, which assumes
that an adversary aims to modify without detection. Making a
system tamper-evident is usually easier than making it tamper-
resistant. Efforts at tamper resistance can raise the adversary’s
cost of executing a tampering attack but cannot negate it.2 Vari-
ous tamper-resistant computing devices have been deployed over
the years, ranging from $1 trusted-platform modules to the $2,000
IBM 4758 Cryptographic Coprocessor.3

Logic verification aims to determine whether a design meets a
specification. This class of techniques was developed to catch acci-
dental errors that occur during logic design. Logic verification does
not address malicious modifications at the specification phase, nor
does it address modifications made during fabrication.

Side channels let an adversary gain information about a system’s
internal states without defeating its access control mechanisms. For
example, the electrical current that a microprocessor consumes is
affected by the operations it performs and the operands involved.
An attacker who can monitor the current waveform can perform
power analysis4 to learn the cryptographic key being used. Design
techniques to avoid side-channel information leakage are available,
but they rely on faithful fabrication of the system.

In the field, systems are vulnerable not only to passive observa-
tion but also to active techniques such as fault injection.5 For example,

heating nonvolatile memory containing a key somewhat above its
rated temperature range may erase the key, causing all key bits to
become ones. If this is done slowly, the bits can change, one by one.
An attacker who can observe the faulty computation at each stage
while the memory is being corrupted can gain information about the
original key. Fault attack countermeasures exist5 but are mostly
design-level techniques and rely on trustworthy fabrication.

Watermarking protects against unauthorized copying of de-
signs.6 The techniques are designed to be robust—small changes
in the watermarked logic should not cause the watermark to fail
detection. Unfortunately, this robustness makes watermarks
unsuitable for protecting against Trojans inserted during fabrica-
tion, which requires sensitivity to small changes.

Reverse-engineering starts with a device such as a chip and docu-
ments its design, how it works, what it does, and how it is made.
Because the IC reverse-engineering process involves analyzing chips
layer by layer under a microscope, which is very expensive, reverse-
engineering entire chips to check for Trojans usually is not practical.

In some applications, defending against cloning is important.
In a stored-value card system, for example, card cloning generates
value for the attacker while depriving the system’s operators of
their income. In access systems that use physical-token-based
authentication, cloning of the token lets an attacker access a
building, for example, after returning the access card. This threat
led to the development of physical unclonable functions.7 A PUF is
a low-cost hardware module that takes in a challenge and returns
a response. The challenge-response mapping is unclonable and
unique to each PUF example, making PUFs suitable for authentica-
tion and key generation. PUF security depends on correct
fabrication. No amount of black-box testing can distinguish a gen-
uine PUF from a maliciously modified one—an attacker who
replaces a PUF with a message authentication code and chooses
the MAC key can create a challenge-response mapping that is pre-
dictable to the attacker but seemingly random to others.

References
	 1.	 Y.C. Yeh, “Triple-Triple Redundant 777 Primary Flight Com-

puter,” Proc. 1996 IEEE Aerospace Applications Conf., vol. 1, IEEE
Press, 1996, pp. 293-307.

	 2.	 R. Anderson and M. Kuhn, “Tamper Resistance: A Cautionary
Note,” Proc. 2nd Usenix Workshop Electronic Commerce, vol. 2,
Usenix Assoc., 1996, pp. 1-11.

	 3.	 J.G. Dyer et al., “Building the IBM 4758 Secure Coprocessor,”
Computer, Oct. 2001, pp. 57-66.

	 4.	 P.C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
Proc. 19th Ann. Int’l Cryptology Conf. Advances in Cryptology
(Crypto 99), LNCS 1666, Springer-Verlag, 1999, pp. 388-397.

	 5.	 H. Bar-El et al., “The Sorcerer’s Apprentice Guide to Fault
Attacks,” Proc. IEEE, Feb. 2006, pp. 370-382.

	 6.	 G. Qu and M. Potkonjak, Intellectual Property Protection in VLSI
Design: Theory and Practice, Kluwer Academic, 2003.

	 7. 	 S. Devadas et al., “Design and Implementation of PUF-Based
‘Unclonable’ RFID ICs for Anti-Counterfeiting and Security
Applications,” Proc. IEEE Int’l Conf. RFID, IEEE Press, 2008, pp.
58-64.

 HARDWARE TRUST

41OCTOBER 2010

Crypto
hardware

Tr
oja

n

Select

Output

Figure 1. Simple Trojan. During normal operation, the chip
sends encrypted data to the output. When the Trojan is
active, the chip bypasses the crypto module and sends plain-
text to the output, betraying the chip designer’s intentions.

Hardware Trojans

Insertion phase Abstraction level Activation mechanism E�ects Location

Processor

Memory

I/O

Power supply

Change the functionality

Downgrade performance

Always on

Triggered
Internally

Externally

Time-based

Physical-condition-based

User input

Component output

Leak information

Denial of service

Clock grid

System level

Development environment

Register-transfer level

Gate level

Speci�cation

Design

Fabrication

Testing

Assembly and package Transistor level

Physical level

Figure 2. Proposed hardware Trojan taxonomy based on five different attributes.

•• conceal any information about the computation per-
formed through any side channels such as power and
delay; and

•• be transparent only to the designer while remaining
opaque to others, who should know nothing about its
design and internal states.

As a first step in creating a roadmap for trusted hard-
ware, we must strive to better understand the threats,
among the greatest of which are hardware Trojans. A
hardware Trojan is a malicious and deliberately stealthy
modification made to an electronic device such as an IC. It
can change the chip’s functionality and thereby undermine
trust in the systems using that trojaned chip. In the simple
example shown in Figure 1, the Trojan in the datapath is
a single multiplexer. During normal operation, the chip
sends encrypted data through the output. When the Trojan
is active, it bypasses the crypto module and sends plaintext
to the output, betraying the chip designer’s intentions.

HARDWARE TROJAN TAXONOMY
Developing a better understanding of hardware Trojans

and creating effective defenses requires a framework that
groups similar Trojans together to enable a systematic
study of their characteristics. Detection, mitigation, and
protection techniques can then be developed for each
Trojan class along with benchmarks to serve as the basis
for comparing countermeasures. In addition, experimental
implementations can be created for Trojan classes yet to be
observed in the wild, thereby fostering proactive defense.

The framework should provide terminology and de-
scriptive names for each class. Thus, the hardware Trojan
taxonomy must meet two key criteria:

•• coverage—it should classify all Trojans; none should
exist “outside” the taxonomy; and

•• resolution—it should distinguish Trojans with
significantly different capabilities or required
countermeasures.

Several researchers have proposed a taxonomy based
on hardware Trojans’ physical, activation, and functional
characteristics.3,4 Trojan taxonomies that group Trojans
based on their triggering and leaking mechanisms have
also been developed. Still other researchers have pro-
posed classifying hardware Trojans according to their
damage objectives, attack components and mecha-
nisms, insertion and mechanism phases, and triggering
mechanism.6,7

All of these taxonomies assume that hardware Trojans
are inserted only at the fabrication phase; however, they
can be inserted at other phases and have different func-
tionalities. Hence, we propose a new taxonomy that has
a broader set of attributes. As Figure 2 shows, we classify
hardware Trojans according to the insertion phase—the
point at which alteration takes place; abstraction level at
which the alteration occurs; activation mechanism; effects;
and location.

COVER FE ATURE

COMPUTER	42

System level

Register-transfer level Change logic

Modify
parameters

Gate level

Transistor level
Modify wiring

Modify layout

Add/modify gates

Modify constraints

Change protocol

Physical level

Functional blocks Speci�cation

Design

Testing

Fabrication

Assembly
Automatic test

equipment

Test vectors

Hardware Description
Language

Synthesis and
simulation tests

Third-party IP blocks

Standard cells
Protocols

Mask

Fab

Package

System assembly

System deploy

(a) (b)

Figure 3. IC development cycle and hardware abstraction levels. (a) A chip’s design is vulnerable to modifications throughout
the development cycle. The center boxes show the different phases, while the outer boxes show possible vulnerabilities.
(b) Trojan circuits can be inserted at various hardware abstraction levels. The center boxes show abstractions in a top-down
VLSI design flow, while the red boxes show example Trojans on that level.

Insertion phase
Figure 3a shows the typical development cycle of an

IC. The design is vulnerable to modifications throughout
the cycle.

Specification phase. In this phase, chip designers
define the system’s characteristics: the target environ-
ment, expected function, size, power, and delay. While the
IC’s development is in this phase, functional specifications
or other design constraints can be altered. For example, a
Trojan at the specification phase might change the hard-
ware’s timing requirements.

Design phase. Developers consider functional, logical,
timing, and physical constraints as they map the design
onto the target technology. At this point, they can use
third-party IP blocks and standard cells. Trojans might be
in any of the components that aid the design. For example,
a standard cell library can be infested with Trojans.

Fabrication phase. During this phase, developers
create a mask set and use wafers to produce the masks.
Subtle mask changes can have serious effects. In an
extreme case, an adversary can substitute a different
mask set. Alternatively, chemical compositions might be
altered during fabrication to increase the electromigration
in critical circuitry such as power supplies and clock grids,
which would accelerate failures.8

Testing phase. The IC testing phase is important for
hardware trust not because it is a likely phase for Trojan
insertion but because it provides an opportunity for Trojan
detection. Testing is only useful for such detection if trust-
worthy. For example, an adversary who inserted a Trojan
in the fabrication phase would want to have control over
the test vectors to ensure that the Trojan is not detected
during testing. Trustworthy testing ensures that the test
vectors will be kept secret and faithfully applied, and that
the specified actions—accept/reject, binning—will be
faithfully followed. Additionally, an attacker can identify

strategic faults, which, if they were to occur, would give
the attacker an advantage. Here, an attacker can either
omit the test vectors used to detect the strategic faults or
he can craft the design so that these faults are untestable.

Assembly phase. Developers assemble the tested chip
and other hardware components on a printed circuit
board (PCB). Every interface in a system where two or
more components interact is a potential Trojan inser-
tion site. Even if all the ICs in a system are trustworthy,
malicious assembly can introduce security flaws in the
system. For example, an unshielded wire connected to a
node on the PCB can introduce unintended electromag-
netic coupling between the signal on the board and its
electromagnetic surroundings. An adversary can exploit
this for information leakage and fault injection.

Abstraction level
Trojan circuits can be inserted at various hardware ab-

straction levels, as Figure 3b shows.
System level. At this level, chip developers define the

various hardware modules, interconnections, and com-
munication protocols used. Trojans might be triggered by
the target hardware modules—for example, interchanging
the ASCII values of the keyboard inputs.

Development environment. A typical IC development
tool chain includes synthesis, simulation, verification, and
validation tools. An attacker can use CAD tools and scripts
to insert Trojans.9 Software Trojans inserted into these
CAD tools can mask the effects of the hardware Trojans.
For example, a synthesis tool might not reveal a circuit’s
Trojan components to the user.

Register-transfer level. At the RTL, chip developers
describe each functional module in terms of registers,
signals, and Boolean functions. A Trojan can be easily
designed and inserted at the RTL because the attacker has
full control over the hardware’s functionality. For exam-

43OCTOBER 2010

ple, a Trojan implemented at this level might halve the
rounds of a cryptographic algorithm by making a round
counter to advance in two steps instead of one.

Gate level. At this level, an IC is represented as an
interconnection of logic gates. An attacker can carefully
control all aspects of the inserted Trojan, including its
size and location. For example, a Trojan might be a simple
comparator consisting of XOR gates that monitor the
chip’s internal signals.

Transistor level. Chip designers use transistors to build
logic gates. This level gives the Trojan designer control
over circuit characteristics like power and timing. The
attacker can insert or remove individual transistors, alter-
ing the circuit functionality, or modify transistor sizes to
alter circuit parameters. For example, a transistor-level
Trojan might be a transistor with low gate width that can
cause more delay in the critical path.

Physical level. This level describes all circuit com-
ponents and their dimensions and locations, and is the
design’s physical level—where a Trojan can be inserted.
An attacker can insert Trojans by modifying the size of the
wires and distances between circuit elements and reas-
signing metal layers. For example, changing the width of
the clock grids’ metal wires in the chip can cause clock
skew.

Activation mechanism
Some Trojans are designed to be always on, while others

remain dormant until triggered. A triggered Trojan needs
an internal or external event to be activated. Once the trig-
ger activates a Trojan, it can remain active forever or return
to a dormant state after a specified time.

An event that occurs within the target device activates
an internally triggered Trojan. The event might be either
time-based or physical-condition-based. A counter in the
design can trigger a Trojan at a predetermined time, result-
ing in a time bomb. Similarly, a Trojan can trigger when
the chip temperature exceeds 55°C.

An externally triggered Trojan requires external input
to the target module to activate. The external trigger can
be user input or component output. User-input triggers in-
clude pushbuttons, switches, keyboards, or keywords and
phrases in the input data stream. Component-output trig-
gers might be from any of the components that interact
with the target device. For example, data coming through
external interfaces such as RS-232 can trigger a Trojan.

Effects
Trojans can also be characterized by their undesirable

effects. The severity of these effects on target hardware
or systems can range from subtle disturbances to cata-
strophic system failures.

A Trojan can change the functionality of the target device
and cause subtle errors that might be difficult to detect. For

example, a Trojan might cause an error detection module
to accept inputs that should be rejected.

In addition, a Trojan can downgrade performance by
intentionally changing device parameters. These include
functional, interface, or parametric characteristics such as
power and delay. For example, a Trojan might insert more
buffers in the chip’s interconnections and hence consume
more power, which in turn could drain the battery quickly.

A Trojan can also leak information through both covert
and overt channels. Sensitive data can be leaked via radio
frequency, optical or thermal power, timing side channels,
and interfaces such as RS-232 and JTAG (Joint Test Action
Group). For example, a Trojan might leak a cryptographic
algorithm’s secret key through unused RS-232 ports.

Denial-of-service Trojans prevent operation of a function
or resource. A DoS Trojan can cause the target module to
exhaust scarce resources like bandwidth, computation,
and battery power. It could also physically destroy, disable,
or alter the device’s configuration—for example, caus-
ing the processor to ignore the interrupt from a specific
peripheral. DoS can be either temporary or permanent.

Location
A hardware Trojan can be inserted in a single com-

ponent or spread across multiple components—the
processor, memory, input/output, power supply, or clock
grid. Trojans distributed across multiple components can
act independently of one another or together as a group to
accomplish their attack objectives.

Processor. Any Trojan embedded into the logic units
that are part of the processor can be grouped under this
category. A Trojan in the processor might, for example,
change the instructions’ execution order.

Memory. Trojans in the memory blocks and their inter-
face units fall in this category. These Trojans might alter
the value stored in the memory and also block read or
write access to certain memory locations—for exam-
ple, change the contents of a programmable read-only
memory in an IC.

I/O. Trojans can reside in a chip’s peripherals or within
the PCB. These peripherals interface with the external
components and can give the Trojan control over data
communication between the processor and the system’s
external components. For example, a Trojan might alter
the data coming through an RS-232 port.

Power supply. Trojans can alter the voltage and current
supplied to the chip, causing failures.

The effects of Trojans on target
hardware or systems can range from
subtle disturbances to catastrophic
system failures.

COVER FE ATURE

COMPUTER	44

Clock grid. Trojans in the clock grid can change the
clock’s frequency, insert glitches in the clock supplied to
the chip, and launch fault attacks. These Trojans can also
freeze the clock signal supplied to the rest of the chip’s
functional modules. For example, a Trojan might increase
the clock signal skew supplied to specific parts of a chip.

TAXONOMY VALIDATION
To validate our proposed hardware Trojan taxonomy,

we tested whether it meets the coverage and resolution
criteria described earlier. We used the 38 Trojans submit-
ted to the 2008 Embedded Systems Challenge, described

in the “Embedded Systems Challenge” sidebar, along with
18 Trojans identified in previous work.

As Table 1 shows, the taxonomy covers all 56 observed
Trojans. To determine whether the taxonomy meets the
resolution criterion, we examined the Trojans to determine
whether they can be classified according to significantly
different abilities or required countermeasures. In all, the
Trojans occupy 17 classes in the taxonomy. The vast ma-
jority—37 of 56—are inserted in the design phase and
triggered by user input, and among these we were able to
distinguish 12 classes (2-13 in Table 1).

The same countermeasure can detect Trojans in the
same class. For example, checking the RTL code of the
I/O unit for changes in the I/O protocol can detect Tro-
jans in class 2. Performing exhaustive memory testing
can detect Trojans in class 3. Analyzing the side chan-
nels can detect Trojans in class 4. Exhaustive checking for
resource-utilization changes can detect Trojans in class 5.
Periodically communicating with the device, even after
its deployment, can detect Trojans in class 6. Skewing the
clocks and observing the IC’s transient behavior can detect
Trojans in class 7. Checking for transient characteristics
while dynamically scaling the chip’s supply voltage can
detect Trojans in class 8. Concurrent detection for soft
errors can detect Trojans in class 9.

Sometimes a generic countermeasure can detect Tro-
jans from different classes. For example, checking for
side-channel interfaces to the processor unit can detect
Trojans in classes 10 and 12. Checking the chip’s “fin-
gerprints,” such as power and delay characteristics, can
enable Trojan detection in classes 14 through 17.

Table 1 also lists potential Trojan classes for which
examples have yet to be reported. These classes are as
important as those with known examples and should
be considered while designing benchmarks and coun-
termeasures. For example, a proactive countermeasure
for class 24 Trojans is complete verification of interface
protocols for possible trapdoors; a proactive measure to
detect class 25 Trojans is to periodically check the periph-
erals’ integrity.

H
ardware Trojans present a very real threat.
Our proposed taxonomy can serve as a useful
tool to study existing Trojans and to develop
systematic Trojan detection methods. Equally
important, it provides a view of potential

hardware Trojans so that proactive hardware security
measures can be taken today to protect against the attacks
of tomorrow.

The taxonomy presented here captures the spectrum
of Trojans we have seen at the time of writing. To broaden
the spectrum of our awareness, we are organizing an up-
coming hardware hacking competition (www.poly.edu/

T he Embedded Systems Challenge (www.poly.edu/csaw-
embedded) is an annual hardware hacking competition

organized by Polytechnic Institute of New York University. Students
of all levels from universities across the country are invited to
compete. For the past three years, the challenge has focused on
embedding and detecting hardware Trojans. Participants received
the Hardware Description Language (HDL) code for a reference
design electronically and a field-programmable gate array board
and development tools by mail. As a sponsor, Xilinx provided FPGA
boards for the 2008, 2009 and 2010 competitions.

The Alpha reference design for the 2008 challenge (www.isis.
poly.edu/esc08.pdf) was a cryptographic encoder for interactive
use by a human operator. The design targeted the Digilent Basys
board, which contains a Xilinx Spartan-3 FPGA. The keyboard is
used as an input device for plaintext, and a video port is used as
an output device for ciphertext. The cryptographic keys were
hardcoded in the Alpha’s HDL code. The design filled the target
FPGA’s hardware resources.

The challenge’s requirements were to embed one or more Tro-
jans that leak a key, leak plaintext, or create a DoS—all without
being detected during normal testing. The participants fully doc-
umented their Trojans and demonstrated some of them at the
final judging held at NYU-Poly. A panel of independent judges
from industry scored the teams based on their submissions’
effectiveness and inventiveness. This set of submissions served
as a sample for studying and classifying Trojans.

After the 2008 challenge ended, we collected some statistics
on the submitted Trojans and found that 59 percent were trig-
gered on user input, 34 percent were always on, 4 percent were
time bombs, and the rest were mostly triggered by physical con-
ditions such as temperature. Some Trojans were triggered by a
single character in the input stream; others required a sequence
of characters. Some added timing constraints on the symbols’
arrival, further reducing the likelihood of detection during
normal testing or operation. Some Trojans made use of second-
ary inputs such as an input pin that is part of the VGA output port.

Half of the submitted Trojans changed the system’s functional
behavior, while 36 percent only leaked information. The remain-
ing 14 percent created various DoS conditions. The most
frequently observed method of leaking information involved
using regular I/O ports, but other side channels were also used.
One Trojan slowly leaked the key thermally by deliberately dissi-
pating extra power to transmit a 1 and regular power to transmit
a 0. Another Trojan deliberately emitted radio-frequency signals
that encoded the key.

 EMBEDDED SYSTEMS CHALLENGE

45OCTOBER 2010

csaw-embedded). By creating an environment where par-
ticipants are rewarded for new Trojan techniques, we can
continually update the taxonomy ahead of the attacks
reported in the field.

Like many areas of security, hardware trust requires
constant effort and a proactive approach. To foster co-
operation and progress in the research community, the
Trojans we collected are available through Trusthub (www.
trust-hub.org).

Acknowledgments
The work of Ramesh Karri and his group is supported in part
by National Science Foundation grants ECCS-0621856, CNS-

0619741, CNS-0831349, and CNS-0958510 and AFRL grant
FA8750-09-1-0146. The authors also acknowledge the con-
tributions of the organizers of ESC 2007 and 2008, Vikram
Padman and Efstratios Gavas. The work of Mohammad Tehra-
nipoor was supported in part by National Science Foundation
grants CNS-0716535 and CNS-0844995.

References
	 1.	 Defense Science Board, “Defense Science Board Task Force

on High Performance Microchip Supply,” Feb. 2005; www.
cra.org/govaffairs/images/2005-02-HPMS_Report_Final.
pdf.

	 2.	 J.H. Follett, “CRN Cisco Channel at Center of FBI Raid on
Counterfeit Gear,” 12 May 2008, CRN.com; www.crn.com/
networking/207602683.

Table 1. Hardware Trojans used to verify proposed taxonomy.

Trojan
status

Class
no. Trojan class

No. of
Trojans

Observed 1 Specification phase–RTL–external-component triggered–leak information–in the I/O 1

2 Design phase–RTL–user-input triggered–leak information–in the I/O 12

3 Design phase–RTL–user-input triggered–change function–in the memory 2

4 Design phase–RTL–user-input triggered–leak information–in the processor 2

5 Design phase–RTL–user-input triggered–permanently deny service–in the processor 2

6 Design phase–RTL–user-input triggered–permanently deny service–in the I/O 1

7 Design phase–RTL–user-input triggered–permanently deny service–in the clock grid 1

8 Design phase–RTL–user-input triggered–permanently deny service–in the power supply 1

9 Design phase–RTL–user-input triggered–temporarily deny service–in the processor 1

10 Design phase–RTL–always on–leak information–in the processor 4

11 Design phase–RTL–always on–leak information–in the I/O 9

12 Design phase–RTL–physical-parameter triggered–permanently deny service–in the processor 1

13 Design phase–RTL–time triggered–temporarily deny service–in the I/O 1

14 Fabrication phase–transistor level–user-input triggered–change function–in the processor 12

15 Fabrication phase–transistor level–always on–change function–in the processor 4

16 Fabrication phase–transistor level–time triggered–change function–in the processor 1

17 Fabrication phase–physical level–always on–change function–in the processor 1

Potential 18 Specification phase–system level–user-input triggered–change function–in the processor —

19 Specification phase–system level–time triggered–temporarily deny service–in the clock grid —

20 Design phase–RTL–physical-parameter triggered–change function–in the processor —

21 Design phase–RTL–physical-parameter triggered–permanently deny service–in the memory —

22 Design phase–RTL–time triggered–change function–in the I/O —

23 Design phase–RTL–time triggered–temporarily deny service–in the memory —

24 Assembly and package phase–system level–external-component triggered–leak information–in the I/O —

25 Assembly and package phase–system level–external-component triggered–permanently deny service–in the
power supply

—

26 Fabrication phase–transistor level–time triggered–permanently deny service–in the clock grid —

27 Fabrication phase–transistor level–always on–temporarily deny service–in the clock grid —

28 Fabrication phase–physical level–always on–temporarily deny service–in the clock grid —

29 Fabrication phase–physical level–physical-parameter triggered–permanently deny service–in the power supply —

COVER FE ATURE

COMPUTER	46

	 3.	 X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting
Malicious Inclusions in Secure Hardware: Challenges and
Solutions,” Proc. IEEE Int’l Workshop Hardware-Oriented
Security and Trust (HOST 08), IEEE Press, 2008, pp. 15-19.

	 4.	 M. Tehranipoor and F. Koushanfar, “A Survey of Hardware
Trojan Taxonomy and Detection,” IEEE Design & Test, Jan./
Feb., 2010, pp. 10-25.

	 5.	 Y. Jin and Y. Makris, “Hardware Trojan Detection Using
Path Delay Fingerprint,” Proc. IEEE Int’l Workshop Hard-
ware-Oriented Security and Trust (HOST 08), IEEE Press,
2008, pp. 51-57.

	 6.	 M. Potkonjak et al., “Hardware Trojan Horse Detection
Using Gate-Level Characterization,” Proc. 46th Ann. Design
Automation Conf. (DAC 09), ACM Press, 2009, pp. 688-693.

	 7.	 J. Rajendran et al., “Towards a Comprehensive and System-
atic Classification of Hardware Trojans,” Proc. IEEE Int’l
Symp. Circuits and Systems (ISCAS10), IEEE Press, 2010,
pp. 1871-1874.

	 8.	 S. Adee, “The Hunt for the Kill Switch,” IEEE Spectrum,
May 2008, pp. 34-39.

	 9.	 J.A. Roy, F. Koushanfar, and I.L. Markov, “Extended Ab-
stract: Circuit CAD Tools as a Security Threat,” Proc. IEEE
Workshop Hardware-Oriented Security and Trust (HOST
08), IEEE Press, 2008, pp. 65-66.

Ramesh Karri is a professor in the Electrical and Computer
Engineering (ECE) Department at Polytechnic Institute of
New York University (NYU-Poly). His research interests
include trusted hardware design, side-channel attacks and
resistant architectures, interaction between security and
reliability, fault tolerance, and nanoscale architectures.
Karri received a PhD in computer science from the Univer-
sity of California, San Diego. He is a member of the IEEE
Computer Society and an associate editor of IEEE Trans-

actions on Information Forensics and Security and ACM
Journal on Emerging Technologies in Computing. Contact
him at rkarri@duke.poly.edu.

Jeyavijayan Rajendran is a PhD student in the ECE Depart-
ment at NYU-Poly. His research interests include hardware
trust and nanoarchitectures. Rajendran received a BE in
electronics and communication engineering from Anna
University. He is a student member of IEEE. Contact him
at jrajen01@students.poly.edu.

Kurt Rosenfeld is a PhD student in the Computer Science
Department at NYU-Poly and an engineer at Google. His
research interests include hardware trust and the security
and reliability of information systems Rosenfeld received
an MS in electrical engineering from City College of New
York. He is a student member of the ACM. Contact him at
kurt@isis.poly.edu.

Mohammad Tehranipoor is an associate professor in the
Department of Electrical and Computer Engineering at
the University of Connecticut, where he also directs the
Computer-Aided Design and Test Research Lab and the
Secure and Trustable Systems Lab. His research interests
include computer-reliable nanoscale systems design, secure
IP/IC design, hardware security and trust, and design for
testability. Tehranipoor received a PhD in electrical en-
gineering from the University of Texas at Dallas. He is a
senior member of IEEE and a member of the ACM, and is
currently guest editor of Computing Now and IEEE Design
& Test. Contact him at tehrani@engr.uconn.edu.

	 Selected CS articles and columns are available for free at
	 http://ComputingNow.computer.org.

IEEE Design & Test of Computers covers
the tools, techniques, and concepts used to
design and test electronic product hardware

and supportive software. D&T is a leader in
analysis of current and near-future practice.

Upcoming: Emerging Interconnect

Technologies, New Directions in DFT, Common
Language Framework, and Post-Silicon

Calibration and Repair

www.computer.org/design

