
traits.js
Robust Object Composition and High-integrity Objects for ECMAScript 5

Tom Van Cutsem
Software Languages Lab

Vrije Universiteit Brussel, Belgium
tvcutsem@vub.ac.be

Mark S. Miller
Google, USA

erights@google.com

Abstract
This paper introduces traits.js, a small, portable trait
composition library for Javascript. Traits are a more robust
alternative to multiple inheritance and enable object com-
position and reuse. traits.js is motivated by two goals:
first, it is an experiment in using and extending Javascript’s
recently added meta-level object description format. By
reusing this standard description format, traits.js can
be made more interoperable with similar libraries, and even
with built-in primitives. Second, traits.js makes it con-
venient to create “high-integrity” objects whose integrity
cannot be violated by clients, an important property in the
context of interaction between mutually suspicious scripts.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Object-oriented languages

General Terms Design, Languages

Keywords Traits, Javascript

1. Introduction
We introduce traits.js, a small, standards-compliant trait
composition library for ECMAScript 5, the latest standard
of Javascript. Traits are a more robust alternative to classes
with multiple inheritance.

A common pattern in Javascript is to add (“mixin”) the
properties of one object to another object. traits.js pro-
vides a few simple functions for performing this pattern
safely as it will detect, propagate and report conflicts (name
clashes) created during a composition. While such a library
is certainly useful, it is by no means novel. Because of
Javascript’s flexible yet low-level object model, libraries that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLASTIC ’11 October 24th, Portland.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

add class-like abstractions with mixin- or trait-like capabili-
ties abound. What sets traits.js apart?

Standard object representation format traits.js rep-
resents traits in terms of a new meta-level object de-
scription format, introduced in the latest ECMAScript
5th edition (ES5) [3]. The use of such a standard format,
rather than inventing an ad hoc representation, allows
higher interoperability with other libraries that use this
format, including the built-in functions defined by ES5
itself. We briefly describe ES5’s new object-description
API in the following Section. We show how this standard
object description format lends itself well to extensions
of Javascript object semantics, while remaining interop-
erable with other libraries.

Support for high integrity traits.js facilitates the cre-
ation of so-called “high-integrity” objects. By default,
Javascript objects are extremely dynamic: clients can
add, remove and assign to any property, and are even
allowed to rebind the this pseudovariable in an object’s
methods to arbitrary other objects. While this flexibility
is often an asset, in the context of cooperation between
untrusted scripts it is a liability. ECMAScript 5 intro-
duces a number of primitives that enable high-integrity
objects, yet not at all in a convenient manner. An ex-
plicit goal of traits.js is to make it as convenient to
create high-integrity objects as it is to create Javascript’s
standard, dynamic objects.

Minimal traits.js introduces just the necessary features
to create, combine and instantiate traits. It does not add
the concept of a class to Javascript, but rather reuses
Javascript functions for the roles traditionally attributed
to classes. Inspired by the first author’s earlier work [7],
a class in this library is just a function that returns new
trait instances.

Availability traits.js can be downloaded from www.
traitsjs.org and runs in all major browsers. It also runs
in server-side Javascript environments, like node.js.

2. ECMAScript 5
Before introducing traits.js proper, we briefly touch
upon a number of features introduced in the most recent ver-
sion of ECMAScript. Understanding these features is key to
understanding traits.js.

Property Descriptors ECMAScript 5 defines a new object-
manipulation API that provides more fine-grained control
over the nature of object properties [3]. In Javascript, objects
are records of properties mapping names (strings) to values.
A simple two-dimensional point whose y-coordinate always
equals the x-coordinate can be defined as:

var point = {
x: 5,
get y() { return this .x; },
toString: function() { return ’[Point ’+this .x+’]’; }
};

ECMAScript 5 distinguishes between two kinds of prop-
erties. Here, x is a data property, mapping a name to a value
directly. y is an accessor property, mapping a name to a “get-
ter” and/or a “setter” function. The expression point.y im-
plicitly calls the getter function.

ECMAScript 5 further associates with each property
a set of attributes. Attributes are meta-data that describe
whether the property is writable (can be assigned to), enu-
merable (whether it appears in for-in loops) or config-
urable (whether the property can be deleted and whether
its attributes can be modified). The following code snippet
shows how these attributes can be inspected and defined:

var pd = Object.getOwnPropertyDescriptor(o, ’x’);
// pd = {
// value: 5,
// writable : true ,
// enumerable: true ,
// configurable : true
// }
Object.defineProperty(o, ’z’, {
get: function () { return this .x; },
enumerable: false,
configurable: true
});

The pd object and the third argument to defineProperty
are called property descriptors. These are objects that de-
scribe properties of objects. Data property descriptors de-
clare a value and a writable property, while accessor
property descriptors declare a get and/or a set property.

The Object.create function can be used to generate
new objects based on a set of property descriptors directly.
Its first argument specifies the prototype of the object to
be created (every Javascript object forwards requests for
properties it does not know to its prototype). Its second
argument is an object mapping property names to property

descriptors. This object, which we will refer to as a property
descriptor map, describes both the properties and the meta-
data (writability, enumerability, configurability) of the object
to be created. Armed with this knowledge, we could have
also defined the point object explicitly as:

var point = Object.create(Object.prototype, {
x: { value: 5,

enumerable: true,
writable: true,
configurable: true },

y: { get: function () { return this .x; },
enumerable: true,
configurable: true },

toString: { value: function() {...},
enumerable: true,
writable: true,
configurable: true }

});

Tamper-proof Objects ECMAScript 5 supports the cre-
ation of tamper-proof objects that can protect themselves
from modifications by client objects. Objects can be made
non-extensible, sealed or frozen. A non-extensible object
cannot be extended with new properties. A sealed object is a
non-extensible object whose own (non-inherited) properties
are all non-configurable. Finally, a frozen object is a sealed
object whose own properties are all non-writable. The call
Object.freeze(obj) freezes the object obj. As we will
describe in Section 6, traits.js supports the creation of
such tamper-proof objects.

Bind A common pitfall in Javascript relates to the peculiar
binding rules for the this pseudovariable in methods [2].
For example:

var obj = {
x :1,
m: function () { return this .x; }
};
var meth = obj.m; // grab the method as a function
meth(); // ” this” is now set to the global object

Javascript methods are simply functions stored in objects.
When calling a method obj.m(), the method’s this pseu-
dovariable is bound to obj, as expected. However, when ac-
cessing a method as a property obj.m and storing it in a
variable meth, as is done in the above example, the func-
tion loses track of its this-binding. When it is subsequently
called as meth(), this is bound to the global object by de-
fault, returning the wrong value for this.x.

There are other ways for the value of this to be rebound.
Any object can call a method with an explicit binding for
this, by invoking meth.call(obj). While that solves the
problem in this case, unfortunately, in general, malicious
clients can use the call primitive to confuse the original

method by binding its this pseudovariable to a totally unre-
lated object. To guard against such this-rebinding, whether
by accident or by intent, one can use the ECMAScript 5
bind method, as follows:

obj.m = obj.m.bind(obj); // fixes m’s ” this” to ”obj”
var meth = obj.m;
meth(); // returns 1 as expected

Now m can be selected from the object and passed around
as a function, without fear of accidentally having its this
rebound to the global object, or any other random object.

3. Traits
Traits were originally defined as “composable units of be-
havior” [5]: reusable groups of methods that can be com-
posed together to form a class. Trait composition can be
thought of as a more robust alternative to multiple inheri-
tance. Traits may provide and require a number of methods.
Required methods are like abstract methods in OO class hi-
erarchies: their implementation should be provided by an-
other trait or class.

The main difference between traits and alternative com-
position techniques such as multiple inheritance and mixin-
based inheritance [1] is that upon trait composition, name
conflicts (a.k.a. name clashes) should be explicitly resolved
by the composer. This is in contrast to multiple inheritance
and mixins, which define various kinds of linearization
schemes that impose an implicit precedence on the com-
posed entities, with one entity overriding all of the methods
of another entity. While such systems often work well in
small reuse scenarios, they are not robust: small changes
in the ordering of classes/mixins somewhere high up in the
inheritance/mixin chain may impact the way name clashes
are resolved further down the inheritance/mixin chain [6]. In
addition, the linearization imposed by multiple inheritance
or mixins precludes a composer to give precedence to both
a method m1 from one class/mixin A and a method m2 from
another class/mixin B: either all of A’s methods take prece-
dence over B, or all of B’s methods take precedence over
A.

Traits allow a composing entity to resolve name clashes
in the individual components by either excluding a method
from one of the components or by having one trait explicitly
override the methods of another one. In addition, the com-
poser may define an alias for a method, allowing the com-
poser to refer to the original method even if its original name
was excluded or overridden.

Name clashes that are never explicitly resolved will even-
tually lead to a composition error. Depending on the lan-
guage, this composition error may be a compile-time error, a
runtime error when the trait is composed, or a runtime error
when a conflicting name is invoked on a trait instance.

Trait composition is declarative in the sense that the or-
dering of composed traits does not matter. In other words,

unlike mixin-based or multiple inheritance, trait composi-
tion is commutative and associative. This tremendously re-
duces the cognitive burden of reasoning about deeply nested
levels of trait composition. In languages that support traits
as a compile-time entity (similar to classes), trait composi-
tion can be entirely performed at compile-time, effectively
“flattening” the composition and eliminating any composi-
tion overhead at runtime.

Since their publication in 2003, traits have received
widespread adoption in the PL community, although the de-
tails of the many traits implementations differ significantly
from the original implementation defined for Smalltalk.
Traits have been adopted in a.o. Perl, Fortress and Scheme [4].

4. traits.js in a Nutshell
As a concrete example of a trait, consider the “enumerabil-
ity” of collection objects. In many languages, collection ob-
jects all support a similar set of methods to manipulate the
objects contained in the collection. Most of these methods
are generic across all collections and can be implemented in
terms of just a few collection-specific methods, e.g. a method
forEach that returns successive elements of the collection.
Such a TEnumerable trait can be encoded using traits.js
as follows:

var TEnumerable = Trait({
// required property , to be provided later
forEach: Trait.required,
// provided properties
map: function(fun) {

var r = [];
this .forEach(function (e) { r.push(fun(e)); });
return r;
},
reduce: function(init, accum) {

var r = init;
this .forEach(function (e) { r = accum(r,e); });
return r;
},
...

});

// an example enumerable collection
function Range(from, to) {

return Trait.create(
Object.prototype,
Trait.compose(
TEnumerable,
Trait({
forEach: function(fun) {

for (var i = from; i < to; i++) { fun(i); }
}
})));

}

var r = Range(0,5);
r.reduce(0, function(a,b){return a+b;}); // 10

traits.js exports a single function object, named
Trait. Calling Trait({...}) creates and returns a new
trait. We refer to this Trait function as the Trait construc-
tor. The Trait constructor additionally defines a number of
properties:

• Trait.required is a special singleton value that is
used to denote missing required properties. traits.js
recognizes such data properties as required properties
and they are treated specially by Trait.create and by
Trait.compose (as explained later). Traits are not re-
quired to state their required properties explicitly, but it
is often useful to do so for documentation purposes.

• The function Trait.compose takes an arbitrary number
of input traits and returns a composite trait.

• The function Trait.create takes a prototype object
and a trait, and returns a new trait instance. The first
argument is the prototype of the trait instance. Note the
similarity to the built-in Object.create function.

When a trait is instantiated into an object o, the bind-
ing of the this pseudovariable of the trait’s methods refers
to o. In the example, the TEnumerable trait defines two
methods, map and reduce, that require (depend on) the
forEach method. This dependency is expressed via the self-
send this.forEach(...). When map or reduce is in-
voked on the fully composed Range instance r, this will
refer to r, and this.forEach refers to the method defined
in the Range function.

5. Traits as Property Descriptor Maps
We now describe the unique feature of traits.js, namely
the way in which it represents trait objects. traits.js
represents traits as property descriptor maps (cf. Section 2):
objects whose keys represent property names and whose
values are property descriptors. Hence, traits conform to an
“open” representation, and are not opaque values that can
only be manipulated by the functions exported by the library.
Quite the contrary: by building upon the property descriptor
map format, libraries that operate on property descriptors
can also operate on traits, and the traits.js library can
consume property descriptor maps that were not constructed
by the library itself.

Figure 1 depicts the different kinds of objects that play
a role in traits.js and the conversion functions between
them. These conversions are explained in more detail in the
following Sections.

5.1 Simple (non-composite) Traits
Recall that the Trait function acts as a constructor for
simple (non-composite) traits. It essentially turns an object
describing a record of properties into a trait. For example:

Trait Trait

Record Instance
Trait.object(record)

Trait.create(proto, trait)
Object.create(proto, trait)

Trait.compose(trait,...)
Trait.resolve(map,trait,...)

Trait(record)

Figure 1. Object types and conversions in traits.js

var T = Trait({
a: Trait.required,
b: ”foo”,
c: function () { ... }

});

The above trait T provides the properties b and c and
requires the property a. The Trait constructor converts the
object literal into the following property descriptor map T,
which represents a trait:

{ ’a’ : {
value: undefined,
required: true,
enumerable: false,
configurable: false
},
’b’ : {
value: ”foo”,
writable: false,
enumerable: true,
configurable: false
},
’c’ : {
value: function () { ... },
method: true,
enumerable: true,
configurable: false
}
}

The attributes required and method are not standard
ES5 attributes, but are recognized and interpreted by the
Trait.create function described later.

The objects passed to Trait are meant to serve as plain
records that describe a simple trait’s properties. Just like
Javascript itself has a convenient and short object literal syn-
tax, in addition to the more heavyweight, yet more powerful
Object.create syntax (as shown in Section 2), passing a
record to the Trait constructor is a handy way of defining a
trait without having to spell out all meta-data by hand.

The Trait function turns a record into a property descrip-
tor map with the following constraints:

• Only the record’s own properties are turned into trait
properties (its prototype is not significant, inherited prop-
erties are ignored).

• Data properties in the record bound to the special
Trait.required singleton are bound to a property de-
scriptor marked with the required: true attribute.

• Data properties in the record bound to functions are
marked with the method: true attribute. traits.js
distinguishes between such methods and plain function-
valued data properties in the following ways:

Normal Javascript functions are mutable objects, but
trait methods are treated as frozen objects (i.e. objects
with immutable structure).

For normal Javascript functions, their this pseu-
dovariable is a free variable that can be set to any
object by callers. For trait methods, the this pseu-
dovariable of a method will be bound to trait in-
stances, disallowing callers to specify a different value
for this.

5.2 Composing Traits
The function Trait.compose is the workhorse of traits.js.
It composes zero or more traits into a single composite trait:

var T1 = Trait({ a: 0, b: 1});
var T2 = Trait({ a: 1, c: 2});
var Tc = Trait.compose(T1,T2);

The composite trait contains the union of all properties
from the argument traits. For properties whose name appears
in multiple argument traits, a distinct “conflicting” property
is defined in the composite trait. The format of Tc is:

{ ’a’ : {
get: function (){ throw ...; },
set: function (){ throw ...; },
conflict: true
},
’b’ : { value: 1 },
’c’ : { value: 2 } }

The conflicting a property in the composite trait is
marked as a conflicting property by means of a conflict:
true attribute (again, this is not a standard ES5 attribute).
Conflicting properties are accessor properties whose get
and set functions raise an appropriate runtime exception
when invoked.

Two properties p1 and p2 with the same name are not in
conflict if:

• p1 or p2 is a required property. If either p1 or p2 is a non-
required property, the required property is overridden by
the non-required property.

• p1 and p2 denote the same property. Two properties
are considered to be the same if they refer to identical

values and have identical attribute values. This implies
that it is OK for the same property to be “inherited” via
different composition paths, e.g. in the case of diamond
inheritance.

compose is a commutative and associative operation: the
ordering of its arguments does not matter, and compose(t1,
t2,t3) is equivalent to compose(t1,compose(t2,t3))
or compose(compose(t2,t1),t3).

5.3 Resolving Conflicts
The Trait.resolve function can be used to resolve con-
flicts created by Trait.compose, by either renaming or ex-
cluding conflicting property names. The function takes as its
first argument an object that maps property names to either
strings (indicating that the property should be renamed) or
to undefined (indicating that the property should be ex-
cluded). Trait.resolve returns a fresh trait in which the
indicated properties have been renamed or excluded.

For example, if we wanted to avoid the conflict in the Tc
trait from the previous example, we could have composed
T1 and T2 as follows:

var Trenamed =
Trait.compose(T1, Trait.resolve({ a: ’d’ }, T2);

var Texclude =
Trait.compose(T1, Trait.resolve({ a: undefined }, T2);

Trenamed and Texclude have the following structure:

// Trenamed =
{ ’a’ : { value: 0 },

’b’ : { value: 1 },
’c’ : { value: 2 },
’d’ : { value: 1 } } // T2.a renamed to ’d’

// Texclude =
{ ’a’ : { value: 0 }, // T2.a excluded

’b’ : { value: 1 },
’c’ : { value: 2 } }

When a property p is renamed or excluded, p itself is
turned into a required property, to attest that the trait is not
valid unless the composer provides an alternative implemen-
tation for the old name.

5.4 Instantiating Traits
traits.js provides two ways to instantiate a trait: using
its own provided Trait.create function, or using the ES5
Object.create primitive. We discuss each of these below.

Trait.create When instantiating a trait, Trait.create
performs two “conformance checks”. A call to
Trait.create(proto, trait) fails if:

• trait still contains required properties, and those prop-
erties are not provided by proto. This is analogous to
trying to instantiate an abstract class.

• trait still contains conflicting properties.

In addition, traits.js ensures that the new trait in-
stance has high integrity:

• The this pseudovariable of all trait methods is bound to
the new instance, using the bind method introduced in
Section 2. This ensures clients cannot tamper with a trait
instance’s this-binding.

• The instance is created as a frozen object: clients cannot
add, delete or assign to the instance’s properties.

Object.create Since Object.create is an ES5 built-in
that knows nothing about traits, it will not perform the above
trait conformance checks and will not fail on incomplete or
inconsistent traits. Instead, required and conflicting proper-
ties are interpreted as follows:

• Required properties will be bound to undefined, and
will be non-enumerable (i.e. they will not show up in
for-in loops on the trait instance). This makes such
properties virtually invisible (in Javascript, if an ob-
ject o does not define a property x, o.x also returns
undefined). Clients can still assign a value to these
properties later.

• Conflicting properties have a getter and a setter that
throws an exception when accessed. Hence, the moment
a program touches a conflicting property, it will fail, re-
vealing the unresolved conflict.

Object.create does not bind this for trait methods
and does not generate frozen instances. Hence, the new trait
instance can still be modified by clients.

It is up to the programmer to decide which instantiation
method, Trait.create or Object.create, is more appro-
priate: Trait.create fails on incomplete or inconsistent
traits and generates frozen objects, Object.create may
generate incomplete or inconsistent objects, but as long as
a program never actually touches a conflicting property, it
will work fine (which fits with the dynamically typed nature
of Javascript).

In summary, because traits.js reuses the ES5 prop-
erty descriptor format to represent traits, it interoperates well
with libraries that operate on the same format, including
the built-in primitives. While such libraries do not under-
stand the additional attributes used by traits.js (such
as required:true), sometimes it is still possible to en-
code the semantics of those attributes by means of the stan-
dard attributes. By carefully choosing the representation for
required and conflicting properties, we were able to have
Object.create behave reasonably for traits. Furthermore,
the semantics provided by Object.create provide a nice
alternative to the semantics provided by Trait.create:
the former provides dynamic, late error checks and gener-
ates flexible instances, while the latter provides early error
checks and generates high-integrity instances.

6. High-integrity Objects
In Section 2 we mentioned that ECMAScript 5 supports
tamper-proof objects by means of three new primitives that
can make an object non-extensible, sealed or frozen. At
first sight, these primitives seem sufficient to construct high-
integrity objects, that is: objects whose structure or methods
cannot be changed by client objects. While freezing an ob-
ject fixes its structure, it does not fix the this-binding issue
for methods, and leaves methods as fully mutable objects.
Hence, simply calling Object.freeze(obj) does not pro-
duce a high-integrity object.

traits.js, by means of its Trait.create function,
provides a more convenient alternative to construct high-
integrity objects: a trait instance constructed by this function
is frozen and has frozen methods whose this pseudovari-
able is fixed to the trait instance using bind.

In order to construct the 2D point object from Section 2
as a high-integrity object in plain ECMAScript 5, one has to
write approximately1 the following:

var point = {
x: 5,
toString: function() { return ’[Point ’+this .x+’]’; }
};
point.toString =
Object.freeze(point.toString.bind(point));

Object.defineProperty(point, ’y’, {
get: Object.freeze(

function () { return this .x; }).bind(point)
});
Object.freeze(point);

With traits.js, the above code can be simplified to:

var point = Trait.create(Object.prototype,
Trait({
x: 5,
get y() { return this .x; },
toString: function() { return ’[Point ’+this .x+’]’; }
}));

In the above example, the original code for point was
wrapped in a Trait constructor. This trait is then immedi-
ately instantiated using Trait.create to produce a high-
integrity object. To better support this idiom, traits.js
defines a Trait.object function that combines trait decla-
ration and instantiation, such that the example can be further
simplified to:

var point = Trait.object({
x: 5,
get y() { return this .x; },
toString: function() { return ’[Point ’+this .x+’]’; }
});

1 To fully fix the object’s structure, the prototype of its methods should also
be fixed.

This pattern makes it feasible to work with high-integrity
objects by default.

7. Library or Language Extension?
Traits are not normally thought of as a library feature, but
rather as a declarative language feature, tightly integrated
with the language semantics. By contrast, traits.js is a
stand-alone Javascript library. We found that traits.js is
quite pleasant to use as a library without dedicated syntax.

Nevertheless, there are issues with traits as a library, es-
pecially with the design of traits.js. In particular, bind-
ing the this pseudovariable of trait methods to the trait
instance, to prevent this from being set by callers, re-
quires a bound method wrapper per method per instance.
Hence, instances of the same trait cannot share their meth-
ods, but rather have their own per-instance wrappers. This
is much less efficient than the method sharing afforded by
Javascript’s built-in prototypal inheritance.

We did design traits.js in such a way that a smart
Javascript engine could partially evaluate trait composition
statically, provided that the library is used in a restricted
manner. If the argument to Trait is an object literal rather
than an arbitrary expression, then transformations like the
one below apply:

Trait.compose(Trait({ a: 1 }), Trait({ b: 2}))
−>
Trait({ a:1, b:2 })

Transformations like these would not only remove the
runtime cost of trait composition, they would also enable
implementations to recognize calls to Trait.create that
generate instances of a single kind of trait, and replace those
calls to specialized versions of Trait.create that are par-
tially evaluated with the static trait description. The imple-
mentation can then make sure that all trait instances gener-
ated by this specialized method efficiently share their com-
mon structure.

Because of the dynamic nature of Javascript, and the brit-
tle usage restrictions required to enable the transformations,
the cost of reliably performing the sketched transformations
is high. An extension of Javascript with proper syntax for
trait composition would obviate the need for such complex
optimizations, and would likely improve error reporting and
overall usability as well.

8. Micro-benchmarks
This section reports on a number of micro-benchmarks that
try to give a feel for the overhead of traits.js as compared
to built-in Javascript object creation and method invocation.

The results presented here were obtained on an Intel Core
2 Duo 2.4Ghz Macbook with 4GB of memory, running Mac
OS X 10.6.8 and using the Javascript engines of three mod-
ern web browsers, with the latest traits.js version 0.4.

In the interest of reproducibility, the source code of the mi-
crobenchmarks used here is available at http://es-lab.
googlecode.com/files/traitsjs-microbench.html.

First, independent of traits.js, we note that creating an
object using the built-in Object.create function is easily
a factor of 10 slower than creating objects via the standard
prototypal inheritance pattern, whereby an object is instanti-
ated by calling new on a function, and methods are stored in
the object’s prototype, rather than in the object directly.

Therefore, in Table 1, we compare the overhead of
traits.js relative to creating an object using the built-
in Object.create API. The numbers shown are the ratios
between runtimes. Each number is the mean ratio of 5 runs
(each in an independent, sufficiently warmed-up browser
session), including the standard deviation from the mean.

The first three rows report the overhead of allocating
a new trait instance with respectively 10, 100 or 1000
methods, compared to allocating a non-trait object with an
equal amount of methods (using Object.create). The col-
umn indicates whether the trait instance was created using
Trait.create or Object.create2.

Across different platforms and sizes, there is roughly a
factor of 10 slowdown when using Trait.create. This
overhead stems from both additional trait conformance
checks (checks for missing required and remaining con-
flicting properties), and the creation of bound methods.
As expected, there is no particular overhead when instan-
tiating traits using Object.create. Bear in mind that
Object.create itself is easily 10x slower than prototypal
object creation.

The last row measures the overhead of invoking a method
on a trait instance, compared to invoking a method on a
regular object. Since Trait.create creates bound meth-
ods, there is a 1.56 to 3.93x slowdown compared to a stan-
dard method invocation. Again, for instances created by
Object.create there is no overhead, since such instances
do not have bound methods.

In closing, note that these micro-benchmarks do not in
any way inform us of the actual overhead of traits.js in
a realistic Javascript application.

9. Conclusion
traits.js is a small, standards-compliant trait composi-
tion library for Javascript. The novelty of traits.js is that
it uses a standard object-description format, introduced in
the recent ECMAScript 5 standard, to represent traits. Traits
are not opaque values but an open set of property descriptors.
This increases interoperability with other libraries using the
same format, including built-in primitives.

By carefully choosing the representation of traits in terms
of property descriptor maps, traits.js allows traits to be
instantiated in two ways: using its own library-provided

2 On Chrome, for traits of size 1000, we achieved unreliable results due to
excessive slowdowns. Those results are excluded from the table.

Firefox 7.0.1 Chrome 14.0.835.202 Safari 5.1 (6534.50)
allocation Trait.create Object.create Trait.create Object.create Trait.create Object.create

size 10 9.36x ±.48 1.05x ±.06 10.48x ±2.92 0.79x ±.20 11.45x ±.78 1.00x ±.00
size 100 10.80x±.28 .99x ±.01 9.72x ±0.36 1.02x ±.05 8.28x ±.28 1.11x ±.06

size 1000 10.26x±.58 .97x ±.04 7.77x ±.40 .98x ±.02
method call 1.56x ±.07 1.00x ±.04 3.93x ±.88 .80x ±.16 1.92x ±.18 1.00x ±.00

Table 1. Overhead of traits.js versus built-in Object.create.

function, Trait.create, which performs early confor-
mance checks and produces high-integrity instances; or us-
ing the ES5 Object.create function, which is oblivious to
any trait semantics, yet produces meaningful instances with
late, dynamic conformance checks. This freedom of choice
allows traits.js to be used both in situations where high-
integrity and extensibility are required.

Finally, the convenience afforded by Trait.object
makes it feasible to work with high-integrity objects by de-
fault. We feel this is an important addition to the Javascript
programmer’s toolbox.

Acknowledgments
We thank the anonymous referees, the members of the EC-
MAScript committee and the es-discuss mailing list for
their valuable feedback.

Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO). Part of this work was carried
out while the first author was on a Visiting Faculty appoint-
ment at Google, sponsored by Google and a travel grant from
the FWO.

References
[1] G. Bracha and W. Cook. Mixin-based inheritance. In OOP-

SLA/ECOOP ’90, pages 303–311, New York, NY, USA, 1990.
ACM.

[2] D. Crockford. Javascript: The Good Parts. O’Reilly, 2008.

[3] ECMA International. ECMA-262: ECMAScript Language
Specification. ECMA, Geneva, Switzerland, fifth edition, De-
cember 2009.

[4] M. Flatt, R. B. Finder, and M. Felleisen. Scheme with classes,
mixins and traits. In AAPLAS ’06, 2006.

[5] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. In ECOOP ’03, volume 2743 of
LNCS, pages 248–274. Springer Verlag, July 2003.

[6] A. Snyder. Encapsulation and inheritance in object-oriented
programming languages. In OOPSLA ’86, pages 38–45, New
York, NY, USA, 1986. ACM.

[7] T. Van Cutsem, A. Bergel, S. Ducasse, and W. Meuter. Adding
state and visibility control to traits using lexical nesting.
In ECOOP ’09, pages 220–243, Berlin, Heidelberg, 2009.
Springer-Verlag.

