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Abstract—Configuring a large number of routers and network
devices to achieve quality of service (QoS) goals is a challenging
task. In a differentiated services (DiffServ) environment, traffic
flows are assigned specific classes of service, and service level
agreements (SLA) are enforced at routers within each domain.
We present a model for QoS configurations that facilitates
efficient property-based verification. Network configuration is
given as a set of policies governing each device. The model
efficiently checks the required properties against the current
configuration using computation tree logic (CTL) model checking.
By symbolically modeling possible decision paths for different
flows from source to destination, properties can be checked at
each hop, and assessments can be made on how closely configu-
rations adhere to the specified agreement. The model also covers
configuration debugging given a specific QoS violation. Efficiency
and scalability of the model are analyzed for policy per-hop
behavior (PHB) parameters over large network configurations.

I. INTRODUCTION

Analyzing quality of service (QoS) policies across different
devices is essential to large scale quality-sensitive environ-
ments. Different devices can honor the same quality request
differently by imposing slightly incompatible sets of config-
uration parameters. Performing such analysis across devices
(possibly across domains, if collaboration is encouraged) was
limited in previous work to studying the possible conflicts of
quality classes rather than the actual parameters used to satisfy
these classes. On the practical side, administrators lacked the
tools to analyze QoS policies without the actual deployment
on a real network.

A service level agreement (SLA) is the contract by which
requests for a certain QoS are specified between the user
and the Internet service provider (ISP). Applications are given
different treatments from source to destination based on SLA
specifications. To achieve the requirements of an SLA, policies
are configured on different network nodes along the path from
source to destination. Guaranteeing performance stability and
correctness between different configurations on multiple nodes
is a critical issue. Misconfiguring policies on large domains
can cause conflicts between policy parameters within different
devices in the domain. The same problem happens due to
variations in device capabilities and policy interpretation.
These conflicts lead to performance instability, unpredictability
and quality degradation. Moreover, inconsistent configurations
handling the same traffic class can lead to violation of SLAs
and unsatisfactory overall performance.

In this work, a model is presented that uses unbounded
model checking, particularly computation tree logic (CTL), to
verify the correctness and consistency of QoS configurations
across multiple devices and/or domains. A query processing
mechanism is also used to check for user defined violations.

The system uses a symbolic implementation of model check-
ing that facilitates the analysis of multiple nodes, flows and
packets simultaneously with graceful handling of networks’ in-
creasing size and complexity. The implementation uses binary
decision diagrams (BDD [1], [2]) to model different aspects
of the model: states, transitions, and property verification
intermediate and final results. A BDD is a very powerful
structure that can be used to represent boolean expressions
and sets in a concise/canonical symbolic form. Moreover, it
defines boolean and set operations using theoretically proven
and efficient algorithms.

The system is a significant addition to the configuration
analysis tool: ConfigChecker [3]. ConfigChecker was used to
analyze and verify the correctness of network reachability
and security configurations. However, it does not have a way
to model actual physical link capacities, or flow dynamic
properties (e.g., flow bandwidth, delay, quality imposed by
successive routers, etc). This work adds the QoS aspects to this
analysis tool making it possible to verify routing tables, access
control lists, application layer policies, IPSec as well as QoS
configurations in a single consistent and homogeneous model.
The underlying engine for CTL query processing and model
management had to be changed to accommodate the unique
nature of quality properties of traffic. The quality experienced
by a flow is an aggregate of the treatment it receives at all
intermediate hops, which is completely different from the
memoryless nature of basic routing and firewall operations
analyzed in ConfigChecker.

The main contributions of this work are:
• CTL-based model for QoS configurations.
• Property-based (SLA-based) QoS verification.
• QoS policy debugging for a specific QoS violation.
• Answering what-if questions regarding policy changes.
• Incorporating QoS with general network reachability and

security analysis in a single model.

A. DiffServ Environment

QoS guarantees can be specified by assigning values to
certain traffic characteristics (e.g., delay), link parameters (e.g.,
bandwidth) or router configuration (e.g., queue length). A
configuration is a mapping from higher level SLA, to such
parameters and characteristics. Three main traffic classes are
addressed in the DiffServ domain; expedited forwarding (EF),
best effort (BE), and aggregated forwarding (AF). Policy rules
are specified in a way to control the behavior of each class.
Those rules may differ across different nodes and domains.

Implementing DiffServ in a network domain requires sup-
porting two main functionalities:



• Traffic conditioning: is implemented in boundary routers,
and is responsible for classifying (i.e., marking) packets
into traffic classes.

• Per hop behavior (PHB): is implemented on all routers
in the DiffServ domain, and specifies individual nodes’
treatment of each class.

The classification part of the traffic conditioning process
is similar to general router operations. Incoming packets are
mapped to specific traffic classes (e.g., EF, AF). The marking
process chooses the classification that reflects the desired level
of quality for these flows. Depending on device specification
and vendors, the marking could be performed using different
options; IP header fields (precedence or differentiated services
code point, DSCP), or other manufacturer specific marking
(e.g., Cisco QoS group). The latter is used when networks
need to define more classes than are supported by IP headers.
Applying this step at boundary routers might cause packets to
receive different classifications as they travel from one domain
to another. Different ISPs might provide different classes of
service, or even the same service with different markings. Even
if all domains on the path support the same class of service
defined in the IP header, specifying QoS groups on some
domains might result in inconsistent behavior if the marking
does not correspond to a supported behavior.

Inside a DiffServ domain, a PHB is a collection of action
parameters applied to a certain traffic flow. After the marking
process, packets belonging to the same flow should get the
same treatment from devices within the domain. This is per-
formed by defining PHB action parameters. PHB specifications
from QoS policy information model (RFC 3644 [4]) defines
two main categories of PHB actions: actions controlling band-
width and delay, and actions for congestion control.

The general setup is also applicable to other QoS protocols.
For example, MPLS (multi-protocol label switching) can be
implemented instead of internal DiffServ routers. In fact the
case of MPLS is easier for configuration analysis where the
main task would be checking labels over the paths instead of
performing analysis over each individual PHB parameter.

The following section describes the state model and how
policies are encoded. Section III explains how temporal anal-
ysis is represented in our model. QoS queries are mapped to
CTL properties using temporal as well as quantifying operators
to check whether these properties hold and at which nodes.
Implementation details are presented in section IV. Evaluation
of the system with respect to policy configuration parameters
is presented in section V.

II. CONFIGURATION MODEL

Formal verification of network configurations regards the
network as a Kripke structure [5], K = 〈S, T,A, σ〉, with the
following components:

• S is a set of states defined on atomic propositions.
• T ⊆ S × S is a transition function between states.
• A = 2p is a finite alphabet using a set of p propositions.
• σ : S 7→ A is a valuation function from a state to a label.
A state describes a specific network condition at a certain

point in time. Atomic propositions are basic domain-specific
descriptors reflecting the configuration belonging to the state.
For example, packet header fields when assigned specific
values can be considered atomic propositions. Routing and

security policy parameters can also correspond to atomic
propositions. The temporal logic aspect of K is manifested
by transitions from state to another state as time progresses.
For example, if a state corresponds to a packet arriving at one
router, then the next state would be the packet at the next hop.

The definition of the alphabet A over all possible atomic
propositions is the formal way of describing that an expression
based on the atomic constructs is satisfied at a certain state.
Therefore σ is now mapping each possible state to the atomic
expression that can be satisfied at this state.

A. State Representation

States in this model are defined in the context of a packet
traversing a set of devices from source to destination. This in-
volves all intermediate nodes and their configurations: routing
tables, security policies and QoS specifications.

A single state is defined as a boolean expression encoding
three components; packet header fields (Pkt), a certain net-
work location (Loc), and a corresponding PHB parameters.
The state expression is the conjunction of the boolean expres-
sion for each of the three components.

s = Pkt ∧ Loc ∧ PHB

We use the basic IP header fields representing packets (Pkt):
Protocol: 8 bits, IP addresses: 32 × 2 bits for source and
destination, Port numbers (16×2 bits source and destination),
and IP precedences, or DSCP.1.

The location is expressed as 32 bits for the IP address of the
network node along with 16 bits for the specific application
layer service. The PHB component of the expression specifies
the set of QoS policy actions, reflected in parameter values (ta-
ble I). Each parameter will be mapped to a boolean expression
depending on its type; boolean, quantitative or range.

The number of bits needed to encode the PHB expression:

L =| VB | +
∑

Qi∈VQ

dlog2(max(Qi))e+
∑

Ri∈VR

dlog2(max(Ri))e

where

• VB = {B1, B2, . . . Bk} is the set of boolean parameters,
• VQ = {Q1, Q2, . . . Ql} is the set of quantitative parame-

ters,
• VR = {R1, R2, . . . Rm} is the set of range parameters,
• and max(x) is the maximum possible value of the

parameter.

A single PHB response to a certain flow is encoded as a
boolean expression combining all parameters involved in the
policy definition with respect to that flow. For a parameter
P ∈ VB ∪ VQ ∪ VR, the expression is built as follows:

• A boolean parameter is mapped to a single bit expression;
B = b.

• A quantitative parameter is mapped to the numerical
encoding of the value; Q = qlog(max(Q)) . . . q1q0.

• A range parameter is mapped to the disjunction of powers
of two values spanning the range (e.g., [1, 3] over 2 bits
is encoded as R = r̄1r0 ∨ r1r̄0 ∨ r1r0 = r̄1r0 ∨ r1.)

1In this work, DSCP, ToS, CoS, or IP precedence are used interchangeably.



Class Property Type
PHB Max Packet size Quantitative

Bandwidth

Forwarding priority Quantitative
Bandwidth units Boolean
Min/Max Bandwidth Range
Max Delay Quantitative
Max Jitter Quantitative
Fairness Boolean

Congestion Queue size units Boolean
Queue size Quantitative
Drop method Boolean

Control Drop Threshold units Boolean
Drop Threshold method Boolean
Min/Max Threshold value Range

TABLE I
QOS POLICY INFORMATION MODEL (PQIM) PHB PROPERTIES MAPPING

B. State Transitions

Transitions in this model correspond to packets moving
between locations in the network. The source location could be
a general router or QoS router. The latter might be a boundary
router that performs marking or an internal DiffServ enabled
router. For each type of node, the next state will depend on
the functionality of this node. General routers only forward
packets. So, the next state will only differ in location, boundary
QoS routers might change the DSCP value in the packet header
field, and finally DiffServ routers might change any of the PHB
parameters for that packet. For security and routing policies,
we follow the same structure as in [3].

The aim is to define members of the transition functions
T ⊆ S × S. For two states, s = Pkt ∧ Loc ∧ PHB, and
s′ = Pkt′ ∧ Loc′ ∧ PHB′, T (s, s′) = true iff a packet
satisfying s at any point in time, will satisfy s′ in the next
time instance. These transitions are usually derived from the
domain policy definition: routing, security or QoS policies.
In order to construct the transition function two copies of all
variables are used: current state, and next state.

Example: For a small network of three nodes, assume the
locations and IPs are expressed as 2-bit integer values. The
routing policy for node 0 is defined such that packets with
destination 3 should be routed to node 2. To express the state
of the configuration performing a transition from state s =
(Loc = 0)∧(Pkt.dst = 3) to the next state s′ = (Loc′ = 2)∧
(Pkt′.dst = 3), the following condition should be satisfied.

(l̄1 ∧ l̄0) ∧ (d1 ∧ d0) ∧ (l′1 ∧ l̄′0) ∧ (d′1 ∧ d′0)

where l1, l0 are location variables, and d1, d0 are destination
variables. For every variable v, v′ is the next state variable
corresponding to v.

The overall transition relation T is the disjunction of the
partial transition functions obtained from each device sepa-
rately. Formally, one can write T =

∨
d∈D ζ(d), where ζ(d)

is the set of transitions relevant to a specific device d in the
overall set of devices D.

For each router type, the transitions will be defined in terms
of state expressions s and s′ as well as the defined policy
configurations P . A policy is specified as a sequence of rules
with condition and actions.

Rule := Condition⇒ Action

Conditions are defined as (f1 = v1)∧(f2 = v2) . . ., where f is
either packet field or location. For example, routing a packet

will be based on matching a rule with common prefix. The
condition is specified on Pkt for the set of packets satisfying
current state to be Pkt.dst = P.prefix. P is used instead of
the actual triggered policy rule to simplify the notation. It is
assumed that each packet will match the highest priority rule
according to the policy.

Actions depend on node type, whether it is just forwarding
(next location), a transformation (changing header values), or
applying QoS parameter (change PHB). For each node type,
the following subsections describe state transitions and how
the policy definition will affect changes at each state.

1) General router: Routing policies are described at each
location with destination prefixes and next hop information.
A general router does not change packet header fields, so in
the next state, information will be the same for all packets. A
rule matching “this” location will check the packet destination
prefix, Pkt.dst. If the destination matches, all Pkt fields are
transferred to the next state and the location of the next state
is changed to the next hop according to the policy.

(Loc = this) ∧ (Pkt.dst = P.prefix)

∧(Loc′ = P.next) ∧ (Pkt′ = Pkt)

Writing Loc = this is a way of writing an expression over the
variables of Loc that is only satisfied by the value of “this”.
For example, v2v1v0 = 6 is equivalent to the expression
v2v1v0. Also, Pkt′ = Pkt is a shorthand for the longer
expression that restricts all variables of the next state to be
equivalent to those of the current state. For example, X = Y ,
where X and Y are two 2-bit integers is identical to writing:
(x1 ⇔ y1) ∧ (x0 ⇔ y0)

2) Boundary router: Since those routers are responsible for
marking packets, the state will change the DSCP field of the
header. So, the transition to the next state will require changing
the location, and the DSCP.

(Loc = this) ∧ (Pkt = P.pkt)

∧(Loc′ = P.next) ∧ (Pkt′.dscp = P.dscp) (1)

In general, the device can decide which mark to assign to a
flow based on any field in the packet header, including the
previous mark or DSCP value (i.e., the condition P.pkt in the
above expression).

3) Internal DiffServ router: This network component is
different as it specifies PHB at each node. As proposed
in [6], actions controlling PHB might change from device
to device. Each policy is enforcing its own interpretation of
SLA parameters given local capabilities, or even hardware
constraints. When parameter value changes at one node for
a traffic flow, this means a new constraint has been added to
the treatment of this flow. The final PHB will be restricted
by the different specifications along the path. For example,
if audio streaming is given a bandwidth range of 20 − 40%
at one node, and another node is enforcing 30 − 50%, then
the overall path will have to enforce the overlapping range of
30 − 40%. This range, is the range of bandwidth in which
the audio stream can operate “safely”. In other words, if the
original audio stream was sent using, say, 35%, then all nodes
will work with conformance with the need of such stream.
In this case, when a packet makes a transition from Loc to
Loc′, PHB parameter values will be transformed reflecting



the more restrictive treatment of the two locations.
Each parameter type; boolean, quantitative and range, will

be transformed according to an aggregation function reflecting
the different behaviors of the parameter at successive hops.
The behavior of each parameter at Loc′ will be computed
from PHB specification at both Loc and Loc′, reflecting what
the final treatment will be after passing both states.

Quantitative transformation: PHBs parameters that re-
flect quantitative values (e.g., queue length, packet size, etc...)
are restricted by the minimum of all values involved in
computing an overall packet treatment. At a current state, s,
a quantitative parameter Q holds the aggregated value so far
from all previous states (network locations). The transition
from s to s′ will change the value of Q if the policy at the
new location is more restrictive. The transition takes the form:

(Loc = this) ∧ (Pkt = P.pkt)

∧(Loc′ = P.next) ∧ (Pkt′ = Pkt) ∧ (Q′ = min(Q,P.Q))

Range transformation: The final behavior of range pa-
rameters across different devices corresponds to the intersec-
tion of parameter values for nodes passed from source to
destination. To model single transition, range value R for
state s should be the combined overlapping range from all
previous states. For example, bandwidth is defined as a range
of values, and expressed as conjunctions to reflect possible
range decomposition. When packet moves from device to
device, s to s′, the aggregated range, R′, is computed from
the current aggregated range R and the range enforced by the
policy P.R. The equivalent transformation will take the form:

(Loc = this) ∧ (Pkt = P.pkt)∧

(Loc′ = P.next) ∧ (Pkt′ = Pkt) ∧ (R′ = R ∧ P.R))

Boolean transformation: The case of boolean variables
is simpler than quantitative and range, where parameter values
need to be the same for all nodes on the path from source to
destination. It can be viewed also as describing if a certain
condition exists or does not hold between states. In this case,
either all nodes will enforce the parameter (true), or some of
them do not care about this parameter (false). For example,
the transition should make sure that if the current state requires
priority to be enforced, all previous transitions must have asked
for priority. The aggregation will now translate to whether all
values are true along the path.

(Loc = this) ∧ (Pkt = P.pkt)∧

(Loc′ = P.next) ∧ (Pkt′ = Pkt) ∧ (B′ = B ∧ P.B)

III. QOS PROPERTY VERIFICATION

Property verification for QoS configuration aims to check
whether a specific SLA requested by customers are being
enforced at each router in DiffServ domain from source to
destination. This maps to querying the model for satisfying
certain properties. The overall SLA can be checked, or specific
questions regarding certain parameters can be asked.

The model regards a property as a boolean formula, and
the aim is to check if the formula is satisfied at a particular
state or a set of states. A property φ is a function expressed in
the model variables φ = π(Loc, Pkt, PHB). For checking
properties, the temporal aspect of the model needs to be

defined along with an initial set of states s0. The following
are the basic temporal operators in CTL (computational tree
logic) [5], defined for a property/formula φ and ψ:

• Xφ: φ holds in the next point of time.
• φUψ: φ has to hold until ψ becomes true.
• Fφ: φ will eventually be true.
• Gφ: φ has to hold forever (globally true).
In addition to the temporal operators, two quantifiers are

also defined:
• Aφ: φ holds for all possible computation paths (i.e., all

next hops satisfies φ).
• Eφ: there exists a computation path satisfying φ.
Complex properties can be expressed using temporal opera-

tors with quantifiers. For example, the model can check if the
bandwidth for traffic class EF is in the range 20− 40% by:

φ = (Pkt.DSCP = EF ) ∧ (PHB.bw ∈ [20, 40])

Given an initial state s0, the property can be checked at
all paths starting from s0. If the system requires that the
bandwidth range of 20− 40% should be satisfied at all nodes
serving flow EF , the CTL formula can be formed as AGφ.
This means all states that can be reached from s0 will have
a non-empty bandwidth intersection with 20 − 40%, hence
satisfy this property.

A more precise query would check if φ is satisfied from
source to destination. In this case, the initial state will describe
the source location with packet information s0 = (Loc = src).
Another property ψ can be defined as reaching the desired
destination, ψ = (Loc = dst). The overall CTL formula
checking whether traffic belonging to EF class will face
bandwidth 20− 40% from src to dst will be, φUψ.

In the following, different families of queries are shown. In
each category, one or more examples will be discussed.

a) SLA enforcement verification questions: To verify that
certain aspects of the SLA are honored by the policies in
place, the administrators have to check that certain categories
of flows are given some predefined levels of quality treatment.
Examples of this type of questions:

• No traffic from domain X (one of the ISP clients) should
receive bandwidth less than b Mbps or have packet size
restricted to less than s bytes.

• Voice traffic passing through our network should have
available bandwidth in the range [x, y] Kbps as long as
it is between two specific partner ISPs.
b) Administrative and debugging queries: This family of

queries are more concerned with a specific flow. For example:
• A specific server is complaining from a drop in video

quality because of excessive delay. Using a few test
clients, is there any intermediate hops that impose low
quality restrictions on its flows?

• There is a high bias in the quality of flows received
by a client depending on the server (and all servers are
known not to be overloaded). What is the range of PHB
parameters for web traffic reaching this specific client?
c) What-if scenarios and provisioning queries: These

queries are the most sophisticated and they use the unique
features in the proposed model. What-if scenarios are evalu-
ated starting by creating two identical versions of the model.
Then, one of the models are modified at one or more nodes by



replacing original state-state transitions with others that reflect
the proposed modifications to the network. Two identical
queries can then be executed over each of the models, and
the results can be analyzed to study the effect of the proposed
changes. The calculation steps are as follows:

1) Calculate original transition relation: T .
2) Create a copy of T : Tnew.
3) Remove changed devices (d ∈ D′):

Tnew = Tnew ∧ ¬
∨

d∈D′(loc = d.loc) where D′ is the
set of updated devices.

4) Add updated devices (d ∈ D′):
Tnew = Tnew ∨

∨
d∈D′ ζ(d)

5) Query comparison: Evaluate the same CTL/Boolean
expression (e.g., φ(.)) using both models: φ(T ) and
φ(Tnew), and compare the two results.

This process is efficiently implemented, and does not require
a rebuild of the system to adapt to the changes in few devices.
Examples include:

• If at a given node, the PHB parameters corresponding to
a specific class have changed to new values, what will
happen to the quality of a specific set of flows?

• What if device x has its QoS module turned off (i.e.,
changed into a regular router)? What are the implications
of this change on a specific set of flows or a domain?

IV. DISCUSSION AND IMPLEMENTATION ISSUES

In the model presentation, there were various aspects of the
system and its implementation that have been abstracted for
the sake of clarity. The following points are some of these
aspects that are needed to understand the practicality of the
system and the rigor behind its design.

A. Layer-by-layer verification:

The evaluation and property verification system was im-
plemented on top of ConfigChecker [3]. This system was
originally implemented for the purpose of analyzing reachabil-
ity and security policy consistency across devices. Therefore,
it is a legitimate concern that some of the results obtained
when investigating QoS properties are affected by reachability
or security misconfigurations that are not QoS in nature. To
separate the analysis of each layer, a “QoS-skip” variable is
added to the model. When this variable is true, QoS policies
are converted into a no-operation (NOP) device. In other
words, QoS markers and PHB parameters do not affect the
packets, and all packets pass through as if passing through a
repeater. This is implemented by modifying eqn. 1 to be:

(Loc = this) ∧ (Loc′ = P.next) ∧
[qosSkip ∨ ((Pkt = P.pkt) ∧ (Pkt′.dscp = P.dscp))]

Once the analysis of a complex network shows that the
network reachability requirements are intact, the “QoS-skip”
flag can be switched off and QoS-relevant queries can be
performed. Another apoproach is to build two versions of
the system: with and without the QoS layer. However, this
requires rebuilding the transition function, where the bulk of
the computation cost takes place.

Fig. 1. Capacity Model

B. Modeling link capacities:
Another limitation for the original ConfigChecker model is

that it did not include any notion of physical link capacities or
any other of their properties. Using the presented extensions,
it is possible to model any link as a strict traffic shaper that
enforces a bandwidth in the range [0, C) where C is the link
capacity. A connection between two regular routers will be
broken into two links with a QoS router in between (as shown
in figure 1. Its policy will simply be a single line stating that
for any packet, regardless of its properties and DSCP, the PHB
will be that BW ∈ [0, C].

To investigate the maximum possible bandwidth between
any two nodes in the network, one can execute this simple
query: (Loc = source)∧AF (Loc = dest). Finding the range
of BW for all satisfying assignments of the answer to the
query can be obtained efficiently using BDDs (i.e., existential
quantification to extract the BW variables, followed by a single
root-to-leaf traversal via the true branches).

C. Modeling markers and shapers:
In order to simplify implementation without loosing ex-

pressiveness, the QoS devices are designed as two successive
components: a marker (or DiffServ component) followed by a
generic router. Therefore, the QoS logic is separated from that
of traffic routing. This simplifies the expressions used to build
the transitions, and enables us to disable the QoS component
separately (i.e., “QoS-skip”). Also, it adds more control when
building what-if queries.

V. SYSTEM AND MODEL EVALUATION

A. Evaluation Methodology
1) Topology Generation: To evaluate domain level conflicts

(PDB policies), a large set of test network topologies is
needed. A network is modeled as a graph with machines as
vertices and links as edges. The following parameters are used
to control the generated configurations:

• Network size n: The number of nodes in a domain.
• Connectivity bias δ: The average degree per graph node

(used to estimate how many connections are needed
between graph nodes). The total numbers of edges will
be e = (n− 1)× δ/2

After generating graph nodes, e random edges are added.
To guarantee that the graph is connected, the connected
components of the graph is computed after adding the initial
edges. Random nodes are then selected from each component
and extra edges are added to connect the network clusters.
After generating the topology, policies are then added to each
node in the network.

2) Policy Generation: Test cases of policies were generated
based on the behavior of real policies analyzed in [7]. In most
enterprises (60%), the same combinations of traffic classes are
defined in all nodes in the network. For example, if real time
traffic is defined in one node, all other nodes must define a



Parameter Values
Network size n = 10− 10, 000
Connectivity δ = 2− 10
Node bias Bn = 0.1− 0.9
Parameter bias Bp = 0.1− 0.9

TABLE II
TOPOLOGY AND POLICY GENERATION OPTIONS.

rule for real time traffic. A very small percentage of domain
policies will have different classes at each node.

The generation parameters handle two option sets:
• Node bias Bn: This controls the fraction of the network

nodes that will have the same set of flow classes defined
in the policy. The observations of [7] are taken into
consideration when choosing this parameter. A random
variable controls the rest of the nodes. For a network of
size n, (n×Bn) nodes will have similar policies. Random
parameter values are generated for the remaining nodes.

• Parameter bias Bp: This controls the behavior of individ-
ual policies on each network node. Each PHB parameter
can take different values according to a generation bias.
The subset of nodes that have the same class combination
will have similar PHBs. Random variables are used to
generate PHB parameters for the remaining nodes.

For each traffic class, a policy rule is generated at each
node to specify all PHB parameters from table I. Table II
summarizes different generation parameters used in the eval-
uation. Both node and policy parameter biases will affect the
overall complexity. Diverse values for parameters might result
in more complicated expressions and added complexity to
BDD operations. On the other hand, any common terms in
the BDD tree will be shared between subexpressions.

B. Experimental Results
1) Query processing for property verification: In this

seciton, we focus on the performance of individual queries
after the system has been initialized. After checking end-to-
end reachability and making sure that routing is valid (analysis
can be found in [3]), QoS queries regarding certain PHB need
to be answered. Table III summarizes results for all policy pa-
rameters described in section II (table I). For different network
sizes, generic end-to-end queries on different parameters are
performed. The query specifies source and destination devices,
and checks a certain flow for specific desired PHB. The
average is computed over all source-destination pairs for each
network size. From the generation parameters, different nodes
in the same network might enforce similar or different policies
(i.e., node bias). For each parameter, similar or completely
different values might be applied (i.e., parameter bias).
From table III, the most complicated query processing time
was 0.09 msec for a network of size 10K nodes. It is also
evident that parameter type affects the overall trend. Quantita-
tive parameters need more processing time per query because
they involve more manipulation than usual bit operations
optimized by BDDs. The fact that min and max calculation
is embedded into state transition for those parameters makes
extra processing time unavoidable.

Individual end-to-end queries also depend on the number
of hops between source and destination. Once source and
destination are specified, the complex transition graph is
pruned to include only those relevant to the flow. Because

100 1K 2K 5K 10K
Quan 0.067 0.072 0.075 0.079 0.093
Range 0.049 0.052 0.054 0.057 0.067
Bool 0.041 0.046 0.048 0.052 0.061

TABLE III
PROCESSING TIME (milli sec) COMPARISON BASED ON PARAMETER TYPE
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Fig. 2. Bandwidth query average time versus number of hops

this is a symbolic reduction process, it is highly efficient and
does not require any exhaustive state traversal. Hence, the main
factor affecting query processing time is the path length from
source to destination. For each parameter query, the average
time is compared versus the number of hops on the path.

Queries involving all parameters are evaluated. Results are
shown here for bandwidth, delay and fairness as representative
for range, quantitative and boolean parameters respectively.
For different network sizes, 10−10K, number of hops is used
as the independent variable. The average time for evaluating
queries with source-destination pairs are calculated. Figures 2,
4 and 3 show the average time versus number of hops. The
figures are plotted with time scale of milli seconds. Standard
deviation is also depicted. The overall trend shows that longer
paths will take more time to be evaluated. On the other hand,
the maximum time for evaluation never exceeded 0.6 msec,
even for large networks. The standard deviation trend seems
to be consistent, with some extreme jumps. As the number
of hops on the path increases, the effect of small variations
between individual nodes becomes negligible with respect to
the average. For short paths, each node contributes more to
the final evaluation and time complexity.

Figure 5 compares the time needed to evaluate queries
involving different parameter types. Again, the same three
parameters are compared (bandwidth, delay and fairness). The
graph comparing individual parameters supports the summary
of table III, where quantitative parameters suffer the worst
time performance. This is attributed to the numerical value
comparisons to evaluate minimum and maximum.

2) Time and space complexity: Evaluating the space and
time complexity of the QoS model requires studying both
types of devices; boundary routers (markers) and DiffServ
routers (PHB enforcers/shapers). Building the transitions
emerging from QoS states (i.e., where QoS policy and pa-
rameters are being encoded) is the most expensive step in the
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Fig. 3. Delay query average time versus number of hops
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Fig. 4. Fairness query average time versus number of hops

overall modeling and verification framework. While the logic
in DiffServ routers is more complicated, the policy size at
each node is bounded by the different markers (i.e., different
ToS, CoS or DSCP values) that can be assigned. Therefore,
worst case time/space overhead can be guaranteed in terms
of the number of DiffServ nodes in the system. On the other
hand, boundary routes can have complex and lengthy policies
to assign marking values to different flows (which depends on
header field combinations). Therefore, the focus will be on the
space and time requirements to encode boundary routers.

In figure 6, the average time required to encode marking
policies of a specific size is shown. It is clear that the time
trend is linear in nature, which can be understood by studying
the logic by which the transition expression is built. For every
rule, a local expression is constructed, and then, the overlap
with previous rules is excluded by Boolean manipulation, and
so on with the rest of the policy. On the other hand, the
space requirement is shown to plateau after a certain level.
The reason behind this is the fact that BDD can share parts
of expressions that are common to more than one expression.
For example, if two CoS values have almost the same PHB,
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their expressions will be merged in memory saving valuable
space. The plateau level depends on the number of bits defined
in each field, and the number of PHB parameters used by the
implemented standard. The size is shown in terms of BDD
nodes (20 bytes each).

VI. RELATED WORK

End-to-end network policy modeling has been investigated
in different contexts, considering different configuration levels.
In [7], the analysis is performed in the context of class
of service configurations, particularly VPNs. The analysis
focused on modeling QoS policies to detect class of service
conflicts. The focus was mainly on maintaining the same
marking (i.e., class) for a certain traffic class on the end-to-
end path from source to destination. The work did not address
the actual configuration that each traffic class will face after
properly being marked with CoS. Our configuration model and
the general property verification presented can be considered
a super set of the MPLS VPN configuration analysis model.

Using binary decision diagrams (BDDs),[1], [2], to model
policies has attracted many researchers, especially for mod-
eling security policies. The main focus was on discovering
policy anomalies and rule conflicts. Firewall policy anomalies
were presented in [8], [9] where a classification of rules
conflicts is presented. The analysis was further extended
to include multiple firewalls and IPSec policies [10], [11].
In [12], BDDs were also used to model distributed firewalls
and discover policy anomalies, with improved complexity.

Other frameworks have been also proposed that used differ-
ent policy mappings. In [13], SAT solvers were used to model



firewalls. Configuration conflicts are mapped to model prop-
erties that can be checked by finding a satisfying assignment.
The main advantage of using BDD over SAT solvers is the
canonical representations of the policy expressions, resulting
in efficient comparison and aggregation.

General policy models that incorporate security and routing
information were addressed in [14], [3]. Both used formal
modeling to check network reachability and general config-
uration queries. Conflicts can be formed as queries presented
to the system. Both models use static analysis, and did not
consider QoS parameters.

Most work on QoS policy analysis focused on conflict
detection. A general classification of conflicts in policy-based
distributed system management was introduced in [15]. This
general taxonomy has been used in different domains to
help classify conflicts depending on the functionality and
parameters. Static conflict analysis in [16] was presented
and addressed domain specific conflicts. Dynamic conflicts
analysis, addressed in [17], handles conflicts arising from
current state of the system. Those conflicts occur due to either
inconsistencies between statically defined policies and system
state, or interactions between different modules in the system.
This part corresponds to our fuzzy analysis of conflicts. The
performance evaluation of both static and dynamic models was
discussed in the extended work [18]. In both approaches, event
calculus is used to represent policies. Global configuration
verification has not been addressed.

VII. CONCLUSION

In this work, a model is presented for the analysis and
verification of QoS policy configurations. The proposed model
is capable of incorporating flow QoS markers as well as
the actual PHB parameters used. Using model checking and
temporal logic queries (via CTL), it is shown that different
types of queries can be performed to help administrators
identify quality related problems as well as SLA violations.
The system also provides an efficient way to investigate what-
if scenarios without actual deployment or dry-runs of the
modified configurations.

The model is evaluated using a wide range of QoS configu-
rations, and network topology characteristics. The complexity
of building the model using BDD implementation of QoS
routers was analyzed. The system initialization time never
exceeded 0.4 seconds per device for policy sizes up to 10K
rules with memory requirements less than 140Kbyte for
the largest policy. Evaluating individual QoS queries was
also performed for source-destination pairs of large networks.
For any source-destination pair, evaluating the path quality
parameters was performed in less than 0.65ms in all cases.

A complete tool that can be deployed in a production
environment is not far from reach, but it still requires a
few components for commercial deployment. A module for
processing QoS policies in vendor-specific syntax is needed.
Designing a user interface that enables users not familiar
with CTL queries to use the system can be crucial for wider
deployment. From the model design side, it is possible to
add different variants of aggregation mechanisms for specific
PHB parameters to better imitate actual working environments.
Also, incorporating live feedback from network monitors to
modify available capacities and link status can be extremely
valuable for dynamic environments.
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