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1 Introduction

Graphical models have widespread uses in information extraction and natural language processing.
Recent improvements in approximate inference techniques [1, 2, 3, 4] have allowed exploration of
dense models over a large number of variables. These applications include coreference resolution [5,
6], relation extraction [7], and joint inference [8, 9, 10]. But as the graphs grow to web scale,
even these inference techniques become infeasible, motivating the need for scalable, parallelizable
solutions.

In this work, we distribute the MCMC-based MAP inference using the Map-Reduce framework [11].
The variables are assigned randomly to machines, which leads to some factors that neighbor vari-
ables on separate machines. Parallel MCMC-chains are initiated using proposal distributions that
only suggest local changes such that factors that lie across machines are not examined. After a fixed
number of samples on each machine, we redistribute the variables amongst the machines to enable
proposals across variables that were assigned to different machines.

To demonstrate the distribution strategy on a real-world information extraction application, we
model the task of cross-document coreference resolution. Given noun phrase mentions from a large
document corpus, the problem is to identify clusters of these mentions such that mentions in a cluster
refer to the same latent entity. Graphical model representations of this task have set-valued random
variables and factors between all pairs of mentions. Scalability results using a random redistribution
strategy show improved performance when increasing the number of machines. We also explore a
hierarchical representation of our model. Experiments show that the hierarchical model converges
much faster than the flat model, even though it contains many more latent random variables.

Related studies include Gonzalez et al. [12], where message passing is distributed by efficiently
splitting the graph to minimize communication. This method is not applicable when the graph
structure changes with every configuration, or the ground graph1 is fully connected. Furthermore,
set-valued variables are difficult to incorporate into message passing. Asuncion et al. [13] and
Smola and Narayanamurthy [14] distribute MCMC-based inference for topic models. Our approach
is similar, but we do not calculate probabilities (marginals). This allows us to specify non-random
redistribution and customized proposal functions, which can lead to faster convergence. Low et al.
[15] introduce the GraphLab library that distributes computation when specified on nodes and edges.
It is not straightforward to express our model as computations on nodes and edges because of set-
valued variables and hierarchical models. In comparison to the above approaches, we allow the most
flexibility in specifying structure, redistribution strategy, and the proposal function.

∗This work was done when the author was an intern at Google Research.
1In our work, as in much of the previous work [16, 4], the model is specified implicitly. The ground graph

is the result of instantiating the implicit specification fully into a possibly very large graph-structured model.
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2 Proposed Method

Undirected graphical models can be used to represent a probability distribution over output variables
Y given observed variables x. When represented as a factor graph, this distribution is given by
p(y|x) ∝ exp

∑
yc⊆y

ψc(yc), where y is an assignment to Y , yc is the neighborhood of factor c, and

ψc is the factor potential for the assignment yc. Note that the set of factors (i.e. the graph structure)
may be different for every assignment to Y . In most real-world applications, a small change to the
assignment y involves changes only to the local factors.

Given this representation of the distribution, we are interested in calculating the maximum a poste-
riori (MAP) configuration, i.e. configuration with the highest probability according to the model:
ŷ = arg max

y
p(y|x) = arg max

y
exp

∑
yc⊆y

ψc(yc).

2.1 MCMC-based MAP Inference

With the exception of some simple models, computing ŷ exactly is intractable due to the exponential
number of configurations. In such cases, MCMC-based sampling can be used to discover the MAP
configuration. Here a proposal function q is used to propose a small change y′ to the current config-
uration y. This jump is accepted with the following Metropolis-Hastings acceptance probability:

α(y, y′) = min

(
1,
(
p(y′)
p(y)

)1/t
q(y)
q(y′)

)
;

p(y′)
p(y)

= exp

∑
y′

c⊆y′

ψc(y′c)−
∑
yc⊆y

ψc(yc)

 (1)

where t is a temperature parameter. Note that if the difference between configurations y and y′ is
small, for most models the set of factors instantiated for the two configurations will have a high
overlap, i.e. only a few factors are required to compute Eq. 1.

MCMC chains efficiently explore the high-density regions of the probability distribution. By reduc-
ing the temperature, we can decrease the entropy of the distribution to encourage convergence to the
MAP configuration. This MAP inference technique offers several advantages – (a) we do not need
the full ground graph, as would be required for most message-passing-based techniques, (b) we do
not examine all the factors for a single configuration to evaluate a proposal but only the ones that
are not common to the two configurations, (c) inference can be stopped at any point to obtain the
current best configuration, which can be used to trade-off accuracy with time, and (d) there exist ef-
ficient training algorithms such as SampleRank [4, 17] that are used for parameter estimation during
inference.

2.2 Parallelizing MAP Inference

The key observation to enable distribution is that the acceptance probability computation for a jump
only examines a few factors that are not common to the previous and next configurations (Eq 1). If
jumps are proposed such that the factors used to evaluate them are mutually exclusive, then these
jumps can be proposed and evaluated simultaneously. Using this insight, we distribute variables
amongst multiple machines, and propose only those jumps that can be evaluated using factors present
on a single machine2. To enable exploration of the complete configuration space, rounds of sampling
are interleaved by redistribution stages, where the variables are randomly redistributed amongst the
workers. We use the Map-Reduce [11] framework as the underlying parallelization architecture,
where in the map stage each worker performs inference in parallel on its variables, and the reduce
stage redistributes the variables amongst the workers.

This approach to distribution is similar to inference with all variables on a single machine, but is
faster since it exploits independencies. By restricting the jumps as described above, the acceptance

2Note that this restriction does not require that all the neighbors of a variable v for the ground graph be on
the same machine as v; it only requires that the neighbors of v whose factor potentials are affected for a specific
change to v be present on the same machine.
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probability calculation is exact and the same as it is on a single machine. Partitioning the vari-
ables and proposing local jumps are restrictions to the single-machine proposal distribution, how-
ever redistribution stages ensure the equivalent Markov chains are still irreducible. Calculating the
forward-backward ratio is difficult and is required when estimating probabilities [13, 14]; however
we set it to 1.

To attain good mixing between the parallel MCMC chains, we use a random redistribution step. This
can result in slow convergence since unrelated variables may be assigned to the same machine. Since
the MAP inference does not rely on good mixing amongst the parallel chains, customized redistribu-
tion methods that utilize domain knowledge can be employed to speed-up convergence. Futhermore,
redistribution can also be encoded as additional latent variables in the model, an example of which
will be described in Section 3.2.

3 Cross-document Coreference

For evaluation on a real-world task, we consider the problem of cross-document coreference reso-
lution. This involves partitioning noun phrase mentions in a collection of documents into clusters
such that mentions within each cluster refer to the same underlying entity. Cross-doc coreference is
used in many downstream information extraction applications [18, 19]. Within-document corefer-
ence resolution is a closely related problem where the goal is to resolve noun phrases (and referring
expressions) within a document [20] and is not the focus of our work here.

Previous approaches to cross-document coreference have used clustering with a context-similarity
based distance function[21, 22, 23, 24, 25]. These approaches are greedy and differ in the choice
of the distance function and the clustering algorithm used. Rao et al. [26] have proposed an online
deterministic method that uses a stream of input mentions and assigns them to entities incrementally.
Daumé III and Marcu [27] proposed a generative approach to supervised clustering.

Representing the problem as an undirected graphical model provides a combination of advantages
not available in other approaches. First, most of the methods do not scale to the millions of men-
tions that are present in real-world applications. Approaches that use clustering are limited to using
pairwise distance functions for which additional supervision and features are difficult to incorporate.
Also, many of the approaches are greedy and do not revisit earlier decisions. We address these prob-
lems by applying our method of distributed inference to a graphical model, whose parameters can
be learned using supervised or semi-supervised techniques. However, in this work we only address
the problem of MAP inference, and leave learning for future work.

3.1 Pairwise Model

Our model for cross-document coreference contains mentions ( ~M ) and entities ( ~E) as random
variables, where each mention variable can take an entity as its value, and each entity takes a
set of mentions as its value. Each mention also has a set of features associated with the ob-
served text mention. The probability of a configuration (partitioning) ~E = ~e is defined by

p(~e) ∝ exp
{ ∑

mi∼mj

ψa(mi,mj)−
∑

mi�mj

ψr(mi,mj)
}

, where ψa represent affinity between

mentions that are coreferent according to ~e, while ψr represents repulsion between mentions that
are not coreferent. Thus different factors are instantiated for different configurations. We use cosine
similarity of mention context pairs (φij) as the factor potentials such that ψa(mi,mj) = φij− b and
ψr(mi,mj) = φij − b, where b is a bias factor.

For MAP inference on a single machine, we start with the initial configuration of all singleton
entities. The proposal function moves a random mention to a random entity. To score the proposal,
only the factors that neighbor mentions in the previous and current entity need to be scored. In the
distributed inference case, we can exploit this to ensure that entities are not divided across machines,
and the proposals move mentions between entities on the same machine.
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(a) Varying the Number of Machines (b) Hierarchical Models (c) Large-Scale Inference

Figure 1: Distributed Inference for Cross-Document Coreference: (a) Person-X Evaluation for
the pairwise model on 25k mentions, (b) Hierarchical models for Person-X on 50 machines, and (c)
Number of predicted entities for 1 million mentions

3.2 Hierarchical Model

When applying cross-document coreference to a real-world task, the number of mentions and the
entities is typically very large, which can lead to inefficiencies that slow inference. We mention two
of the challenges, and attempt to address them by adding hierarchies to the model.

Consider the task of proposing moves. Given a large number of mentions and entities, the probability
of randomly picking a mention and moving it to its correct entity is very small. If such a move is
made, ideally we would also like to move a group of similar mentions simultaneously, instead of
randomly discovering these moves. We introduce latent sub-entity variables that represents groups
of similar mentions within an entity, where the similarity is defined by the model. For inference, we
have stages of sampling sub-entities (moving individual mentions) interleaved with stages of entity
sampling (moving sub-entities).

Another problem with the distributed pairwise model is that random redistribution is wasteful. For
a large number of entities and machines, the probability that similar entities will be assigned to the
same machine is very small. To alleviate this problem, we introduce super-entities that represent
multiple similar entities. During redistribution, we ensure all entities in the same super-entity are as-
signed to the same machine. As in sub-entities above, inference switches between regular sampling
of entities and sampling of super-entities.

Note that each of the individual levels of the hierarchy are similar to our original model, e.g. men-
tions/subentities have the same structure as the entities/super-entities, and are modeled using similar
factors. To represent the “context” of a sub-entity we take the union of the bag-of-words of the
constituent mention contexts. Similarly, we take the union of sub-entity contexts to represent the
context of an entity. The factors are instantiated same as in Sec 3.1 except that we change the bias
factor b for each level (increasing it for sub-entities, and decreasing it for super-entities).

Since these two levels of hierarchy are independent of each other, we can combine them into a single
hierarchical model that contains both sub- and super-entities. The inference for this model takes a
round-robin approach by fixing two of the levels of the hierarchy and sampling the third, cycling
through the three levels.

4 Experiments

There is a severe lack of labeled corpora for cross-document coreference due to the effort required
for humans to evaluate the coreference decisions. Related approaches have used automated Person-
X evaluation [23], where unique person-name strings are treated as the true entity labels for the
mentions. Each mention string is then replaced with an “X” before being sent to the coreference
resolution system. We use this evaluation by taking 25k person-name mentions from the New York
Times corpus [28] with 50 unique mention strings. For inference, we use rounds of 1 million samples
each, followed by random redistribution of entities in the flat pairwise model, and super-entities in
the hierarchical model. Results are averaged over five runs.
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Fig 1a shows F1 accuracy according to two metrics (B3 and Pairwise) compared to relative wall
clock running time for the pairwise model. Performance improves as additional machines are added,
but larger number of machines lead to diminishing returns for this small dataset. The hierarchical
model is evaluated in Fig 1b against the pairwise model from 1a. We see that the individual hierar-
chical models perform better than the pairwise model; moreover, the combined model outperforms
both of the individual hierarchical models.

To explore the application of the proposed approach to a larger dataset, we use the million most
frequently occurring person-name strings in the New York Times. Given the nature of such data,
we expect the number of true entities to be a few orders of magnitude smaller than 106. Since our
model is initialized such that each mention forms its own cluster, the number of predicted entities
by a model can be used as a measure of its rate of convergence. The plot in Fig 1c shows the
number of predicted entities against the running time (both in log-scale). Note that the initial number
of predicted entities is 106. It can be seen that using more machines leads to improved rate of
convergence, demonstrating utility of our proposed approach.
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