Ensembles of Kernel Predictors
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Kernel methods are used in a variety of applications in ma
chine learning [22]. Positive definite (PDS) kernels previd
a flexible method for implicitly defining features in a high-
dimensional space where they represent an inner produ(ﬁﬂ
They can be combined with large-margin maximization al-
gorithms such as support vector machines (SVMs) [8] t
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Abstract

This paper examines the problem of learning
with a finite and possibly large set of base
kernels. It presents a theoretical and empirical
analysis of an approach addressing this problem
based on ensembles of kernel predictors. This
includes novel theoretical guarantees based on
the Rademacher complexity of the corresponding
hypothesis sets, the introduction and analysis of
a learning algorithm based on these hypothesis
sets, and a series of experiments using ensem-
bles of kernel predictors with several data sets.
Both convex combinations of kernel-based hy-
potheses and more genetaj-regularized non-
negative combinations are analyzed. These the-
oretical, algorithmic, and empirical results are
compared with those achieved by using learning
kernel techniques, which can be viewed as an-
other approach for solving the same problem.
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sively investigated over the last decade by both algorithmi
and theoretical studies [16, 2, 1, 23, 17, 26, 18, 11, 4, 19,
25, 6]. This consists of using training data to select a Herne
out of the family of convex combinations pfhase kernels

and to learn a predictor based on the kernel selected, these
two tasks being performed either in a single stage by solv-
ing one optimization as in most studies such as [16], or in
subsequent stages as in a recent technique described by [7].

The most frequently used framework for this approach is
that of Lanckriet et al. [16], which is both natural and el-
egant. But, experimental results reported for this method
have not shown a significant improvement over the straight-
forward baseline of training with a uniform combination
of base kernels. The more recent two-stage technique for
learning kernels presented by Cortes et al. [7] is shown,
however, to achieve a better performance than the uniform
combination baseline across multiple datasets. The algo-
rithm consists of first learning a non-negative combination
of the base kernels using a notion of centered alignment
with the target label kernel, and then of using that combined
kernel with a kernel-based algorithm to select a hypothesis
Figure 1 illustrates these two learning kernel techniques.

An alternative approach explored by this paper consists of
using data to learn a predictor for each base kernel and
combine these predictors to define a single predictor, these
two tasks being performed in a single stage or in two subse-
uent stages (see Figure 1). This approach is distinct from
e learning kernel one since it does not seek to learn a ker-
nel, however its high-level objective is to address the same
problem ). The predictors returned by this approach are

ensembles of kernel predictors (EKPs) or of kernel-based

The choice of the kernel is critical to the success of these alhypotheses.

gorithms, thus committing to a single kernel could be sub
optimal. It could be advantageous instead to specify a finit
and possibly large set gf base kernels. This leads to the

following general problem central to this workP) how
can we best learn an accurate predictor when ugibgse
kernels?

One approach to this problem is known as thateaf n-
ing kernels or multiple kernel learning and has been exten- comparison of its complexity with that of learning kernels,

Note that each of the hypotheses combined belongs to a
Sifferent set, the reproducing kernel Hilbert space (RKHS)
associated to a different kernel. As we shall see later, the
hypothesis family of EKPs can contain the one used by
learning kernel techniques based on convex combinations
of p base kernels. This raises the question of guarantees
for learning with the family of hypotheses of EKPs and the



P hypotheses to 1 hypothesis would then be in terms of the complexity of the union

(Uy_,Hy). Instead, our analysis provides finer learning
guarantees in terms of the characteristics of the base ker-
nels K, defining the Hilbert spaced; and the number of
kernelsp, by specifically studying convex regularized non-
negative combinations of hypotheses from different spaces
Furthermore, our analysis is given for differdnt regular-
izations, while the existing bounds are valid only foy.
Finally, note that the application of a boosting algorithm
in the second scenario would be very costly since it would
require training kernel-based algorithms at each round.

>

1kernel to 1 hypothesis

p base kernels to p hypotheses

p base kernels to 1 kernel

Figure 1: lllustration of different approaches for solving

problem (P): learning kernel and ensemble techniques. ) )
The path in blue represents the subsequent stages of ti&eviouswork on ensembles of kernel predictors  En-

two-stage learning kernel algorithm of [7]. Similarly, the Sembles of kernel-based hypotheses have been considered
path in red represents the two-stage ensemble techniqife @ number of different contexts and applications of Wh|ch
studied here. The standard one-stage technique for lgarnifVé Name a few. Ideas from standard ensemble techniques
kernel [16] is represented by the diagonal in light blue anc®f Pagging and boosting were used by Kim et al. and other

similarly the single-stage EKP technique is indicated by a@uthors [12, 13, 20] to assign weights to SVM hypothe-
diagonal in pink. ses viewed as base learners, with a linear or non-linear

step such as majority vote, least squared error weighting,

or a “double-layer hierarchical” method to combine their
which we shall address later. scores. The authors seem to use the same kernel for train-

ing each SVM. SVM ensembles have also been explored

Relationship with standard ensemble methods We  to address the problem of training with datasets containing
briefly discuss the connection of the setting examined with rare class by repeating the rare training instances across
that of standard ensemble methods such as boosting. In offt€ training sets for individual base classifiers [24]. Hina
setting, an ensemble method is applied to theypothe- learning ensembles with a coupled method by sharing ad-
seshy, k € [1,p], obtained via training in the first stage. ditional parameters between the trained models is studied

The ensemble method we use in our experimenfaimr by [10] On the theoretical side, leave-one-out and cross-
Ls-regularized linear SVM for a classification task, LassoValidation bounds were given for kernel-based ensembles
or ridge regression for a regression task (augmented witRY [9], limited to fixed (not learned) combination weights.

a non-negativity constraint) which enable us to control theA recent paper of Koltchinskii and Yuan [15] also studies
norm of the vector of ensemble coefficients with differentensembles of kernel ensembles, but analyzes a rather dif-
L,-norms. Of course, for a classification task, other ensemterent form of regularization and deals exclusively with a
ble methods such as boosting could be used instead to corfne-stage algorithm.

bine the hypothesels, (without regularization). But, we

are not advocating a specific ensemble technique and o@ur contribution We present both a theoretical and an
analysis is general. As we shall see, the theory we presempirical analysis of EKPs and compare them with several
applies regardless of the specific ensemble method used methods for learning kernels, including those of [16] and
the second stage. [7]. We give novel and tight bounds on the Rademacher

Let us point out, however, that the existing margin theoryComplexlty of the hypothesis sets corresponding to EKPs

available for ensemble methods [14, 5] will not be very in- and compare them with similar recent bounds given by [6]

L X o ' for learning kernels. We show in particular that, while the
formative in our setting. The existing theory applies to-con : . .
oo . . hypothesis set for EKPs contains that of learning kernels,
vex combinations of a single hypothesis &&tThus, here, remarkablv. forL: reqularization. the complexity bound
it could apply in two ways: (1) by considering the case Y, 1 Teg ' plexity

L= . for EKPs coincides with the one for learning kernels and
where an ensemble method such as boosting is applied fus provides favorable guarantees. We also introduce a
the finite set of base classifief§ = {h1,...,h,}; or (2) b 9 '

by studying the case whedd — U?__ H, is the union of natural one-stage learning algorithm for EKPs, analyze its

the RKHSsH, associated to each base kerhgl. In the relationship with the two-stage EKP algorithm, and show

former case, the learning guarantees for the ensemble clalg close relationship with the algorithm of [16].

sifier would depend on the complexity of the finite 88bf ~ Our empirical results include a series of experiments with
hypotheses, which would be of limited interest since thisEKPs based on usinf; and L5 regularization in the sec-
would not directly include any information about the ker- ond stage for both classification and regression, and a com-
nels used and since in our settihg . . ., h, are notknown parison with several algorithms for learning kernels. They
in advance. In the latter case, the generalization bounddemonstrate, in particular, that EKPs achieve a perfor-



mance superior to that of learning with a uniform combi- Our experiments are carried out with &p regularization,
nation of base kernels and that they also typically surpassorresponding to convex combinations of kernels=(1),
the one-stage learning kernel algorithm of [16]. EKPs alsoor L, regularization {=2).

appear to be competitive against the two-stage kernelHear

ing method of [7] that they outperform in several tasks, 'Note that it might be possible to define a tighter hypothesis

set describing our learning scenario, in which the weights
The remainder of this paper is organized as follows. Theu are further restricted in terms of the first stage solutions
next section (Section 2) defines the learning scenario foh;. Since our analysis is meant to be general though and
EKPs and the corresponding hypothesis sets. Section \&lid for any learning algorithms used in the two stages, it
presents the results of our theoretical analysis basedeon this not clear how this could be achieved. But, in any case,
Rademacher complexity of these hypothesis sets. In Se@s we shall see in Section 3.1, already with our definition,
tion 4, we introduce and discuss a one-stage algorithm fothe learning guarantees for EKPs match the tight learn-
learning EKPs. Section 5 reports the results of our experiing bounds proven for the learning kernel scenario, which
ments comparing with several algorithms for learning ker-demonstrates favorable guarantees for EKPs.

nels and EKPs on a number of data sets.

3 Theoretical Analysis
2 Learning Scenario y

This section describes the standard scenario for learming aTO _analyze the complex_lty of the hypotheS|_s faml_hgs Just
defined, we bound, for different valuesgftheir empirical

ensemble of kernel-based hypotheses and introduces muH‘ademacher complexi@is(gq) for an arbitrary samplé

: . \ g
i(;ftlt];esn(E)it?g(;r;]giedtweo;zterliesctg)gjV\v/i\/t;(ieFi);gc%}e of sizem. This immediately yields generalization bounds
INPUL SPAce ¢ Y put Space, o ’ for EKPs, in particular a margin bound in classification of
in classification an@’ C R in regression.

the form [14, 5]:
Let K}, with k € [1,p] bep>1 PDS kernels. We shall de-
note byH x the reproducing kernel Hilbert space (RKHS) R 9
associated to a PDS kern&l, and by|| - ||z, the corre- Vh e &L R(h) < Ry(h) + =Rs(E]) +3
sponding norm in that space. In the absence of ambiguity, P
to simplify the notation, we writél;, instead offl ., . In the
first stage of the ensemble settipdyypotheses,, ..., h,
are obtained by training a kernel-based algorithm usin
the same sampl&= ((z1,v1),-- -, (Tm, Ym)) € (X xY)™
with each of these kernels. This is typically done us-
ing an algorithm based on an optimization of the form
hi, = argming ey Aillhlg, + doiey L(h(z:), y:), where
L: Y x Y — Ris aloss function convex in its first argu- For a sampleS = (x4, . .., x,,), the empirical Rademacher

ment and whergy;, > 0 is a regularization parameter. In our complexity of a family of functiond? is defined by
experiments, we use support vector machines (SVMs) [8]

in classification tasks and kernel ridge regression (KRR)
[21] in regression tasks. These correspond respectively to
the hinge loss defined by(y, y') =max(1—yy’, 0) and the
square loss defined by(y, ') = (v’ —y)?. Since each base o
hypothesish; is learned using a different kernél,, the ~ Where the expectation is taken ower= (o1, .. -’C’ﬂ?)T
regularization parametey, obtained by cross-validationis With oi € {—1,+1} independent uniform random variables.
different in each optimization. Equivalently, each base hy FOr any kermnelfunctiori’, we denote b¥ = [K (z;, z;)] €

pothesishy, is selected from a sdth € Hy: ||h|m, < Ax} R™*™ jts kernel matrix for the samplg. The following
with a distinctA; > 0. proposition gives the general form of the Rademacher com-

plexity of the hypothesis s&l.
In the second stage, a possibly separate training sample is . .

used to learn a non-negative linear combination of these hyFroposition 1. Let ¢,r > 1 with ¢ + & =
pothesesy ?_, juzhy, with an L, regularization;u e A, 1. For any sample S of sze m, the empirical
with A, ={p: p>0AY?_ uf=1}. Thus, the hypoth- Rademacher comglexny of the hypothesis set &7 can
esis set corresponding to such ensembles has the followirtee expressed as Rs(£2) = + E, [||ve -] with vo =

general form forL, regularization: (Mo Kio,..., Ao T K,o)T.

P
sgz{ S it el < Aiok € [1,p], g € A,
k=1

log
2m '

SN

wherep >0 is the marging >0 the confidence leveR(h)

he generalization error df, andf%p(h) the fraction of the
raining points with margin less than(i.e. y;h(z;) < p).
Our proof techniques build on those used by [6] to derive
bounds for learning kernels, with which we compare those
we obtain for EKPs.

=)

1 m
s(H) = B[ s ;mw»],

}' @) Proof. By definition of the empirical Rademacher com-



plexity, we can write
m

[sop 3°
he&p i=1

1
—E
m o

lE{

m o

Re(£9) crl-h(:ci)}

sup Zaz Z,ukhk (w4 ]

HEA G, h €M, ;7
1Rk [, <Ak

For any hy, € Hy, by the reproducing property, for
all z € X, hk(:Z?) = <hk,Kk(:Z?,-)>. Let Hkﬂ =
span({Ky(z,-): « € S}), then, forx € S, hi(z)
(hk,, Ki(z,-)), wherehy, | is the orthogonal projection
of hy, overHy, s. Thus, there existy; € R,i€[1,m], such
thathy, | = > | axiKi(2i,-). Let oy, denote the vector
(g1, .-, akm)—r, if HthHk <Ay, then

ap Koy, = |[hy 17, < hellf, < AR

Conversely, anp " a Ky (5, -) with o] Ky, < A2
is the projection of somé,, € Hj with [[hg[lf, < A7.
Thus, we can write

%S(Eg) = %]; [ :élg Z'“k Z ook Ky :vz,:vj)]
akTKkaquAz nI=t
1 p
=—E [ sup Z,ukaTK;gak}.
Mot wed, T

Fix p. Since the terms iy, are not restricted by any

shared constraints, they can be optimized independeiatly vi

O'TKk(Xk = Ak\/ tJ'TI(kO'7

max

where we used the fact that by the Cauchy-Schwarz in-

equality the maximum is reached fB'/20 andK'/2ax;,
collinear. Thus, by the definition of vectet,, we are left
with

1 o
Rs(Ef) = —E | sup ZMkAk o'Ko
Mo tued 5
1
= B swp uvo| = —E[|[v, ]
ma HEA, 7

where the final equality follows from the definition of the
dual norm? O

3.1 Rademacher complexity of L;-regularized EKPs

Theorem 1. For any sample S of size m, the empirical
Rademacher complexity of the hypothesis set 6; can be
bounded as follows for all integer » > 1,

~

Rs(E,)

nor|lval-
m

< ;

INote that this proposition differs from the one given by [6]
for learning kernels wheré =1 and the term/||u. || appears in
place of||v ||, withu, = (¢ "Ki0o,...,0 ' K,o)".

where va = (Af Tr[Ky],..., A2 Tr[K,]) " and ny = 32
Let A, =maxgepr p) Ak Iffurtherp>1ande(x gc)<R2
for all ze X and k€1, p], then

noe[log p| A2 R?
e

Proof. By Proposition 1m97i5(51}) =

max A/ UTKkU]

Eo [[Vello], thus

mRs(E)) =B

ke[t,p]
=E [ max A20'TK1€0'} =E {\/ ||V'HOO},
ke[l,p] 4
with v/ = (Afo "Kyo,...,A20 "K,0)". Since for any

r 21 v

< ||v'|l.., using Jensen’s inequality,
P

[[x0
<[y piutem]]

The first result then follows the bourtt}, [(o "Ko)"] <

(nor Tr[K])" which holds by Lemma 1 of [6]. Now, if
Ky (z,z) <R*forall z € X andk € [1, p], Tr[Ky] < mR?
forall k€[1,p] and

mis(e}) < B[VIVT] - to Kio)'] 7]

P

Ivall-= (D_(AR

k=1

YT <p " A2mR?,

Thus, by Theorem 1, for any integer 1, the Rademacher
complexity can be bounded as follows

-~ 1 1 r %AzRQ
Rs(E,) < - [norp/"AZmR?] = \/ %-

The result follows the fact that for> 1 r — p'/"r reaches
its minimum atro =log p. O

We compare this bound with a similar bound for the hy-
pothesis set based on convex combinations of base kernels
used for learning kernels [6], foY; =...=A,;:

P
={heHk: K=" mKi,pc Ay |hlu, <A}
k=1

Remarkably, the theorem shows that the bound on the em-
pirical Rademacher complexity of the hypothesis set for
EKPs coincides with the one foks(H, ). It suggests that
learning Withf,'; does not increase the risk of overfitting
with respect to learning witiZ!, while offering the op-
portunity for a smaller empirical error. The theorem also
shows that the bound we gave f8 (€, ) is tight sincet)

containsH,, and since the bound f@ARS(H;) given by [6]
was shown to be tight. The next section examines different
L, regularizations.



3.2 Rademacher complexity of L,-regularized EKPs

Theorem 2. Let ¢,r > 1 with 141 =1 and assume that r
isan integer. Then, for any sample S of size m, the empiri-
cal Rademacher complexity of the hypothesis set £ can be
bounded as follows:

ﬁwmsﬂﬂmh
whereu=(A;/Tr JAp/Tr[K andno_—

Let A, =maxye(1, Ak Iffurtherp>1ande(x x)<R2
forall xeX andke[l pl, then

2
S norpr A2 R?
Rg(EI) < | ——F—.
s( p) - \/ m

Proof. By Proposition 1mi)7{(51§1) = Eo[||Vellr]-
this identity and Jensen’s inequality gives:

Using

P

~B[(y

s(i(gm

By the boundE, [(¢'Ko)"] < (nor Tr[K])", which
holds by Lemma 1 of [6],

TK O’ T/Q) 1/T:|

JTKkJ)T])l/Q)l/T.

P

(Z (E [(AiUTKW)TDl/z)l/T

k=1
- Ve \/nor
< (Y tora? TR ) = YR
k=1

This proves the first statement.
ment, when Tr[K;] < mR? for aII k, |ul, =

(S0, A} Te[K,]7/2) " < (p* A2mR?) . Thus, in view
of the first result, the following holds

5{5(55) < T7ZLOT||U|‘T < %((p%AszQ)r/Q) 1/r

2
/ rAZR2
_ ToTp * ) [
m

Here, forA; = ... = A,,

4 Single-Stage Learning Algorithm

This section introduces and discusses a single-stage learn
ing algorithm for EKPs, which turns out to be closely re-
lated to a standard algorithm for learning kernels. The-natu
ral framework for learning EKPs consists of the two stages
detailed in Section 2 whegehypotheses,, are learned us-

ing different kernels in the first stage and a mixture weight
w is learned in the second stage to combine them linearly.

Alternatively, one can consider, as for learning kerneg,[1

a single-stage learning algorithm for EKPs. For a fixed
e A, defineH,, by H,, = {>7_, pnhi: by €Hy k€
[1,p]}. A hypothesish may admit different expansions
S b _. wxhy (even for a fixedu), thus we denote by,

the multiset of all hypotheses with their different expan-
sions and denote by, .. ., h,, the corresponding base hy-
potheses. A natural algorithm for a single-stage ensemble
learning is thus one which penalizes the empirical loss of
the final hypothesié = >"7_, p1xhi(z), while controlling

the norm of each base hypothesjs The following is the
corresponding optimization problem:

m
min min L(h(z:), i)
WEAG heH,,

subject to}| || < Ax, k € [1, p].

Introducing Lagrange variableg, > 0, k € [1, p|, this can
be equivalently written as

min min ZAthkHKk + ZL (2)

HELs heH,u | =

For the second staterelationship with two-stage algorithm. Note that, in

the case=1, by the convexity of the loss function with re-
spect toits firstargument, for ang [1, m], L(h(x;), yi) <
>or_y e L(hi (i), y;). If we replace the empirical loss in
(2) with this upper bound, we obtain:

min min Z)\thkHKk —i—ZukZL hi(x:), yi)-

BEA; he?—(“

In this optimization, for a fixeql, the terms depending on

the bound on the Rademacher €achk € [1, p] are decoupled and can be optimized inde-

complexity is Iess favorable than the one for learning kerfPendently. Thus, proceeding in this way precisely coin-

nels with the similar family:

P
K#:Z /LkKka HEAqv Hh’HHK SA*}
k=1

Hl={h e Hg:

The bound given by [6] fofRs(H,!) is smaller exactly by
a factor ofp!/(?"), Thus, as an example, here, s reg-

cides with the two-stage ensemble learning algorithm as
described in Section 2.

Relationship with one-stage learning kernel algorithm.
The main algorithmic framework for learning kernels in a
single-stage is based on the following optimization prob-
lem:

ularization, the guarantee for learning with EKPs is less

favorable by a factor of/p, which, for largep, can be sig-
nificant.

Al
Joip hgnn 7%,

+ > L(h(xi),yi), (3
i=1



whereHp, is the RKHS associated to the PDS kernel K="} _, K,. Thus,

K, =>7%_, mKy, A > 0 is a regularization parameter, )
andg =1 [16] or ¢ = 2. We shall compare the algorithms ) "
the ot proat. min SNl + 3 EinGea) 00
H k=1 i

based on the optimizations (2) and (3). Our proof will make

use of the following general lemma.

Lemmal. Let K beaPDSkernel. For any A> 0, Hx =

H and () s e =5 () oo inparticular || -|[3 = |- 1%

Proof. It is clear thatH x = Hy since elements dfly x
can be obtained frorfill i bijectively by multiplication by
A. Now, for anyh € Hyx = Hg, by the reproducing
property, for allz € X,

h(z) =
h(z) =

<h’ K(.I‘, )>K

and (hy AK (z,-)) g = AN (b, K (2,7)) y ¢ -
Matching these equalities shows that for all,
(h, K(x,-)) x = A(h,K(x,))\g- Thus, for allh’ =
Dier @il (i, ), (W) e = A ey i (b, K (2,0)) g =
A(h,h'), . This shows that(-,-),, = A (), and
concludes the proof of the lemma. O

Proposition 2. For A\, = Ay, for all & € [1,p], the op-
timization problem for learning EKPs (2) and the one for
learning kernels (3) are equivalent.

Proof. Fix pp € A,.

mm Zx\k ‘hk”Kk —|—ZL

“k 1 p i=1
= min min Z)\ h }—i—ZL
o, pin { kllhell%,
hy €Hy,

A m
A ;{Zuilhklik}r;uh(w

= min min
k=1
h/ EHk

(replacinguy by, with k)

p m
= min A min { —h/2}+ L(h(x
g (3Ll }+ 3 s
h/EHk N

(assumption on\s)

:min)\ mln {ZH kHK,}—i—ZL
heH,  h= n\ =
h/EHK/
(Lemma 1)

with K;c = ,LLkKk.
p.353 [3)), if h ="} _, hy, with hy, € H,, thenh € Hy

andming_sy g g ciry, {54 el } = % with

By a theorem of Aronszajn (Theorem

= h L(h(z;), yi
= min )| |\K+; (2:),51)-
Taking the minimum ovep € A, yields the statement of
the proposition. O

Thus, under the assumptions of the proposition, the one-
stage algorithm for EKPs returns exactly the same solu-
tion as the one for learning kernels. A similar result was
given by [15] for a Lasso-type regularization using a lemma
of [18]. In general, however, this one-stage algorithm for
EKPs is not practical for large valuesps§ince the number

of parameters,, to determine simultaneously using cross-
validation becomes too large. In view of this drawback, we
did not use this algorithm in our experiments.

5 Experiments

We did a series of experiments with EKPs and compared
their performance with that of several existing learning ke
nel methods across several datasets from the UCI, UCSD-
MKL and Delve repositories for both the classification and
the regression setting.

We experimented both with, -regularized ensembles (de-
notedL 1-ens) andL,-regularized ensemblek 2-ens). For

the first stage, the base hypotheses were obtained by using
SVMs for classification or KRR for regression. In the sec-
ond stage, forl-regularized ensembled;;-regularized
SVM was used for classification, Lasso in regression. In
the case of.; regularization, standard SVM and KRR were
used in the second stage. In all cases for the second stage,
the primal version of the problem was solved with a lin-
ear kernel over the predictions of the hypotheses of the first
stage and is augmented with an explicit constrairt 0.

The ensemble performance was compared to that of the
single combination kernel selected by the following algo-
rithms, used in conjunction with SVM or KRR.

unif: kernel-based algorithm with a uniform kernel combi-
; A
nation,K,, = >3 Ky = 2 377 Ki.

os-svm: one-stage kernel learning method that selects an
Ly-regularized non-negative weighted kernel combination
for SVM [16]. The following is the corresponding opti-
mization problem:

minmax 2a'1-a'Y'K,Ya
173 (o7

subjecttoy > 0, Tr[K,] < A,a'y =0,0<a<C.
os-krr: one-stage kernel learning method that selects an

Lo-regularized non-negative weighted kernel combination



CLASSIFICATION

Y1 Vpr D N unif 0s-svm align alignf L1l-ens L2-ens

G —4,3,8 | 1000 |25.94+1.8{26.0+2.6 | 25.842.9|24.7+2.1|25.4+1.5|25.3+1.4
PA -+, 10 694 | 8.9+£2.6 | 8.5+2.7 | 84+2.8 | 9.7+£1.9 | 7.1+£3.0 | 7.2+3.0
PB -+, 10 694 | 10.0+1.7| 9.3+2.4 | 94+1.9 | 9.3+1.8 | 9.7+2.5 | 8.1+1.5
SM | =12, —7,6 | 1000 | 18.7+£2.8 | 20.9+2.8 | 18.5+2.3 | 18.7+2.5 | 15.4+1.3 | 15.7+1.7
SM | —12,—7,6 {2000 | 15.7+2.8 | 18.4+2.6 | 16.1+3.0 | 16.0+1.2 | 13.7+1.1 | 13.8+1.0
SM | =12, —7,6 | 4601 | 12.3+£0.9 | 13.94£0.9 | 12.4+0.9 | 13.1+£1.0 | 9.4£0.5 | 9.8+0.6

REGRESSION

Y1, Y, 0| N unif os-krr align alignf L1l-ens L2-ens
I | —3,3,7] 351 |.467+.085 | .457+.085 | .467+.093 | .446+.093 | .4374.086 | .433+.084
K| —3,3,7]1000 | .138£.005 | .137£.005 | .136£.005 | .129+.01 | .1204.005 | .1204.005

Table 1: Performance of several kernel combination algorit across both regression and classification datasetaager
(G), protein fold class-7 vs. all (PA) and class-16 vs. aB\Bpambase (SM), ionosphere (I) and kinematics (K). Ayera
misclassification error is reported for classification,rage RMSE for regression, and in both cases one standaratidevi
as measured across 5 trials.

for KRR. The following is the corresponding optimization on a validation set. The regularization parameter of KRR

problem: (\) or SVM (C) is held constant since it is effectively only

, T . T the ratioA /A or A/C that determines the solution.

min max — Ao a—a Kya+2a'y
(a4

IIHHHE<A The average error and standard deviation reported is for 5-

fold cross validation using a total @f data-points, where
align: two-stage L;-regularized alignment-based tech- three folds are used for training, one fold for validatiomja

nique presented by [7] which weights each base kerneP€ f_old for measuring the test error. That is, the trqir)ing

_ ) (Kryy ™) set sizem = 2N. For the two stage methods, the training
proportionally to the alignmenty, oc g ==, Where  get js further split into two independent training sets. The
(-,")p, denotes the Frobenius product, of the centeredirst one is used to train the base hypotheses and the second
kernel matrixKy and the kernel matrix of the training one to learn the mixture weights. The ratio of the split,
labels yy ", resulting in a combination kernéK,, =  chosen from the sdtl0,/90, 20/80, .. ., 90/10}, is decided

> h—1 i Ky with 3750 iy, < A. by the best average performance on the validation set.

alignf: another two-stagé-regularized technique of [7], Table 1 shows that, in several datasets, the performance of
jointly maximizing the alignment of the kernel matrix with the EKP algorithms is superior to that of the uniform kernel
the target labels kernel taking in to account the correfatio haselineunif, which has proven to be difficult to improve
between kernel matrices: upon in the past in the learning kernel literature. EKPs
also achieve a better performance than the standard one-
Ko stage learning k(_arnel algorithnms-svm or os-krr, in sev-

pilE eral datasets. Finally, we observe that EKPs also improve

We note that, foalign andalignf, usingL.-regularization ~ UPon the alignment based methods, which had previously
only scales the ; -regularized solution by a factor that can reported the best performance among learning kernel tech-
be absorbed intd. Thus, this difference in regularization Niques [7]. This improvement is substantial for some data
would provide no practical difference in performance. sets, e.g. spambase data SefShese improvements over
the best learning kernel results reported are remarkable an

The experimental setup is modeled after that of [7].yery encouraging for further studies of EKPs.
For each dataset, several Gaussian kernels of the form

K(z,2') = exp(—~|lz — 2/||2), with different bandwidth If given access to only a single CPU, the time it takes to

parameters, are used as base kernels. The setfised train the EKPs can be substantially longer than any of the
are {27, 2m*1 2%} wherey, andy, and the num- other methods we used singéiypotheses must be trained

ber of resulting kernelg are indicated in Table 1 for each @S Opposed to a single one. For the spambase dataset with
dataset. In case of the protein fold dataset, the kernels pro———

vided by the UCSD-MKL repository are used. The norm 20ur empirical results somewhat differ from those of [7] for
L . h some of the same data sets. This is most likely because we use a

of the Comb'na_t'on weights is controlled by_ the p"’“_ﬁ""mmersplit training set in order to match the setting of EKPs. Hesve

[ 1ellg <A, for eitherg=1 or =2 as appropriate. This pa- even comparing to the results of [7], the improvement of E&P i

rameter is selected based on the best average performarst# significant.

K, vy
K, — argmax ¥ e
K“,%EAl



1,200 training points and using an Intel Xeon 2.33GHz[10]
processor with 16GB of total memory, training the 6 base
hypotheses sequentially and learning the best combination
takes about 1.3 minutes, while the other compared ap-
proaches can be trained within 20 seconds. However, if th&ll]
number of base hypotheses is reasonable and a distributed
system is used, as is the case in our experiments, the ba ]
hypotheses can be trained on different processors, whic
results in a clock time similar to that of other methods.

6 Conclusion [13]

We presented a general analysis of learning with ensembles
of kernel predictors, including a theoretical analysisdohs [14]
on the Rademacher complexity of the corresponding hy-
pothesis sets, the study of a natural one-stage algoritdm an

its connection with a standard algorithm used for learning
kernels, and the results of extensive experiments in severélS]
tasks. Our empirical results show that their performance

is often significantly superior to the straightforward u$e o

a uniform combination of kernels for learning, which has [16]
been difficult to improve upon using algorithms for learn-
ing kernels. They also suggest that EKPs can outperform,
sometimes substantially, even the best existing algogthm

recently reported for learning kernels. [17]
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