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Abstract

This paper examines the problem of learning
with a finite and possibly large set ofp base
kernels. It presents a theoretical and empirical
analysis of an approach addressing this problem
based on ensembles of kernel predictors. This
includes novel theoretical guarantees based on
the Rademacher complexity of the corresponding
hypothesis sets, the introduction and analysis of
a learning algorithm based on these hypothesis
sets, and a series of experiments using ensem-
bles of kernel predictors with several data sets.
Both convex combinations of kernel-based hy-
potheses and more generalLq-regularized non-
negative combinations are analyzed. These the-
oretical, algorithmic, and empirical results are
compared with those achieved by using learning
kernel techniques, which can be viewed as an-
other approach for solving the same problem.

1 Introduction

Kernel methods are used in a variety of applications in ma-
chine learning [22]. Positive definite (PDS) kernels provide
a flexible method for implicitly defining features in a high-
dimensional space where they represent an inner product.
They can be combined with large-margin maximization al-
gorithms such as support vector machines (SVMs) [8] to
create effective prediction techniques.

The choice of the kernel is critical to the success of these al-
gorithms, thus committing to a single kernel could be sub-
optimal. It could be advantageous instead to specify a finite
and possibly large set ofp base kernels. This leads to the
following general problem central to this work: (P) how
can we best learn an accurate predictor when usingp base
kernels?

One approach to this problem is known as that oflearn-
ing kernels or multiple kernel learning and has been exten-

sively investigated over the last decade by both algorithmic
and theoretical studies [16, 2, 1, 23, 17, 26, 18, 11, 4, 19,
25, 6]. This consists of using training data to select a kernel
out of the family of convex combinations ofp base kernels
and to learn a predictor based on the kernel selected, these
two tasks being performed either in a single stage by solv-
ing one optimization as in most studies such as [16], or in
subsequent stages as in a recent technique described by [7].

The most frequently used framework for this approach is
that of Lanckriet et al. [16], which is both natural and el-
egant. But, experimental results reported for this method
have not shown a significant improvement over the straight-
forward baseline of training with a uniform combination
of base kernels. The more recent two-stage technique for
learning kernels presented by Cortes et al. [7] is shown,
however, to achieve a better performance than the uniform
combination baseline across multiple datasets. The algo-
rithm consists of first learning a non-negative combination
of the base kernels using a notion of centered alignment
with the target label kernel, and then of using that combined
kernel with a kernel-based algorithm to select a hypothesis.
Figure 1 illustrates these two learning kernel techniques.

An alternative approach explored by this paper consists of
using data to learn a predictor for each base kernel and
combine these predictors to define a single predictor, these
two tasks being performed in a single stage or in two subse-
quent stages (see Figure 1). This approach is distinct from
the learning kernel one since it does not seek to learn a ker-
nel, however its high-level objective is to address the same
problem (P). The predictors returned by this approach are
ensembles of kernel predictors (EKPs) or of kernel-based
hypotheses.

Note that each of the hypotheses combined belongs to a
different set, the reproducing kernel Hilbert space (RKHS)
associated to a different kernel. As we shall see later, the
hypothesis family of EKPs can contain the one used by
learning kernel techniques based on convex combinations
of p base kernels. This raises the question of guarantees
for learning with the family of hypotheses of EKPs and the
comparison of its complexity with that of learning kernels,



Figure 1: Illustration of different approaches for solving
problem (P): learning kernel and ensemble techniques.
The path in blue represents the subsequent stages of the
two-stage learning kernel algorithm of [7]. Similarly, the
path in red represents the two-stage ensemble technique
studied here. The standard one-stage technique for learning
kernel [16] is represented by the diagonal in light blue and
similarly the single-stage EKP technique is indicated by a
diagonal in pink.

which we shall address later.

Relationship with standard ensemble methods We
briefly discuss the connection of the setting examined with
that of standard ensemble methods such as boosting. In our
setting, an ensemble method is applied to thep hypothe-
seshk, k ∈ [1, p], obtained via training in the first stage.
The ensemble method we use in our experiments isL1- or
L2-regularized linear SVM for a classification task, Lasso
or ridge regression for a regression task (augmented with
a non-negativity constraint) which enable us to control the
norm of the vector of ensemble coefficients with different
Lq-norms. Of course, for a classification task, other ensem-
ble methods such as boosting could be used instead to com-
bine the hypotheseshk (without regularization). But, we
are not advocating a specific ensemble technique and our
analysis is general. As we shall see, the theory we present
applies regardless of the specific ensemble method used in
the second stage.

Let us point out, however, that the existing margin theory
available for ensemble methods [14, 5] will not be very in-
formative in our setting. The existing theory applies to con-
vex combinations of a single hypothesis setH . Thus, here,
it could apply in two ways: (1) by considering the case
where an ensemble method such as boosting is applied to
the finite set of base classifiersH = {h1, . . . , hp}; or (2)
by studying the case whereH = ∪p

k=1Hk is the union of
the RKHSsHk associated to each base kernelKk. In the
former case, the learning guarantees for the ensemble clas-
sifier would depend on the complexity of the finite setH of
hypotheses, which would be of limited interest since this
would not directly include any information about the ker-
nels used and since in our settingh1, . . . , hp are not known
in advance. In the latter case, the generalization bounds

would then be in terms of the complexity of the union
(∪p

k=1Hk). Instead, our analysis provides finer learning
guarantees in terms of the characteristics of the base ker-
nelsKk defining the Hilbert spacesHk and the number of
kernelsp, by specifically studying convex regularized non-
negative combinations of hypotheses from different spaces.
Furthermore, our analysis is given for differentLq regular-
izations, while the existing bounds are valid only forL1.
Finally, note that the application of a boosting algorithm
in the second scenario would be very costly since it would
require trainingp kernel-based algorithms at each round.

Previous work on ensembles of kernel predictors En-
sembles of kernel-based hypotheses have been considered
in a number of different contexts and applications of which
we name a few. Ideas from standard ensemble techniques
of bagging and boosting were used by Kim et al. and other
authors [12, 13, 20] to assign weights to SVM hypothe-
ses viewed as base learners, with a linear or non-linear
step such as majority vote, least squared error weighting,
or a “double-layer hierarchical” method to combine their
scores. The authors seem to use the same kernel for train-
ing each SVM. SVM ensembles have also been explored
to address the problem of training with datasets containing
a rare class by repeating the rare training instances across
the training sets for individual base classifiers [24]. Finally,
learning ensembles with a coupled method by sharing ad-
ditional parameters between the trained models is studied
by [10]. On the theoretical side, leave-one-out and cross-
validation bounds were given for kernel-based ensembles
by [9], limited to fixed (not learned) combination weights.
A recent paper of Koltchinskii and Yuan [15] also studies
ensembles of kernel ensembles, but analyzes a rather dif-
ferent form of regularization and deals exclusively with a
one-stage algorithm.

Our contribution We present both a theoretical and an
empirical analysis of EKPs and compare them with several
methods for learning kernels, including those of [16] and
[7]. We give novel and tight bounds on the Rademacher
complexity of the hypothesis sets corresponding to EKPs
and compare them with similar recent bounds given by [6]
for learning kernels. We show in particular that, while the
hypothesis set for EKPs contains that of learning kernels,
remarkably, forL1 regularization, the complexity bound
for EKPs coincides with the one for learning kernels and
thus provides favorable guarantees. We also introduce a
natural one-stage learning algorithm for EKPs, analyze its
relationship with the two-stage EKP algorithm, and show
its close relationship with the algorithm of [16].

Our empirical results include a series of experiments with
EKPs based on usingL1 andL2 regularization in the sec-
ond stage for both classification and regression, and a com-
parison with several algorithms for learning kernels. They
demonstrate, in particular, that EKPs achieve a perfor-



mance superior to that of learning with a uniform combi-
nation of base kernels and that they also typically surpass
the one-stage learning kernel algorithm of [16]. EKPs also
appear to be competitive against the two-stage kernel learn-
ing method of [7] that they outperform in several tasks.

The remainder of this paper is organized as follows. The
next section (Section 2) defines the learning scenario for
EKPs and the corresponding hypothesis sets. Section 3
presents the results of our theoretical analysis based on the
Rademacher complexity of these hypothesis sets. In Sec-
tion 4, we introduce and discuss a one-stage algorithm for
learning EKPs. Section 5 reports the results of our experi-
ments comparing with several algorithms for learning ker-
nels and EKPs on a number of data sets.

2 Learning Scenario

This section describes the standard scenario for learning an
ensemble of kernel-based hypotheses and introduces much
of the notation used in other sections. We denote byX the
input space and byY the output space, withY={−1, +1}
in classification andY ⊆ R in regression.

Let Kk with k ∈ [1, p] bep≥1 PDS kernels. We shall de-
note byHK the reproducing kernel Hilbert space (RKHS)
associated to a PDS kernelK, and by‖ · ‖HK

the corre-
sponding norm in that space. In the absence of ambiguity,
to simplify the notation, we writeHk instead ofHKk

. In the
first stage of the ensemble setting,p hypothesesh1, . . . , hp

are obtained by training a kernel-based algorithm using
the same sampleS =

(
(x1, y1), . . . , (xm, ym)

)
∈(X×Y)m

with each of these kernels. This is typically done us-
ing an algorithm based on an optimization of the form
hk = argminh∈Hk

λk‖h‖2
Hk

+
∑m

i=1 L(h(xi), yi), where
L : Y × Y → R is a loss function convex in its first argu-
ment and whereλk ≥0 is a regularization parameter. In our
experiments, we use support vector machines (SVMs) [8]
in classification tasks and kernel ridge regression (KRR)
[21] in regression tasks. These correspond respectively to
the hinge loss defined byL(y, y′)=max(1−yy′, 0) and the
square loss defined byL(y, y′)=(y′−y)2. Since each base
hypothesishk is learned using a different kernelKk, the
regularization parameterλk obtained by cross-validation is
different in each optimization. Equivalently, each base hy-
pothesishk is selected from a set{h ∈ Hk: ‖h‖Hk

≤ Λk}
with a distinctΛk≥0.

In the second stage, a possibly separate training sample is
used to learn a non-negative linear combination of these hy-
potheses,

∑p
k=1 µkhk, with anLq regularization:µ ∈∆q

with ∆q ={µ : µ≥0 ∧ ∑p
k=1 µq

k =1}. Thus, the hypoth-
esis set corresponding to such ensembles has the following
general form forLq regularization:

Eq
p =

{ p∑

k=1

µkhk : ‖hk‖Hk
≤Λk, k ∈ [1, p], µ ∈ ∆q

}
. (1)

Our experiments are carried out with anL1 regularization,
corresponding to convex combinations of kernels (q = 1),
or L2 regularization (q=2).

Note that it might be possible to define a tighter hypothesis
set describing our learning scenario, in which the weights
µ are further restricted in terms of the first stage solutions
h∗

k. Since our analysis is meant to be general though and
valid for any learning algorithms used in the two stages, it
is not clear how this could be achieved. But, in any case,
as we shall see in Section 3.1, already with our definition,
the learning guarantees for EKPs match the tight learn-
ing bounds proven for the learning kernel scenario, which
demonstrates favorable guarantees for EKPs.

3 Theoretical Analysis

To analyze the complexity of the hypothesis families just
defined, we bound, for different values ofq, their empirical
Rademacher complexitŷRS(Eq

p ) for an arbitrary sampleS
of sizem. This immediately yields generalization bounds
for EKPs, in particular a margin bound in classification of
the form [14, 5]:

∀h ∈ Eq
p , R(h) ≤ R̂ρ(h) +

2

ρ
R̂S(Eq

p ) + 3

√
log 2

δ

2m
,

whereρ>0 is the margin,δ>0 the confidence level,R(h)

the generalization error ofh, andR̂ρ(h) the fraction of the
training points with margin less thanρ (i.e. yih(xi) ≤ ρ).
Our proof techniques build on those used by [6] to derive
bounds for learning kernels, with which we compare those
we obtain for EKPs.

For a sampleS =(x1, . . . , xm), the empirical Rademacher
complexity of a family of functionsH is defined by

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑

i=1

σih(xi)
]
,

where the expectation is taken overσ = (σ1, . . . , σm)⊤

with σi ∈{−1,+1} independent uniform random variables.
For any kernel functionK, we denote byK=[K(xi, xj)]∈
R

m×m its kernel matrix for the sampleS. The following
proposition gives the general form of the Rademacher com-
plexity of the hypothesis setEq

p .

Proposition 1. Let q, r ≥ 1 with 1
q + 1

r =
1. For any sample S of size m, the empirical
Rademacher complexity of the hypothesis set Eq

p can

be expressed as R̂S(Eq
p ) = 1

m Eσ

[
‖vσ‖r

]
with vσ =

(Λ1

√
σ⊤K1σ, . . . , Λp

√
σ⊤Kpσ)⊤.

Proof. By definition of the empirical Rademacher com-



plexity, we can write

R̂S(Eq
p ) =

1

m
E
σ

[
sup
h∈Eq

p

m∑

i=1

σih(xi)
]

=
1

m
E
σ

[
sup

µ∈∆q,hk∈Hk

‖hk‖Hk
≤Λk

m∑

i=1

σi

p∑

k=1

µkhk(xi)
]
.

For any hk ∈ Hk, by the reproducing property, for
all x ∈ X , hk(x) = 〈hk, Kk(x, ·)〉. Let Hk,S =
span({Kk(x, ·) : x ∈ S}), then, for x ∈ S, hk(x) =〈
hk,‖, Kk(x, ·)

〉
, wherehk,‖ is the orthogonal projection

of hk overHk,S . Thus, there existαki ∈ R, i∈ [1, m], such
thathk,‖ =

∑m
i=1 αkiKk(xi, ·). Let αk denote the vector

(αk1, . . . , αkm)⊤, if ‖hk‖Hk
≤Λk, then

α
⊤
k Kkαk = ‖hk,‖‖2

Hk
≤ ‖hk‖2

Hk
≤ Λ2

k.

Conversely, any
∑p

i=1 αkiKk(xi, ·) with α
⊤
k Kkαk ≤ Λ2

k

is the projection of somehk ∈ Hk with ‖hk‖2
Hk

≤ Λ2
k.

Thus, we can write

R̂S(Eq
p ) =

1

m
E
σ

[
sup

µ∈∆q

α
⊤

k Kkαk≤Λ2

k

p∑

k=1

µk

m∑

i,j=1

σiαkjKk(xi, xj)
]

=
1

m
E
σ

[
sup

µ∈∆q

α
⊤

k Kkαk≤Λ2

k

p∑

k=1

µkσ
⊤Kkαk

]
.

Fix µ. Since the terms inαk are not restricted by any
shared constraints, they can be optimized independently via

max
α

⊤

k
Kkαk≤Λ2

k

σ
⊤Kkαk = Λk

√
σ⊤Kkσ,

where we used the fact that by the Cauchy-Schwarz in-
equality the maximum is reached forK1/2

σ andK1/2
αk

collinear. Thus, by the definition of vectorvσ, we are left
with

R̂S(Eq
p ) =

1

m
E
σ

[
sup

µ∈∆q

p∑

k=1

µkΛk

√
σ⊤Kkσ

]

=
1

m
E
σ

[
sup

µ∈∆q

µ
⊤vσ

]
=

1

m
E
σ

[ ‖vσ‖r]

where the final equality follows from the definition of the
dual norm.1

3.1 Rademacher complexity of L1-regularized EKPs

Theorem 1. For any sample S of size m, the empirical
Rademacher complexity of the hypothesis set E1

p can be
bounded as follows for all integer r≥1,

R̂S(E1
p ) ≤

√
η0r‖vΛ‖r

m
,

1Note that this proposition differs from the one given by [6]
for learning kernels whereΛ=1 and the term

p

‖uσ‖ appears in
place of‖vσ‖, with uσ =(σ⊤

K1σ, . . . , σ
⊤
Kpσ)⊤.

where vΛ = (Λ2
1 Tr[K1], . . . , Λ

2
p Tr[Kp])

⊤ and η0 = 23
22 .

Let Λ⋆ =maxk∈[1,p] Λk. If further p>1 and Kk(x, x)≤R2

for all x∈X and k∈ [1, p], then

R̂S(E1
p ) ≤

√
η0e⌈log p⌉Λ2

⋆R
2

m
.

Proof. By Proposition 1,mR̂S(E1
p ) = Eσ

[
‖vσ‖∞

]
, thus

mR̂S(E1
p ) = E

σ

[
max

k∈[1,p]
Λk

√
σ⊤Kkσ

]

= E
σ

[√
max

k∈[1,p]
Λ2

kσ⊤Kkσ

]
= E

σ

[√
‖v′‖∞

]
,

with v′ = (Λ2
1σ

⊤K1σ, . . . , Λ2
pσ

⊤Kpσ)⊤. Since for any
r ≥ 1, ‖v′‖∞ ≤ ‖v′‖r, using Jensen’s inequality,

mR̂S(E1
p ) ≤ E

σ

[√
‖v′‖r

]
= E

σ

[[ p∑

k=1

(Λ2
kσ

⊤Kkσ)r
] 1

2r
]

≤
[ p∑

k=1

E
σ

[
(Λ2

kσ
⊤Kkσ)r

]] 1

2r

.

The first result then follows the boundEσ

[
(σ⊤Kσ)r

]
≤(

η0r Tr[K]
)r

which holds by Lemma 1 of [6]. Now, if
Kk(x, x)≤R2 for all x∈X andk∈ [1, p], Tr[Kk]≤mR2

for all k∈ [1, p] and

‖vΛ‖r =
( p∑

k=1

(Λ2
k Tr[Kk])r

)1/r ≤p1/rΛ2
⋆mR2.

Thus, by Theorem 1, for any integerr>1, the Rademacher
complexity can be bounded as follows

R̂S(E1
p ) ≤ 1

m

[
η0rp

1/rΛ2
⋆mR2

] 1

2=

√
η0rp

1

r Λ2
⋆R

2

m
.

The result follows the fact that forp>1 r 7→ p1/rr reaches
its minimum atr0 =log p.

We compare this bound with a similar bound for the hy-
pothesis set based on convex combinations of base kernels
used for learning kernels [6], forΛ1 = . . .=Λp:

H1
p =

{
h ∈ HK : K =

p∑

k=1

µkKk, µ ∈ ∆1, ‖h‖HK
≤ Λ⋆

}
.

Remarkably, the theorem shows that the bound on the em-
pirical Rademacher complexity of the hypothesis set for
EKPs coincides with the one for̂RS(H1

p ). It suggests that
learning withE1

p does not increase the risk of overfitting
with respect to learning withH1

p , while offering the op-
portunity for a smaller empirical error. The theorem also
shows that the bound we gave forR̂S(E1

p ) is tight sinceE1
p

containsH1
p and since the bound for̂RS(H1

p ) given by [6]
was shown to be tight. The next section examines different
Lq regularizations.



3.2 Rademacher complexity of Lq-regularized EKPs

Theorem 2. Let q, r≥1 with 1
q + 1

r =1 and assume that r
is an integer. Then, for any sample S of size m, the empiri-
cal Rademacher complexity of the hypothesis set Eq

p can be
bounded as follows:

R̂S(Eq
p ) ≤

√
η0r‖u‖r

m
,

where u=(Λ1

√
Tr[K1], . . . , Λp

√
Tr[Kp])

⊤ and η0 = 23
22 .

Let Λ⋆ =maxk∈[1,p] Λk. If further p>1 and Kk(x, x)≤R2

for all x∈X and k∈ [1, p], then

R̂S(Eq
p ) ≤

√
η0rp

2

r Λ2
⋆R

2

m
.

Proof. By Proposition 1mR̂(Eq
p ) = Eσ [ ‖vσ‖r]. Using

this identity and Jensen’s inequality gives:

mR̂(Eq
p ) = E

σ

[( p∑

k=1

(Λ2
kσ

⊤Kkσ)r/2
)1/r

]

≤
( p∑

k=1

(
E
σ

[
(Λ2

kσ
⊤Kkσ)r

])1/2)1/r

.

By the boundEσ

[
(σ⊤Kσ)r

]
≤

(
η0r Tr[K]

)r
, which

holds by Lemma 1 of [6],

( p∑

k=1

(
E
σ

[
(Λ2

kσ
⊤Kkσ)r

])1/2)1/r

≤
( p∑

k=1

(η0rΛ
2
k Tr[Kk])r/2

)1/r

=

√
η0r

m
‖u‖r .

This proves the first statement. For the second state-
ment, when Tr[Kk] ≤ mR2 for all k, ‖u‖r =
( ∑p

k=1 Λr
k Tr[Kk]r/2

)1/r ≤
(
p

2

r Λ2
⋆mR2

) 1

2. Thus, in view
of the first result, the following holds

R̂S(Eq
p ) ≤

√
η0r

m
‖u‖r ≤

√
η0r

m

(
(p

2

r Λ2
⋆mR2)r/2

)1/r

=

√
η0rp

2

r Λ2
⋆R

2

m
.

Here, forΛ1 = . . . = Λp, the bound on the Rademacher
complexity is less favorable than the one for learning ker-
nels with the similar family:

Hq
p =

{
h ∈ HK : Kµ =

p∑

k=1

µkKk, µ∈∆q, ‖h‖HK
≤Λ⋆

}
.

The bound given by [6] forRS(Hq
p) is smaller exactly by

a factor ofp1/(2r). Thus, as an example, here, forL2 reg-
ularization, the guarantee for learning with EKPs is less
favorable by a factor of

√
p, which, for largep, can be sig-

nificant.

4 Single-Stage Learning Algorithm

This section introduces and discusses a single-stage learn-
ing algorithm for EKPs, which turns out to be closely re-
lated to a standard algorithm for learning kernels. The natu-
ral framework for learning EKPs consists of the two stages
detailed in Section 2 wherep hypotheseshk are learned us-
ing different kernels in the first stage and a mixture weight
µ is learned in the second stage to combine them linearly.

Alternatively, one can consider, as for learning kernels [16],
a single-stage learning algorithm for EKPs. For a fixed
µ ∈∆q, defineHµ by Hµ = {

∑p
k=1 µkhk : hk ∈ Hk, k ∈

[1, p]}. A hypothesish may admit different expansions∑p
k=1 µkhk (even for a fixedµ), thus we denote byHµ

the multiset of all hypotheses with their different expan-
sions and denote byh1, . . . , hp the corresponding base hy-
potheses. A natural algorithm for a single-stage ensemble
learning is thus one which penalizes the empirical loss of
the final hypothesish =

∑p
k=1 µkhk(x), while controlling

the norm of each base hypothesishk. The following is the
corresponding optimization problem:

min
µ∈∆q

min
h∈Hµ

m∑

i=1

L(h(xi), yi)

subject to:‖hk‖ ≤ Λk, k ∈ [1, p].

Introducing Lagrange variablesλk ≥ 0, k ∈ [1, p], this can
be equivalently written as

min
µ∈∆q

min
h∈Hµ

p∑

k=1

λk‖hk‖2
Kk

+

m∑

i=1

L(h(xi), yi). (2)

Relationship with two-stage algorithm. Note that, in
the caseq=1, by the convexity of the loss function with re-
spect to its first argument, for anyi∈ [1, m], L(h(xi), yi) ≤∑p

k=1 µkL(hk(xi), yi). If we replace the empirical loss in
(2) with this upper bound, we obtain:

min
µ∈∆1

min
h∈Hµ

p∑

k=1

λk‖hk‖2
Kk

+

p∑

k=1

µk

m∑

i=1

L(hk(xi), yi).

In this optimization, for a fixedµ, the terms depending on
eachk ∈ [1, p] are decoupled and can be optimized inde-
pendently. Thus, proceeding in this way precisely coin-
cides with the two-stage ensemble learning algorithm as
described in Section 2.

Relationship with one-stage learning kernel algorithm.
The main algorithmic framework for learning kernels in a
single-stage is based on the following optimization prob-
lem:

min
µ∈∆q

min
h∈HKµ

λ‖h‖2
Kµ

+

m∑

i=1

L(h(xi), yi), (3)



where HKµ
is the RKHS associated to the PDS kernel

Kµ =
∑p

k=1 µkKk, λ ≥ 0 is a regularization parameter,
andq = 1 [16] or q = 2. We shall compare the algorithms
based on the optimizations (2) and (3). Our proof will make
use of the following general lemma.

Lemma 1. Let K be a PDS kernel. For any λ>0, HλK =
HK and 〈·, ·〉λK = 1

λ 〈·, ·〉K , in particular ‖·‖2
λK = 1

λ‖·‖2
K .

Proof. It is clear thatHλK = HK since elements ofHλK

can be obtained fromHK bijectively by multiplication by
λ. Now, for anyh ∈ HλK = HK , by the reproducing
property, for allx ∈ X ,

h(x) = 〈h, K(x, ·)〉K
and h(x) = 〈h, λK(x, ·)〉λK = λ 〈h, K(x, ·)〉λK .

Matching these equalities shows that for allh,
〈h, K(x, ·)〉K = λ 〈h, K(x, ·)〉λK . Thus, for all h′ =∑

i∈I αiK(xi, ·), 〈h, h′〉K = λ
∑

i∈I αi 〈h, K(x, ·)〉λK =
λ 〈h, h′〉λK . This shows that〈·, ·〉K = λ 〈·, ·〉λK and
concludes the proof of the lemma.

Proposition 2. For λk = λµk for all k ∈ [1, p], the op-
timization problem for learning EKPs (2) and the one for
learning kernels (3) are equivalent.

Proof. Fix µ ∈ ∆q.

min
h∈Hµ

p∑

k=1

λk‖hk‖2
Kk

+

m∑

i=1

L(h(xi), yi)

= min
h∈Hµ

min
h=

Pp

k=1
µkhk

hk∈Hk

{ p∑

k=1

λk‖hk‖2
Kk

}
+

m∑

i=1

L(h(xi), yi)

= min
h∈Hµ

min
h=

Pp

k=1
h′

k

h′

k∈Hk

{ p∑

k=1

λk

µ2
k

‖h′
k‖2

Kk

}
+

m∑

i=1

L(h(xi), yi)

(replacingµkhk with h′
k)

= min
h∈Hµ

λ min
h=

Pp

k=1
h′

k

h′

k∈Hk

{ p∑

k=1

1

µk
‖h′

k‖2
Kk

}
+

m∑

i=1

L(h(xi), yi)

(assumption onλks)

= min
h∈Hµ

λ min
h=

Pp

k=1
h′

k

h′

k∈HK′
k

{ p∑

k=1

‖h′
k‖2

K′

k

}
+

m∑

i=1

L(h(xi), yi)

(Lemma 1),

with K ′
k = µkKk. By a theorem of Aronszajn (Theorem

p.353 [3]), if h =
∑p

k=1 hk, with hk ∈ HK′

k
, thenh∈HK

andminh=
Pp

k=1
h′

k
,h′

k
∈HK′

k

{∑p
k=1 ‖hk‖2

K′

k

}= ‖h‖2
K with

K =
∑p

k=1 K ′
k. Thus,

min
h∈Hµ

p∑

k=1

λk‖hk‖2
Kk

+

m∑

i=1

L(h(xi), yi)

= min
h∈HK

λ‖h‖2
K +

m∑

i=1

L(h(xi), yi).

Taking the minimum overµ ∈ ∆q yields the statement of
the proposition.

Thus, under the assumptions of the proposition, the one-
stage algorithm for EKPs returns exactly the same solu-
tion as the one for learning kernels. A similar result was
given by [15] for a Lasso-type regularization using a lemma
of [18]. In general, however, this one-stage algorithm for
EKPs is not practical for large values ofp since the number
of parametersλk to determine simultaneously using cross-
validation becomes too large. In view of this drawback, we
did not use this algorithm in our experiments.

5 Experiments

We did a series of experiments with EKPs and compared
their performance with that of several existing learning ker-
nel methods across several datasets from the UCI, UCSD-
MKL and Delve repositories for both the classification and
the regression setting.

We experimented both withL1-regularized ensembles (de-
notedL1-ens) andL2-regularized ensembles (L2-ens). For
the first stage, the base hypotheses were obtained by using
SVMs for classification or KRR for regression. In the sec-
ond stage, forL1-regularized ensembles,L1-regularized
SVM was used for classification, Lasso in regression. In
the case ofL2 regularization, standard SVM and KRR were
used in the second stage. In all cases for the second stage,
the primal version of the problem was solved with a lin-
ear kernel over the predictions of the hypotheses of the first
stage and is augmented with an explicit constraintµ ≥ 0.
The ensemble performance was compared to that of the
single combination kernel selected by the following algo-
rithms, used in conjunction with SVM or KRR.

unif: kernel-based algorithm with a uniform kernel combi-
nation,Kµ =

∑p
k=1 µkKk = Λ

p

∑p
k=1 Kk.

os-svm: one-stage kernel learning method that selects an
L1-regularized non-negative weighted kernel combination
for SVM [16]. The following is the corresponding opti-
mization problem:

min
µ

max
α

2α
⊤1− α

⊤Y⊤KµYα

subject to:µ ≥ 0, Tr[Kµ] ≤ Λ, α⊤y = 0,0 ≤ α ≤ C .

os-krr: one-stage kernel learning method that selects an
L2-regularized non-negative weighted kernel combination



CLASSIFICATION

γ1 , γp, p N unif os-svm align alignf L1-ens L2-ens
G −4, 3, 8 1000 25.9±1.8 26.0±2.6 25.8±2.9 24.7±2.1 25.4±1.5 25.3±1.4
PA ·, ·, 10 694 8.9±2.6 8.5±2.7 8.4±2.8 9.7±1.9 7.1±3.0 7.2±3.0
PB ·, ·, 10 694 10.0±1.7 9.3±2.4 9.4±1.9 9.3±1.8 9.7±2.5 8.1±1.5
SM −12,−7, 6 1000 18.7±2.8 20.9±2.8 18.5±2.3 18.7±2.5 15.4±1.3 15.7±1.7
SM −12,−7, 6 2000 15.7±2.8 18.4±2.6 16.1±3.0 16.0±1.2 13.7±1.1 13.8±1.0
SM −12,−7, 6 4601 12.3±0.9 13.9±0.9 12.4±0.9 13.1±1.0 9.4±0.5 9.8±0.6

REGRESSION

γ1, γp, p N unif os-krr align alignf L1-ens L2-ens
I −3, 3, 7 351 .467±.085 .457±.085 .467±.093 .446±.093 .437±.086 .433±.084
K −3, 3, 7 1000 .138±.005 .137±.005 .136±.005 .129±.01 .120±.005 .120±.005

Table 1: Performance of several kernel combination algorithms across both regression and classification datasets: german
(G), protein fold class-7 vs. all (PA) and class-16 vs. all (PB), spambase (SM), ionosphere (I) and kinematics (K). Average
misclassification error is reported for classification, average RMSE for regression, and in both cases one standard deviation
as measured across 5 trials.

for KRR. The following is the corresponding optimization
problem:

min
µ≥0

‖µ‖2≤Λ

max
α

− λα
⊤

α − α
⊤Kµα + 2α

⊤y

align: two-stageL1-regularized alignment-based tech-
nique presented by [7] which weights each base kernel

proportionally to the alignmentµk ∝ 〈Kk,yy⊤〉
F

‖Kk‖F
, where

〈·, ·〉F , denotes the Frobenius product, of the centered
kernel matrixKk and the kernel matrix of the training
labels yy⊤, resulting in a combination kernelKµ =∑p

k=1 µkKk with
∑p

k=1 µk ≤ Λ.

alignf: another two-stageL1-regularized technique of [7],
jointly maximizing the alignment of the kernel matrix with
the target labels kernel taking in to account the correlation
between kernel matrices:

Kµ = argmax
Kµ, µ

Λ
∈∆1

〈
Kµ,yy⊤

〉
F

‖Kµ‖F
.

We note that, foralign andalignf, usingL2-regularization
only scales theL1-regularized solution by a factor that can
be absorbed intoΛ. Thus, this difference in regularization
would provide no practical difference in performance.

The experimental setup is modeled after that of [7].
For each dataset, several Gaussian kernels of the form
K(x, x′) = exp(−γ‖x − x′‖2), with different bandwidth
parametersγ, are used as base kernels. The set ofγs used
are{2γ1 , 2γ1+1, . . . , 2γp}, whereγ1 andγp and the num-
ber of resulting kernelsp are indicated in Table 1 for each
dataset. In case of the protein fold dataset, the kernels pro-
vided by the UCSD-MKL repository are used. The norm
of the combination weights is controlled by the parameter
‖µ‖q ≤Λ, for eitherq=1 or q=2 as appropriate. This pa-
rameter is selected based on the best average performance

on a validation set. The regularization parameter of KRR
(λ) or SVM (C) is held constant since it is effectively only
the ratioΛ/λ or Λ/C that determines the solution.

The average error and standard deviation reported is for 5-
fold cross validation using a total ofN data-points, where
three folds are used for training, one fold for validation, and
one fold for measuring the test error. That is, the training
set sizem = 3

5N . For the two stage methods, the training
set is further split into two independent training sets. The
first one is used to train the base hypotheses and the second
one to learn the mixture weights. The ratio of the split,
chosen from the set{10/90, 20/80, . . . , 90/10}, is decided
by the best average performance on the validation set.

Table 1 shows that, in several datasets, the performance of
the EKP algorithms is superior to that of the uniform kernel
baselineunif, which has proven to be difficult to improve
upon in the past in the learning kernel literature. EKPs
also achieve a better performance than the standard one-
stage learning kernel algorithms,os-svm or os-krr, in sev-
eral datasets. Finally, we observe that EKPs also improve
upon the alignment based methods, which had previously
reported the best performance among learning kernel tech-
niques [7]. This improvement is substantial for some data
sets, e.g. spambase data sets.2 These improvements over
the best learning kernel results reported are remarkable and
very encouraging for further studies of EKPs.

If given access to only a single CPU, the time it takes to
train the EKPs can be substantially longer than any of the
other methods we used sincep hypotheses must be trained
as opposed to a single one. For the spambase dataset with

2Our empirical results somewhat differ from those of [7] for
some of the same data sets. This is most likely because we use a
split training set in order to match the setting of EKPs. However,
even comparing to the results of [7], the improvement of EKP is
still significant.



1,200 training points and using an Intel Xeon 2.33GHz
processor with 16GB of total memory, training the 6 base
hypotheses sequentially and learning the best combination
takes about 1.3 minutes, while the other compared ap-
proaches can be trained within 20 seconds. However, if the
number of base hypotheses is reasonable and a distributed
system is used, as is the case in our experiments, the base
hypotheses can be trained on different processors, which
results in a clock time similar to that of other methods.

6 Conclusion

We presented a general analysis of learning with ensembles
of kernel predictors, including a theoretical analysis based
on the Rademacher complexity of the corresponding hy-
pothesis sets, the study of a natural one-stage algorithm and
its connection with a standard algorithm used for learning
kernels, and the results of extensive experiments in several
tasks. Our empirical results show that their performance
is often significantly superior to the straightforward use of
a uniform combination of kernels for learning, which has
been difficult to improve upon using algorithms for learn-
ing kernels. They also suggest that EKPs can outperform,
sometimes substantially, even the best existing algorithms
recently reported for learning kernels.
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