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A common problem in many areas of large-scale machine learning involves ma-
nipulation of a large matrix. This matrix may be a kernel matrix arising in Support
Vector Machines [9, 15], Kernel Principal Component Analysis [47] or manifold
learning [43,51]. Large matrices also naturally arise in other applications, e.g., clus-
tering, collaborative filtering, matrix completion, and robust PCA. For these large-
scale problems, the number of matrix entries can easily be inthe order of billions
or more, making them hard to process or even store. An attractive solution to this
problem involves the Nyström method, in which one samples a small number of
columns from the original matrix and generates its low-rankapproximation using
the sampled columns [53]. The accuracy of the Nyström method depends on the
number columns sampled from the original matrix. Larger thenumber of samples,
higher the accuracy but slower the method.

In the Nystr̈om method, one needs to perform SVD on al × l matrix wherel is
the number of columns sampled from the original matrix. ThisSVD operation is
typically carried out on a single machine. Thus, the maximumvalue ofl used for an
application is limited by the capacity of the machine. That is why in practice, one
restrictsl to be less than 20K or 30K, even when the size of matrix is in millions.
This restricts the accuracy of the Nyström method in very large-scale settings.

This chapter describes a family of algorithms based on mixtures of Nystr̈om
approximations called,Ensemble Nyström algorithms, which yields more accurate
low-rank approximations than the standard Nyström method. The core idea of En-
semble Nystr̈om is to sample many subsets of columns from the original matrix,
each containing a relatively small number of columns. Then,Nyström method is
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performed on each group independently in parallel, and the results are combined
yielding high accuracy. These ensemble algorithms naturally fit within distributed
computing environments where their computational costs are roughly the same as
that of the standard Nyström method. This issue is of great practical significance
given the prevalence of distributed computing frameworks to handle large-scale
learning problems. Several variants of these algorithms are described, including
one based on simple averaging ofp Nyström solutions, an exponential weighting
method, and a regression based method which consists of estimating the mixture
parameters using a few sampled columns.

In Sect. 1, we first introduce the notation and basic conceptsof low-rank matrix
approximation. The standard Nyström method is also described. Then, we present
a number of Ensemble Nyström algorithms in Sect. 1.2. In many applications, one
needs inverse of a large matrix e.g., SVM and Gaussian Processes. Deriving approx-
imate inverse using the standard Nyström method is easy but not so for the Ensem-
ble Nystr̈om. We further show in Sect. 1.3 how one can efficiently use Woodbury’s
approximation with Ensemble Nyström to generate approximate inverses.

Another interesting aspect of the Ensemble Nyström methods is their theoretical
properties that give explicit bounds for the reconstruction error for both the Frobe-
nius norm and the spectral norm. In Sect. 2, we give a derivation of these bounds.
These arise by developing a different bound for the standardNyström method as
used in practice, i.e., using uniform random sampling of columns without replace-
ment. These novel generalization bounds guarantee a betterconvergence rate for
Ensemble Nystr̈om algorithms in comparison to the standard Nyström method.

Sect. 3 demonstrates the results from Ensemble Nyström algorithms on multiple
data sets. A comprehensive comparison against other methods shows clear perfor-
mance gains over the standard Nyström method. Sect. 3.2 describes a large-scale
experiment with 1M points leading to a matrix of size 1M × 1M. This is a huge
dense matrix, containing 1 trillion entries and its explicit storage would require 4TB
space. We show that sampling based methods can easily handlesuch matrices and
the proposed Ensemble Nyström outperforms other state-of-the-art methods for a
fixed computational budget.

To conclude, we provide a summary of the chapter and discuss several open
questions in Sect. 4. Further, related work is mentioned in Sect. 5.

1 Algorithms

Let T ∈ R
a×b be an arbitrary matrix. We defineT( j), j = 1. . .b, as thejth column

vector ofT, T(i), i = 1. . .a, as theith row vector ofT and‖·‖ thel2 norm of a vector.

Furthermore,T(i: j) refers to theith throughjth columns ofT andT(i: j) refers to the
ith through jth rows of T. If rank(T) = r, we can write the thin Singular Value
Decomposition (SVD) of this matrix asT = UTΣTV⊤

T whereΣT ∈R
r×r is diagonal

and contains the singular values ofT sorted in decreasing order andUT ∈ R
a×r

and VT ∈ R
b×r have orthogonal columns that contain the left and right singular
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vectors ofT corresponding to its singular values. We denote byTk the ‘best’ rank-k
approximation toT, i.e., Tk=argminV∈Ra×b,rank(V)=k‖T −V‖ξ , whereξ ∈ {2,F}
and‖·‖2 denotes the spectral norm and‖·‖F the Frobenius norm of a matrix. We
can describe this matrix in terms of its SVD asTk = UT,kΣT,kV⊤

T,k whereΣT,k is a
diagonal matrix of the topk singular values ofT andUT,k andVT,k are the associated
left and right singular vectors.

Now let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel or Gram

matrix with rank(K) = r ≤ n, i.e. a symmetric matrix for which there exists an
X ∈ R

N×n such thatK = X⊤X. We will write the SVD of K as K = UΣU⊤,
where the columns ofU are orthogonal andΣ = diag(σ1, . . . ,σr) is diagonal.

The pseudo-inverse ofK is defined asK+ = ∑r
t=1 σ−1

t U(t)U(t)⊤, andK+ = K−1

when K is full rank. For k < r, Kk = ∑k
t=1 σtU(t)U(t)⊤ = UkΣkU⊤

k is the ‘best’
rank-k approximation toK , i.e.,Kk=argminK ′∈Rn×n,rank(K ′)=k‖K −K ′‖ξ∈{2,F}, with

‖K −Kk‖2 = σk+1 and‖K −Kk‖F =
√

∑r
t=k+1 σ2

t [23].

We will be focusing on generating an approximationK̃ of K based on a sample
of l ≪ n of its columns. We assume thatl columns are sampled fromK uniformly
without replacement. LetC denote then× l matrix formed by these columns and
W the l × l matrix consisting of the intersection of thesel columns with the cor-
respondingl rows of K . Note thatW is SPSD sinceK is SPSD. Without loss of
generality, the columns and rows ofK can be rearranged based on this sampling so
thatK andC can be written as follows:

K =

[
W K ⊤

21
K21 K22

]
and C =

[
W

K21

]
. (1)

1.1 Standard Nystr̈om method

The Nystr̈om method usesW andC from (1) to approximateK . Assuming a uniform
sampling of the columns, the Nyström method generates a rank-k approximationK̃
of K for k< n defined by:

K̃nys
k = CW+

k C⊤ ≈ K , (2)

whereWk is the bestk-rank approximation ofW with respect to the spectral or
Frobenius norm andW+

k denotes the pseudo-inverse ofWk. The Nystr̈om method
thus approximates the topk singular values (Σk) and singular vectors (Uk) of K as:

Σ̃nys
k =

(n
l

)
ΣW,k and Ũnys

k =

√
l
n

CUW,kΣ+
W,k, (3)

whereΣW,k contains the topk singular values ofW, andUW,k contains the corre-
sponding singular vectors. Whenk= l (or more generally, wheneverk≥ rank(C)),
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this approximation perfectly reconstructs three blocks ofK , andK22 is approxi-
mated by the Schur Complement ofW in K :

K̃nys
l = CW+C⊤ =

[
W K ⊤

21
K21 K21W+K21

]
. (4)

The time complexity of SVD onW to get topk singular values and vectors is
O(kl2) and matrix multiplication withC takesO(kln). Hence, the total computa-
tional complexity of the Nystr̈om approximation isO(kln) sincen>> l .

1.2 Ensemble Nystr̈om

In this section, we discuss a meta algorithm called the Ensemble Nystr̈om algo-
rithm. We treat each approximation generated by the Nyström method for a sample
of l columns as anexpertand combinep≥1 such experts to derive an improved
hypothesis, typically more accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel function
K : X ×X →R that can be used to generate the entries of a kernel matrixK .
The learner receives a setS of l p columns randomly selected from matrixK uni-
formly without replacement.S is decomposed intop subsetsS1,. . .,Sp. Each subset
Sr , r∈ [1, p], containsl columns and is used to define a rank-k Nyström approxima-
tion K̃ r . Dropping the rank subscriptk in favor of the sample indexr, K̃ r can be
written asK̃ r =CrW+

r C⊤
r , whereCr andWr denote the matrices formed from the

columns ofSr andW+
r is the pseudo-inverse of the rank-k approximation ofWr .

The learner further receives a sampleV of s columns used to determine the weight
µr ∈R attributed to each expert̃K r . Thus, the general form of the approximation,
Kens, generated by the Ensemble Nyström algorithm, withk≤ rank(Kens)≤ pk, is

K̃ens=
p

∑
r=1

µr K̃ r (5)

=




C1
. ..

Cp







µ1W+
1

. . .
µpW+

p







C1
.. .

Cp




⊤

. (6)

As noted by [36], (6) provides an alternative description ofthe Ensemble Nyström
method as a block diagonal approximation ofW+

ens, whereWensis thel p× l p SPSD
matrix associated with thel p sampled columns.

The mixture weightsµr can be defined in many ways. The most straightforward
choice consists of assigning equal weight to each expert,µr =1/p, r ∈ [1, p]. This
choice does not require the additional sampleV, but it ignores the relative quality
of each Nystr̈om approximation. Nevertheless, this simpleuniform methodalready
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generates a solution superior to any one of the approximationsK̃ r used in the com-
bination, as we shall see in the experimental section.

Another method, theexponential weight method, consists of measuring the re-
construction error̂εr of each expert̃K r over the validation sampleV and defining
the mixture weight asµr =exp(−ηε̂r)/Z, whereη >0 is a parameter of the algo-
rithm andZ a normalization factor ensuring that the vectorµ=(µ1, . . . ,µp) belongs
to the simplex∆ of Rp: ∆ ={µ ∈R

p : µ ≥ 0∧∑p
r=1 µr = 1}. The choice of the mix-

ture weights here is similar to that used in the Weighted Majority algorithm [38]. Let
KV denote the matrix formed by using the samples fromV as its columns and let̃KV

r

denote the submatrix of̃K r containing the columns corresponding to the columns
in V. The reconstruction error̂εr =‖K̃V

r −KV‖ can be directly computed from these
matrices.

A more general class of methods consists of using the sampleV to train the
mixture weightsµr to optimize a regression objective function such as the following:

min
µ

λ‖µ‖2
2+‖

p

∑
r=1

µr K̃V
r −KV‖2

F , (7)

whereKV denotes the matrix formed by the columns of the samplesV andλ >0.
This can be viewed as a ridge regression objective function and admits a closed form
solution. We will refer to this method as theridge regression method. Note that to
ensure that the resulting matrix is SPSD for use in subsequent kernel-based algo-
rithms, the optimization problem must be augmented with standard non-negativity
constraints. This is not necessary however for reducing thereconstruction error, as
in our experiments. Also, clearly, a variety of other regression algorithms such as
Lasso can be used here instead.

The total complexity of the Ensemble Nyström algorithm isO(pl3+plkn+Cµ),
whereCµ is the cost of computing the mixture weights,µ, used to combine thep
Nyström approximations. In general, the cubic term dominates thecomplexity since
the mixture weights can be computed in constant time for the uniform method, in
O(psn) for the exponential weight method, or inO(p3+p2ns) for the ridge regres-
sion method whereO(p2ns) time is required to compute ap× p matrix andO(p3)
time to invert it. Furthermore, although the Ensemble Nyström algorithm requires
p times more space and CPU cycles than the standard Nyström method, these addi-
tional requirements are quite reasonable in practice. The space requirement is still
manageable for even large-scale applications given thatp is typically O(1) andl is
usually a very small percentage ofn (see Section 3 for further details). In terms of
CPU requirements, we note that this algorithm can be easily parallelized, as allp
experts can be computed simultaneously. Thus, with a cluster of p machines, the
running time complexity of this algorithm is nearly equal tothat of the standard
Nyström algorithm withl samples.
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1.3 Ensemble Woodbury approximation

In many applications, one needs to invert a matrix(K +λ I), whereλ is a positive
scalar andI is the identity matrix. The Woodbury approximation is a useful tool to
use alongside low-rank approximations to efficiently (and approximately) invert ker-
nel matrices. We are able to apply the Woodbury approximation since the Nystr̈om
method represents̃K as the product of low-rank matrices. This is clear from the
definition of the Woodbury approximation:

(A+BCd)−1 = A−1−A−1B(C−1+dA−1B)−1dA−1, (8)

whereA = λ I and K̃ = BCd in the context of the Nyström method. In contrast,
the Ensemble Nyström method represents̃K as the sum of products of low-rank
matrices, where each of thep terms corresponds to a base learner. Hence, we cannot
directly apply the Woodbury approximation as presented above. There is however,
a natural extension of the Woodbury approximation in this setting, which at the
simplest level involves running the approximationp times. Starting withp base
learners with their associated weights, i.e.,K̃ r and µr for r ∈ [1, p], and defining
T0 = λ I , we perform the following series of calculations:

T−1
1 = (T0+µ1K̃1)

−1

T−1
2 = (T1+µ2K̃2)

−1

· · ·
T−1

p = (Tp−1+µpK̃ p)
−1 .

To computeT−1
1 , notice that we can use Woodbury approximation as stated in (8)

since we can expressµ1K̃1 as the product of low-rank matrices and we know that
T−1

0 = 1
λ I . More generally, for 1≤ i ≤ p, given an expression ofT−1

i−1 as a product
of low-rank matrices, we can efficiently computeT−1

i using the Woodbury approxi-
mation (we use the low-rank structure to avoid ever computing or storing a fulln×n
matrix). Hence, after performing this series ofp calculations, we are left with the
inverse ofTp, which is exactly the quantity of interest sinceTp = λ I +∑p

r=1 µr K̃ r .
Although this algorithm requiresp iterations of the Woodbury approximation, these
iterations can be parallelized in a tree-like fashion. Hence, when working on a clus-
ter, using an Ensemble Nyström approximation along with the Woodbury approxi-
mation requires only log2(p) more time than using the standard Nyström method.

2 Theoretical Analysis

We now present theoretical results that compare the qualityof the Nystr̈om approx-
imation to the ‘best’ low-rank approximation, i.e., the approximation constructed
from the top singular values and singular vectors ofK . This work, related to [18],
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provides performance bounds for the Nyström method as used in practice, i.e., us-
ing uniform sampling without replacement. It holds for boththe standard Nyström
method as well as the Ensemble Nyström method discussed in Section 1.2.

Our theoretical analysis of the Nyström method uses some results previously
shown by [18] as well as the following generalization of McDiarmid’s concentration
bound to sampling without replacement [13].

Theorem 1.Let Z1, . . . ,Zl be a sequence of random variables sampled uniformly
without replacement from a fixed set of l+u elements Z, and letφ : Zl →R be a
symmetric function such that for all i∈[1, l ] and for all z1, . . . ,zl ∈Z and z′1, . . . ,z

′
l ∈Z,

|φ(z1, . . . ,zl )−φ(z1, . . . ,zi−1,z′i ,zi+1, . . . ,zl )|≤ c. Then, for allε >0, the following
inequality holds:

Pr
[
φ −e[φ ]≥ ε

]
≤ exp

[ −2ε2

α(l ,u)c2

]
, (9)

whereα(l ,u) = lu
l+u−1/2

1
1−1/(2max{l ,u}) .

We define theselection matrixcorresponding to a sample ofl columns as the
matrix S∈R

n×l defined bySii =1 if the ith column ofK is among those sampled,
Si j = 0 otherwise. Thus,C=KS is the matrix formed by the columns sampled.
SinceK is SPSD, there existsX ∈ R

N×n such thatK = X⊤X. We shall denote by
Kmax the maximum diagonal entry ofK , Kmax=maxi K ii , and bydK

max the distance
maxi j

√
K ii +K j j −2K i j .

2.1 Standard Nystr̈om method

The following theorem gives an upper bound on the norm-2 error of the Nystr̈om
approximation of the form‖K − K̃‖2/‖K‖2 ≤ ‖K −Kk‖2/‖K‖2 +O(1/

√
l) and

an upper bound on the Frobenius error of the Nyström approximation of the form
‖K − K̃‖F/‖K‖F ≤ ‖K −Kk‖F/‖K‖F +O(1/l

1
4 ).

Theorem 2.Let K̃ denote the rank-k Nyström approximation ofK based on l
columns sampled uniformly at random without replacement from K , and Kk the
best rank-k approximation ofK . Then, with probability at least1−δ , the following
inequalities hold for any sample of size l:

‖K − K̃‖2 ≤ ‖K −Kk‖2 +
2n√

l
Kmax

[
1+

√
n−l

n−1/2
1

β (l ,n) log 1
δ dK

max/K
1
2
max

]

‖K − K̃‖F ≤ ‖K −Kk‖F +

[
64k

l

] 1
4 nKmax

[
1+

√
n−l

n−1/2
1

β (l ,n) log 1
δ dK

max/K
1
2
max

] 1
2
,

whereβ (l ,n) = 1− 1
2max{l ,n−l} .

Proof. To bound the norm-2 error of the Nyström method in the scenario of sam-
pling without replacement, we start with the following general inequality given



8 Sanjiv Kumar, Mehryar Mohri and Ameet Talwalkar

by [18][proof of Lemma 4]:

‖K − K̃‖2 ≤ ‖K −Kk‖2+2‖XX⊤−ZZ⊤‖2, (10)

whereZ=
√n

l XS. We then apply the McDiarmid-type inequality of Theorem 1 to
φ(S)=‖XX⊤−ZZ⊤‖2. Let S′ be a sampling matrix selecting the same columns as
S except for one, and letZ′ denote

√n
l XS′. Let z andz′ denote the only differing

columns ofZ andZ′, then

|φ(S′)−φ(S)| ≤ ‖z′z′⊤−zz⊤‖2 = ‖(z′−z)z′⊤+z(z′−z)⊤‖2 (11)

≤ 2‖z′−z‖2max{‖z‖2,‖z′‖2}. (12)

Columns ofZ are those ofX scaled by
√

n/l . The norm of the difference of two
columns ofX can be viewed as the norm of the difference of two feature vectors
associated toK and thus can be bounded bydK . Similarly, the norm of a single

column ofX is bounded byK
1
2
max. This leads to the following inequality:

|φ(S′)−φ(S)| ≤ 2n
l

dK
maxK

1
2
max. (13)

The expectation ofφ can be bounded as follows:

e[Φ ] = e[‖XX⊤−ZZ⊤‖2]≤ e[‖XX⊤−ZZ⊤‖F ]≤
n√
l
Kmax, (14)

where the last inequality follows Corollary 2 of [34]. The inequalities (13) and (14)
combined with Theorem 1 give a bound on‖XX⊤−ZZ⊤‖2 and yield the statement
of the theorem.

The following general inequality holds for the Frobenius error of the Nystr̈om
method [18]:

‖K − K̃‖2
F ≤ ‖K −Kk‖2

F +
√

64k‖XX⊤−ZZ⊤‖2
F nKmax

ii . (15)

Bounding the term‖XX⊤−ZZ⊤‖2
F as in the norm-2 case and using the concentra-

tion bound of Theorem 1 yields the result of the theorem.

2.2 Ensemble Nystr̈om method

The following error bounds hold for Ensemble Nyström methods based on a convex
combination of Nystr̈om approximations.

Theorem 3.Let S be a sample of pl columns drawn uniformly at random without
replacement fromK , decomposed into p subsamples of size l, S1, . . . ,Sp. For r ∈
[1, p], let K̃ r denote the rank-k Nyström approximation ofK based on the sample
Sr , and letKk denote the best rank-k approximation ofK . Then, with probability at
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least1− δ , the following inequalities hold for any sample S of size pl and for any
µ in the simplex∆ andK̃ens= ∑p

r=1 µr K̃ r :

‖K − K̃ens‖2 ≤ ‖K −Kk‖2+

2n√
l
Kmax

[
1+µmaxp

1
2

√
n−pl

n−1/2
1

β (pl,n) log 1
δ dK

max/K
1
2
max

]

‖K − K̃ens‖F ≤ ‖K −Kk‖F +

[
64k

l

] 1
4 nKmax

[
1+µmaxp

1
2

√
n−pl

n−1/2
1

β (pl,n) log 1
δ dK

max/K
1
2
max

] 1
2
,

whereβ (pl,n) = 1− 1
2max{pl,n−pl} andµmax= maxp

r=1 µr .

Proof. For r ∈ [1, p], let Zr =
√

n/l XSr , whereSr denotes the selection matrix
corresponding to the sampleSr . By definition ofK̃ensand the upper bound on‖K −
K̃ r‖2 already used in the proof of theorem 2, the following holds:

‖K − K̃ens‖2 =
∥∥∥

p

∑
r=1

µr(K − K̃ r)
∥∥∥

2
≤

p

∑
r=1

µr‖K − K̃ r‖2 (16)

≤
p

∑
r=1

µr
(
‖K −Kk‖2+2‖XX⊤−ZrZ⊤

r ‖2
)

(17)

= ‖K −Kk‖2+2
p

∑
r=1

µr‖XX⊤−ZrZ⊤
r ‖2. (18)

We apply Theorem 1 toφ(S)=∑p
r=1 µr‖XX⊤−ZrZ⊤

r ‖2. LetS′ be a sample differing
from Sby only one column. Observe that changing one column of the full sampleS
changes only one subsampleSr and thus only one termµr‖XX⊤−ZrZ⊤

r ‖2. Thus,
in view of the bound (13) on the change to‖XX⊤−ZrZ⊤

r ‖2, the following holds:

|φ(S′)−φ(S)| ≤ 2n
l

µmaxd
K
maxK

1
2
max, (19)

The expectation ofΦ can be straightforwardly bounded by:

e[Φ(S)] =
p

∑
r=1

µre[‖XX⊤−ZrZ⊤
r ‖2]≤

p

∑
r=1

µr
n√
l
Kmax=

n√
l
Kmax

using the bound (14) for a single expert. Plugging in this upper bound and the Lips-
chitz bound (19) in Theorem 1 yields our norm-2 bound for the Ensemble Nystr̈om
method.

For the Frobenius error bound, using the convexity of the Frobenius norm square
‖·‖2

F and the general inequality (15), we can write
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Dataset Type of data # Points (n) # Features (d) Kernel
PIE-2.7K face images 2731 2304 linear
MNIST digit images 4000 784 linear
ESS proteins 4728 16 RBF
AB-S abalones 4177 8 RBF
DEXT bag of words 2000 20000 linear
SIFT-1M Image features 1M 128 RBF

Table 1 Description of the datasets used in our Ensemble Nyström experiments [3,27,35,39,48].

‖K − K̃ens‖2
F =

∥∥∥
p

∑
r=1

µr(K − K̃ r)
∥∥∥

2

F
≤

p

∑
r=1

µr‖K − K̃ r‖2
F (20)

≤
p

∑
r=1

µr

[
‖K −Kk‖2

F +
√

64k‖XX⊤−ZrZ⊤
r ‖F nKmax

ii

]
. (21)

= ‖K −Kk‖2
F +

√
64k

p

∑
r=1

µr‖XX⊤−ZrZ⊤
r ‖F nKmax

ii . (22)

The result follows by the application of Theorem 1 toψ(S) = ∑p
r=1 µr‖XX⊤ −

ZrZ⊤
r ‖F in a way similar to the norm-2 case.

The bounds of Theorem 3 are similar in form to those of Theorem2. However,
the bounds for the Ensemble Nyström are tighter than those for any Nyström expert
based on a single sample of sizel even for a uniform weighting. In particular, for
µi =1/p for all i, the last term of the ensemble bound for norm-2 is smaller by a

factor larger thanµmaxp
1
2 = 1/

√
p.

3 Experiments

In this section, we present experimental results that illustrate the performance of the
Ensemble Nystr̈om method. We work with the data sets listed in Table 1, and com-
pare the performance of various methods for calculating themixture weights (µr ).
Throughout our experiments, we measure the accuracy of a low-rank approximation
K̃ by calculating the relative error in Frobenius and spectralnorms, that is, if we let
ξ = {2,F}, then we calculate the following quantity:

%error=
‖K − K̃‖ξ

‖K‖ξ
×100. (23)
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3.1 Ensemble Nystr̈om with various mixture weights

In this set of experiments, we show results for our Ensemble Nyström method using
different techniques to choose the mixture weights as previously discussed. We first
experimented with the first five datasets shown in Table 1. Foreach dataset, we fixed
the reduced rank tok=50, and set the number of sampled columns tol =3%×n.1

Furthermore, for the exponential and the ridge regression variants, we sampled a
set ofs=20 columns and used an additional 20 columns (s′) as a hold-out set for
selecting the optimal values ofη and λ . The number of approximations,p, was
varied from 2 to 30. As a baseline, we also measured the minimum and the mean
percent error across thep Nyström approximations used to constructK̃ens. For the
Frobenius norm, we also calculated the performance when using the optimalµ, that
is, we used least-square regression to find the best possiblechoice of combination
weights for a fixed set ofp approximations by settings=n.

The results of these experiments are presented in Figure 1 for the Frobenius norm
and in Figure 2 for the spectral norm. These results clearly show that the Ensemble
Nyström performance is significantly better than any of the individual Nystr̈om ap-
proximations. As mentioned earlier, the rank of the ensemble approximations can
be p times greater than the rank of each of the base learners. Hence, to validate the
results in Figures 1 and 2, we performed a simple experiment in which we com-
pared the performance of the best base learner to the best rank k approximation of
the uniform ensemble approximation (obtained via SVD of theuniform ensemble
approximation). The results of this experiment, presentedin Figure 3, suggest that
the performance gain of the ensemble methods is not due to this increased rank.

Furthermore, the ridge regression technique is the best of the proposed tech-
niques and generates nearly the optimal solution in terms ofthe percent error in
Frobenius norm. We also observed that whens is increased to approximately 5%
to 10% ofn, linear regression without any regularization performs about as well
as ridge regression for both the Frobenius and spectral norm. Figure 4 shows this
comparison between linear regression and ridge regressionfor varying values ofs
using a fixed number of experts (p=10). Finally we note that the Ensemble Nyström
method tends to converge very quickly, and the most significant gain in performance
occurs asp increases from 2 to 10.

3.2 Large-scale experiments

We now present an empirical study of the effectiveness of theEnsemble Nystr̈om
method on the SIFT-1M dataset in Table 1 containing 1million data points. As is
common practice with large-scale datasets, we worked on a cluster of several ma-
chines for this dataset. We present results comparing the performance of the Ensem-
ble Nystr̈om method, using both uniform and ridge regression mixture weights, with

1 Similar results (not reported here) were observed for other values ofk andl as well.
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Fig. 1 Percent error in Frobenius norm for Ensemble Nyström method using uniform (‘uni’), ex-
ponential (‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as well as the best (‘best
b.l.’) and mean (‘mean b.l.’) of thep base learners used to create the ensemble approximations.

that of the best and mean performance across thep Nyström approximations used
to construct̃Kens. We also make comparisons with theK-means adaptive sampling
technique [54, 55]. Although theK-means technique is quite effective at generat-
ing informative columns by exploiting the data distribution, the cost of performing
K-means becomes expensive for even moderately sized datasets, making it difficult
to use in large-scale settings. Nevertheless, in this work,we include theK-means
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Fig. 2 Percent error in spectral norm for Ensemble Nyström method using various mixture weights
and the best/mean of thep approximations. Legend entries are the same as in Figure 1.

method in our comparison, and present results for various subsamples of the SIFT-
1M dataset, withn ranging from 5K to 1M.

For a fair comparison, we performed ‘fixed-time’ experiments. We first searched
for an appropriatel such that the percent error for the Ensemble Nyström method
with ridge weights was approximately 10%, and measured the time required by the
cluster to construct this approximation. We then allotted an equal amount of time
(within 1 second) for the other techniques, and measured thequality of the resulting
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Fig. 3 Percent error in Frobenius norm for Ensemble Nyström method using uniform (‘uni’) mix-
ture weights, the optimal rank-k approximation of the uniform ensemble result (‘uni rank-k’) as
well as the best (‘best b.l.’) of thep base learners used to create the ensemble approximations.

approximations. For these experiments, we setk=50 andp=10, based on the results
from the previous section. Furthermore, in order to speed upcomputation on this
large dataset, we decreased the size of the validation and hold-out sets tos=2 and
s′=2, respectively.

The results of this experiment, presented in Figure 5, clearly show that the En-
semble Nystr̈om method is the most effective technique given a fixed amountof
time. Furthermore, even with the small values ofs ands′, Ensemble Nystr̈om with
ridge-regression weighting outperforms the uniform Ensemble Nystr̈om method.



Ensemble Nystr̈om 15

5 10 15 20 25

3.35

3.4

3.45

3.5

 Relative size of validation set

P
er

ce
nt

 E
rr

or
 (

F
ro

be
ni

us
)

 Effect of Ridge − PIE−2.7K

 

 

no−ridge
ridge
optimal

5 10 15 20 25
10.495

10.5

10.505

10.51

10.515

10.52

10.525

 Relative size of validation set

P
er

ce
nt

 E
rr

or
 (

F
ro

be
ni

us
)

 Effect of Ridge − MNIST

 

 

no−ridge
ridge
optimal

0 5 10 15 20 25

0.445

0.45

0.455

 Relative size of validation set

P
er

ce
nt

 E
rr

or
 (

F
ro

be
ni

us
)

 Effect of Ridge − ESS

 

 

no−ridge
ridge
optimal

0 5 10 15 20 25

26

26.5

27

27.5

28

28.5

 Relative size of validation set

P
er

ce
nt

 E
rr

or
 (

F
ro

be
ni

us
)

 Effect of Ridge − AB−S

 

 

no−ridge
ridge
optimal

5 10 15 20 25
54.5

55

55.5

56

 Relative size of validation set

P
er

ce
nt

 E
rr

or
 (

F
ro

be
ni

us
)

 Effect of Ridge − DEXT

 

 

no−ridge
ridge
optimal

Fig. 4 Comparison of percent error in Frobenius norm for the Ensemble Nyström method withp=
10 experts with weights derived from linear (‘no-ridge’) and ridge (‘ridge’) regression. The dotted
line indicates the optimal combination. The relative size of the validation set equalss/n×100.

We also observe that due to the high computational cost ofK-means for large
datasets, theK-means approximation does not perform well in this ‘fixed-time’
experiment. It generates an approximation that is worse than the mean standard
Nyström approximation and its performance increasingly deteriorates asn ap-
proaches 1M. Finally, we note that although the space requirements are 10 times
greater for Ensemble Nyström in comparison to standard Nyström (sincep= 10
in this experiment), the space constraints are nonethelessquite reasonable. For in-
stance, when working with 1M points, the Ensemble Nyström method with ridge
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Fig. 5 Large-scale performance comparison with SIFT-1M dataset. For a fixed computational time,
the Ensemble Nyström approximation with ridge weights tends to outperform other techniques.

regression weights only required approximately 1% of the columns ofK to achieve
an error of 10%.

4 Summary and Open Questions

A key element of Nystr̈om approximation is the number of sampled columns used
by it. More samples typically result in better accuracy. However, the number of
samples that can be processed by a single Nyström approximation is limited due to
the computational constraints, restricting its accuracy.In this work, we discussed an
ensemble based meta-algorithm for combining multiple Nyström approximations.
These ensemble algorithms show consistent and significant performance improve-
ment across a number of different data sets. Moreover, they naturally fit within a
distributed computing environment, thus making them quiteefficient in large-scale
settings. These ensemble algorithms also have better theoretical guarantees than in-
dividual Nystr̈om approximation.

One interesting fact revealed by the experiments is that as the number of individ-
ual Nystr̈om approximations is increased in the ensemble, the reconstruction error
does not go towards zero. The error tends to saturate after a relatively small num-
ber of learners and adding more does not benefit the ensemble.Even though this
counter-intuitive behavior is a good thing in practice since one does not need to
use a large number of base learners, it raises intriguing theoretical questions. Why
does the error from Ensemble Nyström converge? What is the value to which it is
converging? Can this error be brought arbitrarily close to zero? We believe that a
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better understanding of these questions may lead to even better ways of designing
ensemble algorithms for matrix approximation in the future.

5 Bibliographical and Historical Remarks

There has been a wide array of work on low-rank matrix approximation within the
numerical linear algebra and computer science communities. Most of it has been
inspired by the celebrated result of Johnson and Lindenstrauss [31], which showed
that random low-dimensional embeddings preserve Euclidean geometry. This re-
sult has led to a family of random projection algorithms, which involves projecting
the original matrix onto a random low-dimensional subspace[30, 37, 42]. Alterna-
tively, SVD can be used to generate ‘optimal’ low-rank matrix approximations, as
mentioned earlier. However, both the random projection andthe SVD algorithms in-
volve storage and operating on the entire input matrix. SVD is more computationally
expensive than random projection methods, though neither are linear inn in terms
of time and space complexity. When dealing with sparse matrices, there exist less
computationally intensive techniques such as Jacobi, Arnoldi, Hebbian and more
recent randomized methods [23,25,28,44] for generating low-rank approximations.
These iterative methods require computation of matrix-vector products at each step
and involve multiple passes through the data. Hence, these algorithms are not suit-
able for large, dense matrices. Matrix sparsification algorithms [1, 2], as the name
suggests, attempt to sparsify dense matrices to speed up future storage and com-
putational burdens, though they too require storage of the input matrix and exhibit
superlinear processing time.

Alternatively, sampling-based approaches can be used to generate low-rank ap-
proximations. Research in this area dates back to classicaltheoretical results that
show, for any arbitrary matrix, the existence of a subset ofk columns for which
the error in matrix projection (as defined in [33]) can be bounded relative to the
optimal rank-k approximation of the matrix [46]. Deterministic algorithms such as
rank-revealing QR [26] can achieve nearly optimal matrix projection errors. More
recently, research in the theoretical computer science community has been aimed
at deriving bounds on matrix projection error using sampling-based approxima-
tions, including additive error bounds using sampling distributions based on lever-
age scores, i.e., the squaredL2 norms of the columns [17, 22, 45]; relative error
bounds using adaptive sampling techniques [16,29]; and, relative error bounds based
on distributions derived from the singular vectors of the input matrix, in work re-
lated to the column-subset selection problem [10,19]. However, as discussed in [33],
the task of matrix projection involves projecting the inputmatrix onto a low-rank
subspace, which requires superlinear time and space with respect ton and is not
typically feasible for large-scale matrices.

There does however, exist another class of sampling-based approximation al-
gorithms that only store and operate on a subset of the original matrix. For arbi-
trary rectangular matrices, these algorithms are known as ‘CUR’ approximations
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(the name ‘CUR’ corresponds to the three low-rank matrices whose product is an
approximation to the original matrix). The theoretical performance of CUR ap-
proximations has been analyzed using a variety of sampling schemes, although
the column-selection processes associated with these analyses often require oper-
ating on the entire input matrix [19, 24, 40, 50]. In the context of symmetric posi-
tive semidefinite matrices, the Nyström method is the most commonly used algo-
rithm to efficiently generate low-rank approximations. TheNyström method was
initially introduced as a quadrature method for numerical integration, used to ap-
proximate eigenfunction solutions [6, 41]. More recently,it was presented in [53]
to speed up kernel algorithms and has been studied theoretically using a variety of
sampling schemes [7, 8, 14, 18, 32–34, 49, 52, 54, 55]. It has also been used for a
variety of machine learning tasks ranging from manifold learning to image segmen-
tation [21, 43, 51]. A closely related algorithm, known as the Incomplete Cholesky
Decomposition [4,5,20], can also be viewed as a specific sampling technique associ-
ated with the Nystr̈om method [5]. As noted by [11,52], the Nyström approximation
is related to the problem of matrix completion [11,12], which attempts to complete
a low-rank matrix from a random sample of its entries. However, the matrix com-
pletion setting assumes that the target matrix is low-rank and only allows for limited
access to the data. In contrast, the Nyström method, and sampling-based low-rank
approximation algorithms in general, deal with full-rank matrices that are amenable
to low-rank approximation. Furthermore, when we have access to the underlying
kernel function that generates the kernel matrix of interest, we can generate ma-
trix entries on-the-fly as desired, providing us with more flexibility accessing the
original matrix.
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