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A common problem in many areas of large-scale machine legurimvolves ma-
nipulation of a large matrix. This matrix may be a kernel nxadrising in Support
Vector Machines [9, 15], Kernel Principal Component Anéyf@7] or manifold
learning [43,51]. Large matrices also naturally arise lreoapplications, e.g., clus-
tering, collaborative filtering, matrix completion, andtst PCA. For these large-
scale problems, the number of matrix entries can easily ltedrorder of billions
or more, making them hard to process or even store. An atteasolution to this
problem involves the Nysbm method, in which one samples a small number of
columns from the original matrix and generates its low-rapkroximation using
the sampled columns [53]. The accuracy of the Nystrmethod depends on the
number columns sampled from the original matrix. Largerrthmber of samples,
higher the accuracy but slower the method.

In the Nystdbm method, one needs to perform SVD ohal matrix wherel is
the number of columns sampled from the original matrix. T8N&D operation is
typically carried out on a single machine. Thus, the maxinvaioe ofl used for an
application is limited by the capacity of the machine. Thsaivhy in practice, one
restrictsl to be less than 20 or 30K, even when the size of matrix is in millions.
This restricts the accuracy of the Ny&tn method in very large-scale settings.

This chapter describes a family of algorithms based on mestwf Nystbm
approximations calledznsemble Nystim algorithmgswhich yields more accurate
low-rank approximations than the standard Ngsirmethod. The core idea of En-
semble Nysim is to sample many subsets of columns from the originaliryatr
each containing a relatively small number of columns. Théystrom method is
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performed on each group independently in parallel, and ésalts are combined
yielding high accuracy. These ensemble algorithms ndyufialithin distributed
computing environments where their computational coss@aughly the same as
that of the standard Nystm method. This issue is of great practical significance
given the prevalence of distributed computing framework$@andle large-scale
learning problems. Several variants of these algorithnesdascribed, including
one based on simple averaging @Nystrom solutions, an exponential weighting
method, and a regression based method which consists pfagisty the mixture
parameters using a few sampled columns.

In Sect. 1, we first introduce the notation and basic conagidtsv-rank matrix
approximation. The standard Ny&tn method is also described. Then, we present
a number of Ensemble Ny#im algorithms in Sect. 1.2. In many applications, one
needs inverse of a large matrix e.g., SVM and Gaussian PreseBeriving approx-
imate inverse using the standard Ngsirmethod is easy but not so for the Ensem-
ble Nystbm. We further show in Sect. 1.3 how one can efficiently use ddooy’s
approximation with Ensemble Ny$im to generate approximate inverses.

Another interesting aspect of the Ensemble Nystmethods is their theoretical
properties that give explicit bounds for the reconstrucgoror for both the Frobe-
nius norm and the spectral norm. In Sect. 2, we give a deoivaif these bounds.
These arise by developing a different bound for the stanblgstrom method as
used in practice, i.e., using uniform random sampling oficois without replace-
ment. These novel generalization bounds guarantee a loetteergence rate for
Ensemble Nystim algorithms in comparison to the standard Ngstrmethod.

Sect. 3 demonstrates the results from Ensemble Biys&lgorithms on multiple
data sets. A comprehensive comparison against other nmetimvs clear perfor-
mance gains over the standard Ngstrmethod. Sect. 3.2 describes a large-scale
experiment with M points leading to a matrix of sizeM.x 1M. This is a huge
dense matrix, containing 1 trillion entries and its expletorage would require 4TB
space. We show that sampling based methods can easily lamdtienatrices and
the proposed Ensemble Ny&tn outperforms other state-of-the-art methods for a
fixed computational budget.

To conclude, we provide a summary of the chapter and disassa open
questions in Sect. 4. Further, related work is mentioneceirt.%.

1 Algorithms
Let T € R®*P pe an arbitrary matrix. We defife(}), j = 1...b, as thejth column
vector of T, T;),i=1...4a, as thath row vector ofT and||-|| thelz norm of a vector.

FurthermoreT (1) refers to thdth throughjth columns ofT andT ;. refers to the
ith throughjth rows of T. If rank(T) = r, we can write the thin Singular Value
Decomposition (SVD) of this matrix &6 = Ut Z71V+ whereZt € R™" is diagonal
and contains the singular values Bfsorted in decreasing order akly € R#*'
and V1 € RP*" have orthogonal columns that contain the left and right gy
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vectors ofT corresponding to its singular values. We denotd pyhe ‘best’ rankk
approximation taT, i.e., Tx=argmin, cga«b rankv)=kl| T — V||, where§ € {2,F}
and ||-||2 denotes the spectral norm aftd/= the Frobenius norm of a matrix. We
can describe this matrix in terms of its SVD &g = UT‘kZT‘kV{k whereZty is a
diagonal matrix of the tog singular values of andUr x andV y are the associated
left and right singular vectors.

Now letK € R™" be a symmetric positive semidefinite (SPSD) kernel or Gram
matrix with ranKK) =r < n, i.e. a symmetric matrix for which there exists an
X € RN*" such thatk = XTX. We will write the SVD ofK asK = USUT,
where the columns o) are orthogonal and& = diag(oi,...,0;) is diagonal.

The pseudo-inverse & is defined ak* = 5/_; o 2WOUO " andK+ = K1
whenK is full rank. Fork < r, Ky = z{‘:lotU(UU(‘)T = U] is the ‘best’
rankk approximation td, i.e.,Kx=argminkcgn<n ranik/)—kl[K =K'l s {27, With

IK = Kll2 = 0ks1 and|[K = Killr = \/3{_k;1 67 [23].

We will be focusing on generating an approximaﬂBmf K based on a sample
of I < nof its columns. We assume thlatolumns are sampled froi uniformly
without replacement. Le€ denote then x | matrix formed by these columns and
W thel x | matrix consisting of the intersection of thelseolumns with the cor-
responding rows of K. Note thatW is SPSD sinc& is SPSD. Without loss of
generality, the columns and rowsléfcan be rearranged based on this sampling so
thatK andC can be written as follows:

W KJ. W
K= 2 d C= . 1
[Kzl Kzz} an [sz @)

1.1 Standard Nystim method

The Nystom method use¢/ andC from (1) to approximat& . Assuming a uniform
sampling of the columns, the Ny&tn method generates a raklapproximatiorkK
of K for k < n defined by:

KP*=Ccw,C' =K, )

whereW(y is the bestk-rank approximation ofNV with respect to the spectral or
Frobenius norm anW/; denotes the pseudo-inverseWwf. The Nystbm method
thus approximates the tdgpsingular valuesX) and singular vectordJy) of K as:

- n ~ |
Ss— (T)Zw’k and U= \/;CUW,kZW,ka ©)

where 2y x contains the tork singular values ofV, andUy contains the corre-
sponding singular vectors. Whén=1 (or more generally, whenevé&r>rankC)),
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this approximation perfectly reconstructs three block&KofandK,, is approxi-
mated by the Schur Complement\Wfin K:
4)

RV = cwcT = [ W Ky ] .

K21 KoaW Ko

The time complexity of SVD oW to get topk singular values and vectors is
O(kI?) and matrix multiplication withC takesO(klIn). Hence, the total computa-
tional complexity of the Nystim approximation i©(kin) sincen >> 1.

1.2 Ensemble Nystim

In this section, we discuss a meta algorithm called the Ehkeiystiom algo-
rithm. We treat each approximation generated by the Mysimethod for a sample
of | columns as amxpertand combinep > 1 such experts to derive an improved
hypothesis, typically more accurate than any of the originperts.

The learning set-up is defined as follows. We assume a fixetgekéunction
K: 2 xZ — R that can be used to generate the entries of a kernel mitrix
The learner receives a s8tof |p columns randomly selected from matix uni-
formly without replacemenSis decomposed intp subsetsS;,.. ., S,. Each subset
S, re[1, p], containd columns and is used to define a ranklystdm approxima-
tion K. Dropping the rank subscriftin favor of the sample index, K, can be
written asK; :CrWﬁ“CrT, whereC, andW, denote the matrices formed from the
columns ofS andW;" is the pseudo-inverse of the raklapproximation ofWw,.
The learner further receives a samyl®f s columns used to determine the weight
U € R attributed to each expelt;. Thus, the general form of the approximation,
K®e"S generated by the Ensemble Nystr algorithm, withk < rank(K®") < pk, is

- p
K =S Ky (5)
rzl

C1 W7 C1 '

: 3 3 (6)
Cp HpW Cp

As noted by [36], (6) provides an alternative descriptiothaf Ensemble NysbHim
method as a block diagonal approximationéf,,, whereWepsis thelp x Ip SPSD
matrix associated with thgp sampled columns.

The mixture weightg, can be defined in many ways. The most straightforward
choice consists of assigning equal weight to each expeet1/p, r € [1, p]. This
choice does not require the additional sam)ebut it ignores the relative quality
of each Nystbm approximation. Nevertheless, this simptéform methodalready
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generates a solution superior to any one of the approxinmﬁo used in the com-
bination, as we shall see in the experimental section.

Another method, thexponential weight methodonsists of measuring the re-
construction errog; of each experK; over the validation sampM and defining
the mixture weight agt, =exp(—n&:)/Z, wheren >0 is a parameter of the algo-
rithm andZ a normalization factor ensuring that the veqtiee (U1, . . ., Up) belongs
to the simplexA of RP: A={p € RP: u>0AP ; g = 1}. The choice of the mix-
ture weights here is similar to that used in the Weighted Migjalgorithm [38]. Let
Ky denote the matrix formed by using the samples fkoas its columns and lé¢Y
denote the submatrix dof containing the columns corresponding to the columns
inV. The reconstruction errdy = ||KY — Ky || can be directly computed from these
matrices.

A more general class of methods consists of using the saxhptetrain the
mixture weightgy, to optimize a regression objective function such as thevaig:

P
nLinAllu||5+||ZurKrV—KvH%, (7)
r=1

whereKy denotes the matrix formed by the columns of the samylesndA > 0.
This can be viewed as a ridge regression objective functidradmits a closed form
solution. We will refer to this method as thielge regression methodNote that to
ensure that the resulting matrix is SPSD for use in subsedwenel-based algo-
rithms, the optimization problem must be augmented withdsiad non-negativity
constraints. This is not necessary however for reducingebenstruction error, as
in our experiments. Also, clearly, a variety of other regies algorithms such as
Lasso can be used here instead.

The total complexity of the Ensemble Nyéin algorithm isO(pl3+ plkn+Cy,),
whereC, is the cost of computing the mixture weights, used to combine thp
Nystrom approximations. In general, the cubic term dominatesangplexity since
the mixture weights can be computed in constant time for thiform method, in
O(psn) for the exponential weight method, or @( p*-+ p?ns) for the ridge regres-
sion method wher®(p?ns) time is required to compute @gx p matrix andO(p®)
time to invert it. Furthermore, although the Ensemble Nymstialgorithm requires
p times more space and CPU cycles than the standarddystrethod, these addi-
tional requirements are quite reasonable in practice. pheesrequirement is still
manageable for even large-scale applications givenglimtypically O(1) and is
usually a very small percentage m{see Section 3 for further details). In terms of
CPU requirements, we note that this algorithm can be eaailglielized, as alp
experts can be computed simultaneously. Thus, with a cle$tp machines, the
running time complexity of this algorithm is nearly equalthat of the standard
Nystrom algorithm withl samples.
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1.3 Ensemble Woodbury approximation

In many applications, one needs to invert a matkx+ Al), whereA is a positive
scalar and is the identity matrix. The Woodbury approximation is a wébol to
use alongside low-rank approximations to efficiently (appraximately) invert ker-
nel matrices. We are able to apply the Woodbury approximatioce the Nystim
method represents as the product of low-rank matrices. This is clear from the
definition of the Woodbury approximation:

(A+BCd) t=A"1-AlB(Ct4dA!B) ldA L (8)

whereA = Al andK = BCd in the context of the Nystm method. In contrast,

the Ensemble Nystm method represent§ as the sum of products of low-rank
matrices, where each of tlpgterms corresponds to a base learner. Hence, we cannot
directly apply the Woodbury approximation as presented/@b®here is however,

a natural extension of the Woodbury approximation in thigirsg which at the
simplest level involves running the approximatiprtimes. Starting withp base
learners with their associated weights, ik, and y; for r € [1, p], and defining

To = Al, we perform the following series of calculations:

Tt = (To+mKy)™?
TZ_1 = (T14uKo) ™t

Tpt = (Tp-1+HpKp) .

To computeT; %, notice that we can use Woodbury approximation as stateg)in (
since we can expressllz 1 as the product of low-rank matrices and we know that
TO*1 = 1|, More generally, for K i < p, given an expression dtj as a product
of low-rank matrices, we can efficiently compl]té1 using the Woodbury approxi-
mation (we use the low-rank structure to avoid ever computirstoring a fullh x n
matrix). Hence, after performing this seriestalculations, we are left with the
inverse ofT ,, which is exactly the quantity of interest sin€g = Al + ZleurKr.
Although this algorithm requireg iterations of the Woodbury approximation, these
iterations can be parallelized in a tree-like fashion. Hemehen working on a clus-
ter, using an Ensemble Nys&tn approximation along with the Woodbury approxi-
mation requires only log p) more time than using the standard Ngsir method.

2 Theoretical Analysis

We now present theoretical results that compare the qualitye Nystbm approx-
imation to the ‘best’ low-rank approximation, i.e., the appmation constructed
from the top singular values and singular vector¥&ofThis work, related to [18],
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provides performance bounds for the Nystr method as used in practice, i.e., us-
ing uniform sampling without replacement. It holds for bttle standard Nysbm
method as well as the Ensemble Ngstrmethod discussed in Section 1.2.

Our theoretical analysis of the Ny8tn method uses some results previously
shown by [18] as well as the following generalization of MaBnid’s concentration
bound to sampling without replacement [13].

Theorem 1.Let Z,...,Z be a sequence of random variables sampled uniformly
without replacement from a fixed set of il elements Z, and lep: Z' — R be a
symmetric function such that for altil,l]andforall z,...,z€Zand %,...,4€Z,
lo(za,....2)—@(21,...,Z-1,Z,Z+1,...,2)| <c. Then, for alle >0, the following
inequality holds:

Prlo—elg] > ¢] < exp[7Z5], )

wherea (I,u)

— lu 1
~ I4+u-1/2 1-1/(2maxXl.u}) -

We define theselection matrixcorresponding to a sample bitolumns as the
matrix Se R™! defined byS; =1 if the ith column ofK is among those sampled,
Sj =0 otherwise. ThusC =KS is the matrix formed by the columns sampled.
SinceK is SPSD, there existé € RN*" such thatk = X "X. We shall denote by
K max the maximum diagonal entry &f, K hax=max Kj;, and bydmax the distance
max; 1/Kii +Kjj — 2Kjj.

2.1 Standard Nysiim method

The following theorem gives an upper bound on the norm-2reafdhe Nystom

approximation of the form|K — K|2/||K||2 < [|K = Kk|l2/||K||2 + O(1/+1) and

an upper bound on the Frobenius error of the Nystlapproximation of the form
~ 1

K =Kllg/lIKllF < [[K =Kilr/[K|[e +O(1/14).

Theorem 2.Let K denote the rank-k Nygim approximation oK based on |
columns sampled uniformly at random without replacemennfK, and Ky the
best rank-k approximation ¢f. Then, with probability at least — J, the following
inequalities hold for any sample of size I:

1K =Kllz < K = Kill2 + 2K max|1+ /5505 iy dga,/Kmax}
IK = K|l < K —Kle +
1 1
[%]‘H’]Kmax{l-f— n1/2/3 drﬁax/K } ,
wherep(1,n) = 1— iy

Proof. To bound the norm-2 error of the Ny8tn method in the scenario of sam-
pling without replacement, we start with the following gealeinequality given
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by [18][proof of Lemma 4]:
1K =Kl < [[K = Kil2+2[XX T =ZZ "2, (10)

whereZ = \/}TXS. We then apply the McDiarmid-type inequality of Theorem 1 to
@(S)=||XXT—ZZ"||,. LetS be a sampling matrix selecting the same columns as
S except for one, and le&t’ denote, /T XS'. Letz andZ' denote the only differing
columns ofZ andZ’, then

0(S) -~ (9| <22 ~zZ' o= (Z-2)Z" +2Z~2)"|.  (11)
< 2|7 —zl2max{]|z]|2, | Z 2} (12)

Columns ofZ are those oKX scaled by,/n/I. The norm of the difference of two
columns ofX can be viewed as the norm of the difference of two featureovect
associated te& and thus can be bounded by . Similarly, the norm of a single

1
column ofX is bounded by Zax This leads to the following inequality:

2n 1
0(S) ~ 9(S)| < Tk frax. (13)

The expectation op can be bounded as follows:
n
Vi

where the last inequality follows Corollary 2 of [34]. Theegualities (13) and (14)
combined with Theorem 1 give a bound (X " —ZZ " ||, and yield the statement
of the theorem.

The following general inequality holds for the Frobeniusoerof the Nystbm
method [18]:

e[@] =e[|XX " ~ZZ 2] < e[ XX " ~ZZ T[] < —=Kmax (14)

IK —KJ[[E < [K =Kyl + VBAK[XX " —ZZ [|Z nK '™, (15)

Bounding the term|XX " —ZZ T||2 as in the norm-2 case and using the concentra-
tion bound of Theorem 1 yields the result of the theorem.

2.2 Ensemble Nystim method

The following error bounds hold for Ensemble Nystr methods based on a convex
combination of Nysidm approximations.

Theorem 3.Let S be a sample of pl columns drawn uniformly at random witho
replacement fronK, decomposed into p subsamples of sizeJ,.SS,. For r e
[1,p], let K, denote the rank-k Nysim approximation oK based on the sample
S, and letK denote the best rank-k approximationkof Then, with probability at



Ensemble Nystim 9

least1— 9, the following |nequaI|t|es hold for any sample S of size qdl &or any
U in the simplexA and Kens— Z _ 1 MK

K — K2 < |K — Kll2+

\;Kmax[l‘i‘ﬂmaxp A 1/23 |095 max/Kmax}

K —Kee < [[K — Kile +

1
[ ]KnKmax[l‘Fﬂmaxp \/ no 1/23 )|095 dgax/Kmax}27

Proof. Forr € [1,p], let Z, = y/n/I XS;, whereS; denotes the selection matrix
corresponding to the sampe. By definition ofK€"Sand the upper bound diK —
K.||2 already used in the proof of theorem 2, the following holds:

_ p _ p _
K=K = | 3 poik =Ko, < 3 wllK=Kill (16)
r= r=1
p
< 3wl —Kill2+2XX " ~Z:Z/||2) (17)
r=
p
=K =Killa+2 Y plXXT ~2:2] |2 (18)
r=

We apply Theorem 1t@(S)=5F_, i [[XX T —Z,Z,||2. LetS be a sample differing
from Sby only one column. Observe that changing one column of thedmpleS
changes only one subsamg@eand thus only one term || XX T —Z,Z,"||2. Thus,
in view of the bound (13) on the change|gX " —Z,Z" ||, the following holds:

2n

[9(S) —9(9)| < TllmaxdmameaXv (19)

The expectation o can be straightforwardly bounded by:

p p n n
oS =S we|XX"=Z,Z2 2] < § tr —Kmax= —K
[®(9)] r; rel]l iZy |[2] r; g Hmax = rKmax

using the bound (14) for a single expert. Plugging in thisargmund and the Lips-
chitz bound (19) in Theorem 1 yields our norm-2 bound for thedinble Nystim
method.

For the Frobenius error bound, using the convexity of thé&ntus norm square
|-||2 and the general inequality (15), we can write
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Dataset || Type of data | # Points () | # Featuresd) | Kernel
PIE-2.7K|| face images 2731 2304 linear
MNIST digit images 4000 784 linear
ESS proteins 4728 16 RBF
AB-S abalones 4177 8 RBF
DEXT bag of words 2000 20000 linear
SIFT-1M || Image features 1M 128 RBF

Table 1 Description of the datasets used in our Ensemble Mys&xperiments [3,27, 35, 39, 48].

K —Kem2 =

ZIJrK Kr

r=

\ ZuruK K2 (20)
p
<3 e 1K = Kl + VE&K|XXT = Z,Z] [ KP™|.  (21)

K —K|g + V64 zurnxxT Z,:Z/ || ki (22)

The result follows by the application of Theorem 1 ¢dS) =3P | p|IXXT —
Z:Z/ ||r in a way similar to the norm-2 case.

The bounds of Theorem 3 are similar in form to those of Thea2efowever,
the bounds for the Ensemble Ny@&tn are tighter than those for any Nyd&tn expert
based on a single sample of sizeven for a uniform weighting. In particular, for
i =1/p for all i, the last term of the ensemble bound for norm-2 is smaller by a

factor larger thammaxp% =1/\/p.

3 Experiments

In this section, we present experimental results thattithte the performance of the
Ensemble Nystim method. We work with the data sets listed in Table 1, and-com
pare the performance of various methods for calculatingrtheure weights ).
Throughout our experiments, we measure the accuracy of-edokapproximation

K by calculating the relative error in Frobenius and spectoains, that is, if we let

& ={2,F}, then we calculate the following quantity:

1K —K]¢

%error=
ILSIF3

x 100 (23)
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3.1 Ensemble Nystim with various mixture weights

In this set of experiments, we show results for our Ensempkaim method using
different techniques to choose the mixture weights as pusly discussed. We first
experimented with the first five datasets shown in Table 1ekoh dataset, we fixed
the reduced rank te=50, and set the number of sampled columnk+8% x n.!
Furthermore, for the exponential and the ridge regresséiants, we sampled a
set ofs=20 columns and used an additional 20 colunsisds a hold-out set for
selecting the optimal values @f andA. The number of approximationg, was
varied from 2 to 30. As a baseline, we also measured the mimiand the mean
percent error across theNystrom approximations used to constrict"s For the
Frobenius norm, we also calculated the performance wheg tisé optimalu, that
is, we used least-square regression to find the best possiblee of combination
weights for a fixed set gb approximations by setting=n.

The results of these experiments are presented in Figurehigé-robenius norm
and in Figure 2 for the spectral norm. These results cletwdyghat the Ensemble
Nystrom performance is significantly better than any of the irdiial Nystdbm ap-
proximations. As mentioned earlier, the rank of the ensempproximations can
be p times greater than the rank of each of the base learners eHenealidate the
results in Figures 1 and 2, we performed a simple experimenthich we com-
pared the performance of the best base learner to the bésk epproximation of
the uniform ensemble approximation (obtained via SVD ofuhdorm ensemble
approximation). The results of this experiment, preseimdegure 3, suggest that
the performance gain of the ensemble methods is not duestintireased rank.

Furthermore, the ridge regression technique is the bedteoptoposed tech-
niques and generates nearly the optimal solution in ternthe@percent error in
Frobenius norm. We also observed that wiséa increased to approximately 5%
to 10% ofn, linear regression without any regularization performeuitas well
as ridge regression for both the Frobenius and spectral.réigure 4 shows this
comparison between linear regression and ridge regrefsiomrying values ok
using a fixed number of expertp-£10). Finally we note that the Ensemble Nystr
method tends to converge very quickly, and the most sigmifigain in performance
occurs ag increases from 2 to 10.

3.2 Large-scale experiments

We now present an empirical study of the effectiveness otifgemble Nystim
method on the SIFT-1M dataset in Table 1 containingillion data points. As is
common practice with large-scale datasets, we worked onstetl of several ma-
chines for this dataset. We present results comparing tfierpence of the Ensem-
ble Nystbm method, using both uniform and ridge regression mixtieights, with

1 Similar results (not reported here) were observed for otheregabfk andl as well.



12 Sanjiv Kumar, Mehryar Mohri and Ameet Talwalkar

Ensemble Method - PIE-2.7K Ensemble Method — MNIST

—=—mean b.l. —=—mean b.l.

——bestb.l L ——bestb.l.

\.—-—-\.,_..__ —uni —uni
exp 15 exp
—+ridge —4=ridge
== -optimal ! - = -optimal
4 P 14
12 ¥

Percent Error (Frobenius)
Percent Error (Frobenius)
i
5

5 10 15 20 25 5 10 15 20 25 30
Number of base learners (p) Number of base learners (p)

Ensemble Method - ESS Ensemble Method — AB-S
0.65 40
—=—mean b.l. —=—mean b.l.
——bestb.l. ——bestb.l.
/\’\” —uni 38 —uni
0.6 exp exp
—4—ridge 36 —4—ridge
M - - -optimal

@
®

0.55

o

@
@
S

Percent Error (Frobenius)
8

Percent Error (Frobenius)
@
8

o
IS
o

26

. 24 . . . .
o 40 5 10 15 20 25 30 0 5 10 15 20
Number of base learners (p) Number of base learners (p)

Ensemble Method — DEXT
. .//\-’—-'\—»———4

—=—mean b.l.
——bestb.l.

@
@

3
)

3
2

o
N

—uni
exp

—4ridge

== -optimal

3
S

@
@

Percent Error (Frobenius)

o
[}

o
£

5 10 15 20 25 30
Number of base learners (p)

Fig. 1 Percent error in Frobenius norm for Ensemble Nystmethod using uniform (‘uni’), ex-
ponential (‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mture weights as well as the best (‘best
b.l") and mean (‘mean b.l.) of thp base learners used to create the ensemble approximations.

that of the best and mean performance acrospthNgstrom approximations used
to construcK €S We also make comparisons with tiemeans adaptive sampling
technique [54, 55]. Although thK-means technique is quite effective at generat-
ing informative columns by exploiting the data distributjdhe cost of performing
K-means becomes expensive for even moderately sized datasatng it difficult

to use in large-scale settings. Nevertheless, in this wwekinclude theK-means
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Fig. 2 Percent error in spectral norm for Ensemble Nytstimethod using various mixture weights
and the best/mean of theapproximations. Legend entries are the same as in Figure 1.

method in our comparison, and present results for variobsasuples of the SIFT-
1M dataset, withn ranging from 5K to 1M.

For a fair comparison, we performed ‘fixed-time’ experingem/e first searched
for an appropriaté such that the percent error for the Ensemble Nyatmethod
with ridge weights was approximately 10%, and measureditie tequired by the
cluster to construct this approximation. We then allottacegual amount of time
(within 1 second) for the other techniques, and measureduhlty of the resulting
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Effect of Rank - PIE-2.7K Effect of Rank - MNIST
4.4 15, T T
——bestb.l.
4.3 —
—uni 145 bestb..
4.2 = == uni rank-k —un?
145 = = = uni rank-k

i
ad
)

i
[
o

Percent Error (Frobenius)
R &

i
[
o

-
=y

5 10 15 5 10 15
Number of base learners (p) Number of base learners (p)
Effect of Rank - ESS Effect of Rank — AB-S

——bestb.l.
—uni
= = = uni rank-k 35 ——bestb.l.

—uni
= = = uni rank—k f

o
o

[N
X

o

o

a
W
@

o

14
[
R

w
=

Percent Error (Frobenius)
&

Percent Error (Frobenius)

W
S

0.4 9

5 10 15 20 20
Number of base learners (p)

5 10 15
Number of base learners (p)
Effect of Rank — DEXT

69

——bestb.l.
——uni
= = = uni rank-k

@
©
o
.
”
’

)
) ~N @
N o &

Percent Error (Frobenius)
3
(5]

@
>

@
o
3l

5 10 15 20
Number of base learners (p)

Fig. 3 Percent error in Frobenius norm for Ensemble Nyrstmethod using uniform (‘uni’) mix-
ture weights, the optimal rank-approximation of the uniform ensemble result (‘uni rdakas
well as the best (‘best b.l") of thpbase learners used to create the ensemble approximations.

approximations. For these experiments, weks€50 andp=10, based on the results
from the previous section. Furthermore, in order to speedampputation on this
large dataset, we decreased the size of the validation ddebhbsets ts=2 and

s =2, respectively.

The results of this experiment, presented in Figure 5, glednow that the En-
semble Nysidm method is the most effective technique given a fixed amotint
time. Furthermore, even with the small values@inds’, Ensemble Nystrm with
ridge-regression weighting outperforms the uniform EnslenNystdm method.
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line indicates the optimal combination. The relative size efvalidation set equaks/nx 100.

We also observe that due to the high computational codf-ofieans for large
datasets, th&-means approximation does not perform well in this ‘fixedéi
experiment. It generates an approximation that is worse tha mean standard
Nystrom approximation and its performance increasingly detetés asn ap-
proaches 1M. Finally, we note that although the space remgnts are 10 times
greater for Ensemble Ny&tm in comparison to standard Ny&tn (sincep=10
in this experiment), the space constraints are nonethgléts reasonable. For in-
stance, when working with 1M points, the Ensemble Nystrmethod with ridge
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Large Scale Ensemble Study
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Fig. 5 Large-scale performance comparison with SIFT-1M dataset. Feeédomputational time,
the Ensemble Nysbm approximation with ridge weights tends to outperform pteehniques.

regression weights only required approximately 1% of tHaroos ofK to achieve
an error of 10%.

4 Summary and Open Questions

A key element of Nystim approximation is the number of sampled columns used
by it. More samples typically result in better accuracy. twer, the number of
samples that can be processed by a single Hgsapproximation is limited due to
the computational constraints, restricting its accurhcthis work, we discussed an
ensemble based meta-algorithm for combining multiple Nystapproximations.
These ensemble algorithms show consistent and signifieafdrmance improve-
ment across a number of different data sets. Moreover, thayrally fit within a
distributed computing environment, thus making them qgeffieient in large-scale
settings. These ensemble algorithms also have bettertieadrguarantees than in-
dividual Nystbm approximation.

One interesting fact revealed by the experiments is thdteasumber of individ-
ual Nystbm approximations is increased in the ensemble, the retmtisin error
does not go towards zero. The error tends to saturate aftdatively small num-
ber of learners and adding more does not benefit the enseBlde. though this
counter-intuitive behavior is a good thing in practice sirane does not need to
use a large number of base learners, it raises intriguingrétieal questions. Why
does the error from Ensemble Ny&m converge? What is the value to which it is
converging? Can this error be brought arbitrarily closeam2 We believe that a
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better understanding of these questions may lead to evésr betys of designing
ensemble algorithms for matrix approximation in the future

5 Bibliographical and Historical Remarks

There has been a wide array of work on low-rank matrix appnaxion within the
numerical linear algebra and computer science communNest of it has been
inspired by the celebrated result of Johnson and Lindenstrf81], which showed
that random low-dimensional embeddings preserve Eudlidgmmetry. This re-
sult has led to a family of random projection algorithms, ethinvolves projecting
the original matrix onto a random low-dimensional subs&6e37, 42]. Alterna-
tively, SVD can be used to generate ‘optimal’ low-rank maaipproximations, as
mentioned earlier. However, both the random projectionthads VD algorithms in-
volve storage and operating on the entire input matrix. S¥dore computationally
expensive than random projection methods, though neitleclireear inn in terms
of time and space complexity. When dealing with sparse nestyithere exist less
computationally intensive techniques such as Jacobi, ldinHebbian and more
recent randomized methods [23, 25, 28,44] for generatiwgrémk approximations.
These iterative methods require computation of matrixemgroducts at each step
and involve multiple passes through the data. Hence, tHgeatams are not suit-
able for large, dense matrices. Matrix sparsification atlgors [1, 2], as the name
suggests, attempt to sparsify dense matrices to speed une fstbrage and com-
putational burdens, though they too require storage ofrtpatimatrix and exhibit
superlinear processing time.

Alternatively, sampling-based approaches can be usednergie low-rank ap-
proximations. Research in this area dates back to claghieatetical results that
show, for any arbitrary matrix, the existence of a subsét oblumns for which
the error in matrix projection (as defined in [33]) can be lieohrelative to the
optimal rankk approximation of the matrix [46]. Deterministic algoritsrauch as
rank-revealing QR [26] can achieve nearly optimal matrigj@ction errors. More
recently, research in the theoretical computer scienceraamty has been aimed
at deriving bounds on matrix projection error using sanwgpliased approxima-
tions, including additive error bounds using samplingrdistions based on lever-
age scores, i.e., the squarkegl norms of the columns [17, 22, 45]; relative error
bounds using adaptive sampling techniques [16,29]; atative error bounds based
on distributions derived from the singular vectors of thpunhmatrix, in work re-
lated to the column-subset selection problem [10,19]. Hewes discussed in [33],
the task of matrix projection involves projecting the inputrix onto a low-rank
subspace, which requires superlinear time and space vdffece ton and is not
typically feasible for large-scale matrices.

There does however, exist another class of sampling-bggeaxdmation al-
gorithms that only store and operate on a subset of the atigmatrix. For arbi-
trary rectangular matrices, these algorithms are knowrCatR’ approximations
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(the name ‘CUR’ corresponds to the three low-rank matrickesg product is an
approximation to the original matrix). The theoretical fpemance of CUR ap-
proximations has been analyzed using a variety of samplihgraes, although
the column-selection processes associated with thesgsasabften require oper-
ating on the entire input matrix [19, 24, 40, 50]. In the cahigf symmetric posi-
tive semidefinite matrices, the Ny8im method is the most commonly used algo-
rithm to efficiently generate low-rank approximations. Thgstrtom method was
initially introduced as a quadrature method for numerioé&gration, used to ap-
proximate eigenfunction solutions [6, 41]. More recenitiyywas presented in [53]
to speed up kernel algorithms and has been studied thethgtising a variety of
sampling schemes [7, 8, 14, 18, 32-34, 49, 52, 54, 55]. It lssleen used for a
variety of machine learning tasks ranging from manifoldméag to image segmen-
tation [21, 43, 51]. A closely related algorithm, known as thcomplete Cholesky
Decomposition [4,5,20], can also be viewed as a specific Bagtechnique associ-
ated with the Nysttm method [5]. As noted by [11,52], the Ny@&in approximation
is related to the problem of matrix completion [11, 12], whattempts to complete
a low-rank matrix from a random sample of its entries. Howetree matrix com-
pletion setting assumes that the target matrix is low-ramkanly allows for limited
access to the data. In contrast, the Ngstrmethod, and sampling-based low-rank
approximation algorithms in general, deal with full-ranktnices that are amenable
to low-rank approximation. Furthermore, when we have ateghe underlying
kernel function that generates the kernel matrix of intenege can generate ma-
trix entries on-the-fly as desired, providing us with moreifidity accessing the
original matrix.
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