
LaDeDa: Languages for

Debuggable Distributed Algorithms

Mark S. Miller
Google, Inc.

Tom Van Cutsem∗

Vrije Universiteit Brussel

1 Language as Notation for Incorrect Programs

When programming language designs are presented, the examples are almost
exclusively of correct programs. Most attention of programming language de-
signers is indeed on the beauty and elegance of correct programs. For incorrect
programs, great design attention is paid to catching errors early—such as fancy
static type systems—so that many incorrect programs are never run.

Due to the success of these efforts, many programs are either correct or in-
admissible, conserving on the need for programmer attention. As a result, most
of the attention working programmers spend looking at code is spent debugging
incorrect running code. Often this is code written by others and only partially
understood. What properties should such code have? How can programming
language design encourage incorrect programs to have those properties that
facilitate debugging?

Distributed programs introduce additional difficult bugs of a different char-
acter. How should distributed language design facilitate the debugging of dis-
tributed programs?

We explain how these considerations have affected four distributed language
designs (E [1], AmbientTalk [5], Joe-E/Waterken [4], Dr. SES [2]) and one
distributed debugging tool (Causeway [3]).

2 Bounding Boxes for Answering Questions

When debugging, you’re doing detective work. You do not need to understand
the program as a whole, and often you cannot afford to. Rather, you’re trying
to track down a particular anomaly: Why did this bad thing happen? How
much of the program is relevant? How much of its execution trace?

Ray tracing algorithms raise an analogous question: Of all the complex
shapes in the scene, which of them intersect the ray? Their elegant solution
is a system of simple bounding boxes so most of the scene can be cheaply

∗Tom Van Cutsem is a post-doctoral Fellow of the Research Foundation, Flanders (FWO)

1



disqualified, so that we can afford the complex calculations needed for the rest.
Likewise, we need to disqualify most of the program from relevance to answering
questions relevant to debugging. Possible causal influence is the most debugging-
relevant question. The notations in which we express programs form the data
structure we are searching.

• Mostly-functional programming bounds our worries about side effects to
those parts of the program that need side effects for their expression.

• Strict lexical scoping combined with call-by-value argument passing bounds
our worries about what code may have assigned to a given location.

• Encapsulation bounds our worries about what code may have directly
violated a local invariant.

• Object-capability rules and style—Defensive Consistency and the Princi-
ple of Least Authority—bound worries about indirect invariant violations.

• Conventional sequential control flow bounds our worries about plan inter-
ference to those intervals when invariants are suspended.

• Pure message-passing concurrency bounds our worries about possible non-
sequential interleavings to arrival order non-determinacy.

• Monotonic order-independent state transitions further bound indetermi-
nacy. (Example: single-assignment of promises or logic variables.)

• Pure communicating event-loop concurrency, by avoiding blocking re-
ceives, bounds our worries about distributed invariants to non-stack state.

• Broken promise contagion bounds asynchronous failure handling to data
dependencies.

• Causality tracing bounds worries about prior corruption to happened be-
fore.

• In a sequential debugger, visually emphasizing stack order over process
order helps direct our suspicions to the more likely suspects first.

• When visualizing causality traces, emphasizing message-order over process
order helps direct our suspicions to the more likely suspects first.

3 Case study: message passing

E—a pure event-loop-concurrent distributed object-capability language—has
two message passing constructs, the immediate call (written “.”) and the even-
tual send (written “←”). Each provides strong side effect guarantees, with
opposite strengths and weaknesses. The familiar “b.foo(c)” immediately trans-
fers control to b, which is necessarily local, suspending the caller until b returns.
By contrast “bP ← foo(c)” queues, in the event loop hosting b, the need to
deliver the foo message to b. bP denotes a promise to b, indicating that b may
be remote. Whether or not b is remote, this delivery only happens in a separate
turn of the event loop, starting from an empty stack.

Table 1 summarizes the advantages and disadvantages of these two message
passing constructs. Both provide a strong set of complementary guarantees.

2



Immediate call Eventual send
a performs: b.foo(c) b<-foo(c)

Virtue No interleaving occurs
between a calling foo
and foo being called on
b.

a proceeds and can safely repair sus-
pended invariants before foo can
ever affect its heap. Likewise, b
starts processing foo from an empty
stack, so there is no need to consider
suspended invariants on the stack.
b can assume all invariants have al-
ready been restored.

Hazard b gets control while a
is suspended, introduc-
ing potential plan inter-
ference if b violates a’s
invariants.

Arbitrary code may have run be-
tween a sending foo and b executing
foo. Therefore b must recheck all
stateful assumptions on entry, other
than restored invariants.

Table 1: Immediate call versus Eventual send

4 Summary

This position paper makes the case for debuggable distributed programming
languages. Based on our prior experience in building distributed languages and
debugging tools, we put forward a number of language properties that aid the
programmer in reasoning about possibly faulty (distributed) code.

References

[1] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers:
Programming in E as plan coordination. In Symposium on Trustworthy
Global Computing, volume 3705 of LNCS, pages 195–229, April 2005.

[2] M. S. Miller. Dr. ses: Distributed resilient secure ecmascript, April 2010.
http://es-lab.googlecode.com/files/dr-ses.pdf.

[3] T. Stanley, T. Close, and M. S. Miller. Causeway: A message-oriented
distributed debugger. Technical Report HPL-2009-78, HP Labs, April 2009.

[4] M. Stiegler and J. Tie. Introduction to waterken programming. Technical
Report HPL-2010-89, HP Labs, August 2010.

[5] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De
Meuter. Ambienttalk: object-oriented event-driven programming in mobile
ad hoc networks. In Inter. Conf. of the Chilean Computer Science Society
(SCCC), pages 3–12. IEEE Computer Society, 2007.

3

http://es-lab.googlecode.com/files/dr-ses.pdf

	Language as Notation for Incorrect Programs
	Bounding Boxes for Answering Questions
	An Example
	Summary

