
How to Split a Flow ?
Tzvika Hartman∗, Avinatan Hassidim∗, Haim Kaplan∗†, Danny Raz∗‡, Michal Segalov∗

∗Google, Inc. Israel R&D Center
†Tel Aviv University
‡Technion, Israel

{tzvika, avinatan, haimk, razdan, msegalov}@google.com

Abstract—Many practically deployed flow algorithms produce
the output as a set of values associated with the network links.
However, to actually deploy a flow in a network we often need to
represent it as a set of paths between the source and destination
nodes.

In this paper we consider the problem of decomposing a flow
into a small number of paths. We show that there is some fixed
constant β > 1 such that it is NP-hard to find a decomposition
in which the number of paths is larger than the optimal by
a factor of at most β. Furthermore, this holds even if arcs
are associated only with three different flow values. We also
show that straightforward greedy algorithms for the problem can
produce much larger decompositions than the optimal one, on
certain well tailored inputs. On the positive side we present a new
approximation algorithm that decomposes all but an ε-fraction of
the flow into at most O(1/ε2) times the smallest possible number
of paths.

We compare the decompositions produced by these algorithms
on real production networks and on synthetically generated data.
Our results indicate that the dependency of the decomposition
size on the fraction of flow covered is exponential. Hence, covering
the last few percent of the flow may be costly, so if the application
allows, it may be a good idea to decompose most but not all the
flow. The experiments also reveal the fact that while for realistic
data the greedy approach works very well, our novel algorithm
which has a provable worst case guarantee, typically produces
only slightly larger decompositions.

I. INTRODUCTION

Often when tackling network design and routing prob-
lems, we obtain a flow (or a multicommodity flow) between
a source-sink pair (or pairs) by running a maximum flow
algorithm, a minimum cost flow algorithm, or solving a
linear program that captures the problem.1 These algorithms
represent and output a flow by associating a flow value with
each arc. The value of each arc is at most the arc capacity, and
in each node the total incoming flow equals the total outgoing
flow, except for the source and the sink. See Figure 1 for an
example.

To deploy a flow in a network, say a traffic engineered
MPLS network [7], [15], or an open-flow network [13], we
often need to represent the flow as the union of paths from
the source to the sink, such that each path is coupled with the
amount of flow that it carries. In general, there may be many
ways to represent a flow as a union of source-sink paths (see
Figure 1). While all these representations route the same flow

1Linear programming or even convex programming is typically the method
of choice for more complicated multicommodity flow and network design
problems.

2 2

224 4

11

1

e i

b d

h

a c

gf

Fig. 1. A flow. We can decompose this flow into 4 flow-paths e, f, g, h of
value 1, a, b, g, h of value 1, a, b, i of value 1, and a, b, c, d of value 2. A
smaller decomposition consists of the paths e, f, i of value 1, a, b, g, h of
value 2, a, b, c, d of value 2.

they may differ substantially in the number of paths used, their
latency, and in other parameters. Our focus in this paper is on
algorithms that decompose a flow into a minimum number of
paths. (If we are given a multicommodity flow, we just apply
the algorithm to each flow separately.)

Minimizing the number of paths is desirable for many
reasons. When engineering traffic in a network each path
consumes entries in tables of the routers that it goes through.
Each path also requires periodic software maintenance to
check its available bandwidth and other quality parameters
[16], [4]. Therefore, reducing the number of paths saves
resources and makes network management more efficient, both
for automatic software and network operators.

Evidently, the number of paths is not the only important
quality criteria of the decomposition. Other parameters are
also important. Among them are the maximum and average
latency of the paths, and the maximum number of paths going
through a single link or a single node. Optimizing more than
one parameter is not naturally well defined, and thereby more
complicated. We focus on the number of paths as our main
objective criterion, but we do address other criteria in our
experimental study.

Flow algorithms use the notion of residual graph which
contains all nonsaturated arcs on which we can push more
flow. Initially the residual is identical to the original graph.
An augmenting path based algorithm finds a directed path
from the source to the sink in the residual graph (called an
augmenting path), pushes the maximum possible flow along
it and updates the residual graph. It stops when there is no
directed path from the source to the sink in the residual graph.
Different algorithms choose different augmenting paths, and
their running time is affected by the number of paths they
use.

Why not take the paths produced by such an algorithm as

our decomposition? There are two problems with this naive
approach. First, the augmenting paths used by these algorithms
are paths in the residual graph which contains arcs that are not
in the flow, therefore these paths may not be contained in the
original flow. See Figure 2 for such an example. Second, the
number of these augmenting paths may be large, since even
the fastest augmenting path algorithms use a quadratic (in the
size of the graph) number of paths.

a b c

d
e g

d
e gf

f

p1 p2

p1 p2

a′ b′ c′

s t

ts

Fig. 2. In this flow f the capacities of all the arcs are 1. The dashed edges
represent long paths. Assume that we run an augmenting path maximum flow
algorithm, like, for example the algorithm of Edmonds and Karp on G(f).
The first augmenting path can be a, b, c. (Augmenting path algorithm augment
flow on shortest residual paths.) After pushing one unit of flow on a, b, c we
obtain the residual graph at the bottom of the figure. The next augmenting
path is d, e, b′, f, g which uses the arc b′ which is opposite to b and is not
in the original flow. The last augmenting path would be the concatenation of
p1, b and p2.

A. Our Results

We consider two natural greedy algorithms for the problem,
also studied by [18]. One picks the widest flow-path, removes
it and recurses, we call it greedy width. The other picks a
shortest (by latency) path, removes it and recurse, we call it
greedy length.

We show that in the worst case these greedy algorithms
produce a large decomposition compared to the optimal one.
Specifically, the number of paths which they produce could be
as large as Ω(

√
m)OPT where m is the number of arcs and

OPT is the size of the optimal decomposition. Furthermore,
this bad performance occurs even if we want to decompose
only a constant fraction of the flow.

We give a new algorithm similar to the greedy algorithms
mentioned above, and prove that for any ε it decomposes
(1 − ε) fraction of the flow into at most O(OPT

ε2) paths.
In particular, for an appropriate choice of parameters, it can
decompose 1/3 of the flow into at most OPT paths (see
Section V). We consider two versions of this algorithm, one
which we call the bicriteria width algorithm which is similar
to the greedy width algorithm and the other which we call
the bicriteria length algorithm which is similar to the greedy
length algorithm.

It is known that the problem of decomposing a flow into the
minimum number of paths is strongly NP-hard by a reduction
from 3-partition [18]. But notice that the 3-partition problem
is easy if all the flow values on the arcs are powers of 2, or if
there are constantly many different values. So the reduction of

[18] does not indicate what is the complexity of our problem
in these cases, which are common in real networks.

We show that even when there are only three different flow
values on the arcs (and even if these values are only 1, 2, or
4) then the problem is NP-hard. Furthermore, our reduction
also shows that it is hard to approximate the problem better
than some fixed constant, i.e. there is some fixed constant β
such that no algorithm can guarantee a decomposition with
less than β ·OPT paths in polynomial time unless P = NP .

In contrast, we show that if there are only two flow values x
and y, such that x divides y, then there is a simple algorithm
that finds an optimal decomposition.

We implemented the greedy algorithms and our new ap-
proximation algorithms and compared their performance on
data extracted from Google’s backbone network and on syn-
thetically generated layered networks, representing intra data
center networks.

For the Google network, we used a dataset consisting
of a few hundred demands observed at a particular time
period. For each such a demand, we generated a fractional
multicommodity flow using an LP solver. We decomposed
various fractions of each of the flows using these algorithms
and compared the size of the decomposition they produce and
the average and maximum latency of the paths. Our findings
are as follows:

1) The greedy width algorithm produces the most compact
decompositions on the data we used, with the bicriteria
width algorithm lagging behind by a few percent. This
indicates that flows on which the greedy width algorithm
decomposes badly are unlikely to occur in real data.
The greedy length and the bicriteria length algorithms
perform 10-20% worse than their width counterparts.
To eliminate the risk of getting a bad decomposition
while using the greedy width algorithm it may make
sense to run both the greedy width algorithm and our
new bicirteria width algorithm and select the smaller
decomposition.

2) The maximum and average latency of the paths produced
by the greedy width and the bicriteria width algo-
rithms were comparable. Somewhat counter-intuitively
the maximum and average latency of the greedy length
and the bicriteria length algorithms were slightly larger.
This is a side affect of the fact that the decomposition
produced by these algorithms were considerably larger
This shows that on the data we tested, optimizing the
number of paths does not sacrifice latency substantially.

3) The number of paths required increases exponentially
with the fraction of the flow we decompose (again on
the tested data sets).

B. Related work

Vatinlen et al. considered exactly the same problem as we
do, i.e. minimizing the number of paths. They gave an example
showing that counter-intuitively, by eliminating cycles from
the flow, the size of the optimal solution can increase. They
defined a decomposition to be saturating if we can obtain it

by taking a source-sink path, pushing as much flow as we can
along it, removing it from the flow and repeating this process.
In particular the greedy width and the greedy length algorithms
that we defined above produce saturating decompositions.

Vatinlen et al. show that there may not be a saturating
optimal solution. They also show that the size of a saturating
decomposition is at most m− n+ 2 where m is the number
of arcs and n is the number of nodes,2 and consists of O(n)
more paths than OPT.

Vatinlen et al. also defined and implemented the greedy
width and the greedy length algorithms. They compared their
performance on random networks and showed that for large
enough networks with relatively large average degree the
greedy width is slightly better (< 3%), and they both were
close to the upper bound of m− n+ 2.

Hendel and Kubiak [9] in an unpublished manuscript con-
sider a similar problem in which the input flow is acyclic,
there is a nonnegative cost associated with each arc, and the
goal is to find a decomposition in which the maximum cost
of a path is minimum. The networking interpretation of this
objective is to minimize the maximum latency of a path in
the decomposition. They give several results classifying the
complexity of this problem (for details see their manuscript).

The problem considered by Hendel and Kubiak is easier
if the lengths of all arcs are the same. In this case we
want to minimize the number of hops of the path with
the largest number of hops in the decomposition. One can
construct a polynomial algorithm for this problem using linear
programming. We write an LP for the maximum possible flow
on paths of at most k hops. This LP has a variable for each
path of at most k hops so it may have exponentially many
variables. The dual of this LP has a constraint per path of at
most k hops which requires that the sum of the dual variables
associated with the arcs on the path is at least 1. There is a
polynomial separation oracle for this dual so we can solve it
using the ellipsoid algorithm [10], [8]. To find the smallest k
such that all the given flow can be covered by paths with at
most k hops we perform binary search on k solving an LP as
above in each iteration of the search.

Another possible objective is to minimize the average
weighted latency of the paths in the decomposition (where the
weight of each path is the amount of flow it covers). However,
it is not hard to see that all the decompositions of a given flow
have the same average weighted latency. This average equals
to the sum over the arcs of the latency of the arc times its
flow value.

Minimizing the nonweighted average latency and the maxi-
mum number of paths through each vertex are also interesting
objectives which we do not consider in this paper and as far
as we know have not been addressed.

A problem related to ours is the maximum unsplittable flow
problem introduced by Kleinberg [11]. In this problem we try
to find a flow which can be decomposed into a small number

2In fact they showed this for a more general family of independent
decompositions, where the incidence vectors of the paths, in the space where
each coordinate is an arc, are independent.

of paths. In contrast, recall, that in our setting the flow is
given as the input and we cannot change it. Kleinberg studied
a single-source version of the problem where we are given a
single source and many terminals each with demand associated
with it. The problem is to decide whether the demand to
each terminal can be routed on a single path so that capacity
constraints are satisfied. Kleinberg gave approximation algo-
rithms for some optimization versions of this problem. Many
variations of the problem were introduced since Kleinberg’s
work, including unsplittable multicommodity flow, variants
in which we allow more than one path per commodity, and
varying optimization criteria. (for recent work see [12], [2]
and the references there)

Mirrokni et al. [14] studied a network planning problem
in which one goal is to minimize the number of paths in
multi-path routing setting such as an MPLS network. They
formulate the problem as a multicommodity flow problem and
derive from the formulation that an optimal solution can be
decomposed into at most m+k paths, where k is the number of
commodities and m is the number of routes. They further try to
reduce the number of routes by using an integer programming
formulations. They show that their approach is effective on
various simulated topologies.

II. PRELIMINARIES

The input to our algorithm is an st-flow f represented as a
graph G(f) with two special vertices s and t called the source
and the sink, respectively. Each arc e has a nonnegative flow-
value f(e) associated with it. For every vertex v other than s
and t the sum of the flow-values on the arcs incoming to v
equals the sum of the flow values on the arcs outgoing from
v. The total flow on arcs outgoing from s minus the total flow
on arcs incoming to s is the value of f . This is equal to the
total flow incoming to t minus the total flow outgoing from t.

A flow-path in f is a path p from s to t in G(f) together
with a value which is smaller than the flow-value on all the
arcs along p.

A decomposition of an st-flow f is a collection of flow-
paths with the following property: If we take the union of
these paths, and associate with each arc e in this union the
sum of the values of the paths containing e we get an st-flow
f ′. The flow f ′ is contained in f and its value is equal to the
value of f .3 Note that the difference between f and f ′ is a
collection of flow cycles and if f is acyclic then f must be
equal to f ′.

Our goal is to find a decomposition of f with the smallest
possible number of paths. We point out that removing cycles
from f may change the size of the smallest solution as shown
in [18].

Let G be a graph with capacity c(e) associated with each
arc e and two special vertices s and t. An st-flow in G is an
st-flow f such that G(f) is a subgraph of G and for each arc
e, f(e) ≤ c(e). A maximum st-flow in G in an st-flow in G
with maximum value.

3A flow f ′ is contained in f if each arc in f ′ is also in f and its flow-value
in f ′ is smaller than its flow-value in f .

To simplify the presentation, we will use flow instead of
st-flow in the rest of the paper.

We will use the following basic lemma. The proof is straight
forward and omitted.

Lemma II.1. Let G be a graph in which all capacities are
multiples of x, and let f be a maximum flow in G of value F .
Then F is a multiple of x and we can decompose f into exactly
F/x paths each routing x flow. Furthermore, any collection
of paths each routing x flow can be completed to such a
decomposition of the flow.

III. TWO VALUE CAPACITIES

A simpler version of the flow decomposition problem is
when all the capacities in G have one of two possible values,
x and y, such that x divides y, i.e. y = kx for some integer
k > 1.

We can find an optimal decomposition in this case with
the following algorithm. We first form the subgraph Gy of
G (which is not necessarily a flow) induced by all arcs of
capacity y. We find a maximum flow Fy from s to t in Gy .
We decompose Fy into paths of value y, and add these paths
into our decomposition. This is possible by Lemma II.1. Then
we subtract Fy from G and get a flow G′. Notice that since
x divides y all capacities in G′ are multiples of x. So using
Lemma II.1 again we decompose G′ into paths of flow value
x and add these paths into our decomposition. We now prove
that this algorithm indeed find the optimal solution.

Theorem III.1. The algorithm described above produces an
optimal solution.

Proof: Let F1 be the part of F that OPT routes on paths
of value > x. Note that each such path routes at most y flow.
So F −F1 of the flow OPT routes on paths of value < x. It
follows that

OPT ≥ F1

y
+

F − F1

x
(1)

To minimize the right hand side of Equation (1) we want
to have F1 as large as possible. However since all paths of
value > x that OPT uses must be in the subgraph induced
by the arcs of flow value y, we get that F1 cannot be larger
than the maximum flow in that subgraph. By the definition of
the algorithm this maximum flow equals to #(y) · y, where
#(y) is the number of paths of value y used by the algorithm.
Substituting this into equation 1 we get that

OPT ≥ F1

y
+

F − F1

x
≥

#(y) · y
y

+
F −#(y) · y

x
= #(y) + #(x) = ALG

which concludes the proof.

IV. GREEDY APPROACHES

It is easy to verify that when we take a flow-path and
subtract it from the flow the result is still a flow. Based on
this fact one can come up with many greedy algorithms to

decompose a flow. Each such algorithm finds the best flow-
path according to some criteria, add it to the decomposition,
removes it from the flow and continue decomposing the
remaining flow.

Maybe the most natural among these greedy algorithms are
the greedy length algorithm and the greedy width algorithm.
Let G(f) be the graph of the current flow f . (Note that G(f)
changes as we subtract flow-paths that we accumulate in our
decomposition.) In the greedy length we find a shortest path
from s to the t in G(f), according to some latency measure
on the arcs such as RTT (Round Trip Time). We route the
maximum possible flow along this path, so that when we
remove this path, at least one arc is completely removed from
the flow.

The greedy width finds the “thickest” path from s to t in
G(f), which is a path that can carry more flow than any other
path from s and t. Again, we route the maximum possible flow
along this path, so that at least one arc is completely removed
from the flow when we add the path to the decomposition.

We implement greedy length and the greedy width by
running a version of Dijskstra’s single source shortest path
algorithm in each iteration [5]. For the greedy length we run
the standard version of Dijskstra’s algorithm using RTTs as
the weights of the arcs. With the greedy width we need a
modified version of Dijskstra for the bottleneck shortest path
problem. Here the weight of each arc is the flow that it carries
in G(f). The modified version of Dijskstra for the bottleneck
shortest path problem uses the width of the thickest flow-path
from s to v as the key of v in the heap (rather than the length
of this path in the standard version). Note that asymptotically
faster algorithms for the bottleneck shortest path problem are
known [6] and also for the standard single source shortest
path problem when we assume integer weights [17]. These
algorithms are more complex and may be practical only for
very large graphs.

Both greedy approaches remove at least one arc from G(f)
for each path they pick, so they will stop after at most m
iterations (where m is the number of arcs in the flow we started
out with). Furthermore in the decomposition they produce we
have at most m paths.

A. The worst case performance of the greedy algorithms

The next intriguing question that one should understand
before using these greedy algorithms is how large could
be the decomposition which they produce compared to the
optimal one. We note that the greedy length may produce
a decomposition with paths of rather small latency and we
will consider this in Section VII. But our main objective in
this paper is to minimize the number of flow-paths so we
first consider the performance of the greedy algorithms with
respect to the number of paths which they produce.

Lets look at the example shown in Figure 3. In this flow
there are only 3 possible flow values on the arcs which are x,
2x and 1. There are k+1 arcs of flow 2x, namely ai → ai+1,
for 1 ≤ i ≤ k − 1, s → a1, and ak → t, that together form
a path from s to t. There are k/2 arcs from s to every node

.....

x× 1

2x

2x

2x

2x

a1

x

x

x× 1

s

t

a4

x

x

2x
a2

a3

2x

ak

Fig. 3. The performance of the greedy algorithm is bad on this example

a2i−1, and k/2 arcs going from a2i to t. Finally, there are x
parallel arcs of flow 1 going from a2i−1 to a2i. One can easily
verify that this is indeed a legal flow of value kx/2 + 2x.

The minimal number of paths this flow can be decomposed
to is k/2+x+1. This can be done by routing x units of flow
on the path s → a1 → . . . → t which is half the maximum
possible flow we can send along this path; x units of flow
on each one of the k/2 paths s → a2i−1 → a2i → t using
the remaining x units of flow of the arcs a2i−1 → a2i with
flow 2x; and finally, x paths s → a1 → a2 . . . → t using the
parallel arcs between a2i−1 and a2i, each carrying 1 unit of
flow. Altogether, we get k/2 + x+ 1 paths.

The greedy width will use kx/2 + 1 paths. It will make a
mistake and route 2x units of flow on the path s → a1 →
a2 . . . → t. Now, it will have to route the remaining kx/2
units of flow on paths of the form s → a2i → a2i+1 → t each
carrying only one unit of flow. So routing the remaining flow
will take kx/2 paths.

Now if we set x to some value larger than say, k/2, we get
that the greedy width uses Ω(k) · OPT paths to decompose
the flow. The resulting flow has m = Θ(k2) arcs (and vertices
if we eliminate the parallel arcs by subdividing them).

Furthermore, with this rather large value of x we also get
that most of the flow is routed by the greedy width on paths
of value 1. So even if we compare the number of paths that
greedy width needs to carry only a constant fraction of the flow
for any fixed constant then we get that it uses Ω(k) · OPT
paths. The following theorem summarizes this result.

Theorem IV.1. There are flows G of m arcs on which the
approximation ratio of greedy width is Ω(

√
m) even if greedy

width is required to decompose only a constant fraction of the
flow, for any fixed constant.

If the latency of the arcs of flow-value 2x is small relative
to the latency of the other arcs then the greedy length would
also pick the path of width 2x first and thereby produce a
large decomposition of this example. We have a different
example in which the latency of all arcs is the same but the
greedy length fails in a similar fashion. So we also have the
following theorem.

Theorem IV.2. There are flows G of m arcs on which the
approximation ratio of greedy length is Ω(

√
m) even if greedy

length is required to decompose only a constant fraction of the
flow.

V. BI-CRITERIA APPROXIMATION

Let Gt be the subgraph of G containing all arcs of capacity
at least t. Let t2/3 be the maximum value of t such that the
value of the maximum flow from s to t in Gt is at least 2F/3.
To simplify notation we refer to Gt2/3 as G2/3.

We round down all the capacities in G2/3 to the largest
possible multiple of t2/3 and call the resulting graph G′

2/3.
We have the following lemma.

Lemma V.1. The value of the maximum flow from s to t in
G′

2/3 is at least F/3.

Proof: If we scale down the capacities in G2/3 by a factor
of 2 then we obtain a flow of value F/3 in the resulting graph
simply by scaling down the flow of value 2F/3 that we have
in G2/3 by its definition.

Consider an arc e in G2/3. Let c(e) be the capacity of e in
G2/3 and let c′(e) be the capacity of e in G′

2/3. We claim that
c′(e) ≥ c(e)/2. This would imply that we can route the flow
of value F/3 that we routed in G2/3 with capacities divided
by 2 also in G′

2/3.
From the definition of G2/3 we know that there is some

integer k ≥ 1 such that kt2/3 ≤ c(e) ≤ (k + 1)t2/3. Dividing
the upper bound by two we obtain that c(e)/2 ≤ (k+1)t2/3/2.
Since for every k ≥ 1, (k + 1)/2 ≤ k we have that c(e)/2 ≤
kt2/3. But by the definition of G′

2/3, c′(e) = kt2/3, so we get
that c(e)/2 ≤ c′(e), and the claim follows.

In G′
2/3 all capacities are multiples of t2/3 so by Lemma

II.1 the maximum flow F ′ in G′
2/3 is also a multiple of t2/3

and can be decomposed into F ′/t2/3 paths each routing t2/3
units of flow. By Lemma V.1, F ′ ≥ F/3 so dF/3t2/3e paths
of the decomposition of F ′ route at least F/3 units of flow.
So we get the following theorem.

Theorem V.2. Given a flow f of value F the algorithm which
we described decomposes f into at most OPT paths that
together route at least F/3 units of flow.

Proof: By the definition of G2/3 we know that in the
optimal decomposition of f at least F/3 units of flow are
routed using paths each carrying at most t2/3 units of flow.
Therefore OPT ≥ dF/3t2/3e. Since our algorithm uses at
most dF/3t2/3e paths the theorem follows.

We can generalize this result as follows.
Let t1−ε be the maximum value of t such that the value of

the maximum flow from s to t in Gt is at least (1− ε)F . To
simplify notation we refer to Gt1−ε as G1−ε.

We introduce a new constant 0 ≤ δ ≤ 1 and round down
all the capacities in G1−ε to the largest possible multiple of
δt1−ε and call the resulting graph Gδ

1−ε. The following lemma
generalizes Lemma V.1 (which is the case where δ = 1 and
ε = 1/3).

Lemma V.3. The value of the maximum flow from s to t in
Gδ

1−ε is at least 1−ε
1+δF .

The proof follows the same lines of V.1 and is omitted.
In Gδ

1−ε all capacities are multiples of δt1−ε so by Lemma
II.1 the maximum flow F ′ in Gδ

1−ε is also a multiple of δt1−ε.
By Lemma II.1 we can decompose F ′ into F ′/δt1−ε paths
each routing δt1−ε flow. Furthermore, any set of paths each
routing δt1−ε flow can be completed by additional paths each
routing δt1−ε flow so that all-together we route F ′ flow. By
Lemma V.3, F ′ ≥ 1−ε

1+δF so by using d (1−ε)F
(1+δ)δt1−ε

e paths of

the decomposition of F ′ we route at least (1−ε)F
(1+δ) flow. The

following theorem summarizes the properties of our algorithm.

Lemma V.4. In Gδ
1−ε we can route 1−ε

1+δF flow in d (1−ε)F
(1+δ)δt1−ε

e
paths each routing δt1−ε. Furthermore, starting with any set of
paths in Gδ

1−ε each routing δt1−ε flow we can find additional
paths each routing δt1−ε flow so that all paths together route
1−ε
1+δF flow.

The following theorem follows from Lemma V.4.

Theorem V.5. Given a flow f of value F we can decompose
f into at most d 1+ε

(1+δ)εδ e ·OPT paths. Each path routes δt1−ε

units of flow and together they route at least (1−ε)F
1+δ units of

flow.

Proof: By the definition of G1−ε we know that in the
optimal decomposition of f at least εF units of flow are routed
using paths each carrying at most t1−ε units of flow. Therefore
OPT ≥ dεF/t1−εe. By Lemma V.4 our algorithm uses at most
d (1−ε)F
(1+δ)δt1−ε

e paths therefore the ratio between the number of
paths that we use and the optimal number of paths is

d (1−ε)F
(1+δ)δt1−ε

e
dεF/t1−εe

=
d (1−ε)εF
(1+δ)εδt1−ε

e
dεF/t1−εe

≤

≤

⌈

(1−ε)
(1+δ)δε

⌉

· d εF
t1−ε

e
dεF/t1−εe

=
⌈

(1− ε)
(1 + δ)δε

⌉

as required.

VI. HARDNESS RESULTS

In this section we prove the following strong hardness result.

Theorem VI.1. Let F be a flow such that on each arc the
flow value is either 1, 2 or 4, and let k be an integer. Then it
is NP-complete to decide if there exists a decomposition of F
into at most k paths.

Proof: For a variable x let o(x) be the number of occur-
rences of the literal x, let o′(x) be the number of occurrences
of x, and let om(x) = max{o(x), o′(x)}.

Given an instance Φ of 3SAT with a set Z of N variables
and a set C of M clauses we construct a flow F with
n = M + 2 +

∑

x∈Z(3 + 4om(x)) vertices and m = 4M +
∑

x∈Z(15om(x)+12) arcs such that there is a decomposition
of F into

∑

x∈vars 5 + 3om(x) paths if and only if Φ is
satisfiable.

For each variable x we construct the gadget shown in Figure
4. We have two vertices s(x) and t(x) which we connect with
two parallel paths each containing om(x) pairs of nodes ui(x)
and u′

i(x), 1 ≤ i ≤ om(x) in one path and wi(x) and w′
i(x),

1 ≤ i ≤ om(x) in the other path. There is an arc from s(x)
to u1(x), from ui(x) to u′

i(x) and from u′
i(x) to ui+1(x)

for every 1 ≤ i ≤ om(x) − 1, and from u′
om(x)(x) to t(x).

Similarly, there is an arc from s(x) to w1(x), from wi(x) to
w′

i(x) and from w′
i(x) to wi+1(x) for every 1 ≤ i ≤ om(x)−1,

and from w′
M (x) to t(x).

The source s is connected to all vertices s(xj), for each
variable xj , 1 ≤ j ≤ N , and all vertices t(xj), 1 ≤ j ≤ N
are connected to t. The flow on all arcs we specified so far is
4, and these would be the only arcs with flow 4 in F .

In addition we have four arcs with flow 1 from s to s(xj),
1 ≤ j ≤ N , and from t(xj), 1 ≤ j ≤ N to t. We also have a
pair of parallel arcs with flow 1 from ui(x) to u′

i(x) and from
wi(x) to w′

i(x) for 1 ≤ i ≤ om(x).
For each variable x we have an additional vertex a(x). We

connect s to a(x) with om(x) arcs of flow 2 and 2om(x)
arcs of flow 1. We also connect a(x) to ui(x) and wi(x) for
1 ≤ i ≤ om(x) with an arc of flow 2.

For each clause c we have a vertex which we also call c.
Each such vertex c is connected to t by four arcs, two of flow
1 and two of flow 2.

Last we have to specify the connection between the variable
gadget and the clause vertices. We connect each vertex u′

i(x)
for 1 ≤ i ≤ o(x) to a clause vertex corresponding to a clause
containing x. We make these connections such that each of
these clause vertices is connected to a single vertex u′

i(x).
Similarly, we connect each vertex w′

i(x) for 1 ≤ i ≤ o′(x) to a
clause vertex corresponding to a clause containing x, such that
each of these clause vertices is connected to a single vertex
w′

i(x). If o(x) < om(x) we connect each vertex u′
i(x) for

o(x) + 1 ≤ i ≤ om(x). If o′(x) < om(x) we connect each
vertex w′

i(x) for o′(x) + 1 ≤ i ≤ om(x) to t. All arcs defined
in this paragraph have flow 2.

We now show that Φ is satisfiable if and only if we can
decompose F to

∑

x∈vars(5 + 3om(x)) paths.
We first assume that Φ is satisfiable and show a decom-

position of F into
∑

x∈vars(5 + 3om(x)) paths. Consider an
assignment that satisfies Φ.

Each path in our decomposition saturates an edge from s.
The number of these arcs is exactly

∑

x∈vars 5 + 3om(x). For
a variable x which equals 1 there would be a pair of paths of
value 1 to each clause vertex containing the literal x, and a
path of value 2 to each clause vertex containing the literal x.

... ...

1 1

1
1

2

2

1

4

1

4

u′
om

uom

1

4

1

1

4

1

4

4

2

2

1

u1

4

4 4

4

4

w′
2

4 2

2

2

1

1

1

w1

4

42

1

1 4

w′
1

u2

u′
1

a(x)

wom

w2

u′
2

4

t(x)

2

2

w′
om

2 2

1

om ∗ 2 (2om) ∗ 1

Fig. 4. A variable gadget in the reduction proving Theorem VI.1. Arc
incoming to s(x) and a(x) are outgoing of the global source s. Arcs outgoing
of the nodes u′

i and w′
i, either enter a clause gadget or enter the sink t. Arcs

outgoing of t(x) enter the sink t.

2

2
2

22

1 1

Fig. 5. A clause gadget in the reduction of Theorem VI.1. Incoming arcs
arrive from the variable gadgets. Outgoing arcs enter the sink t.

For a variable x which equals 0 there would be a pair of paths
of value 1 to each clause vertex containing the literal x, and a
path of value 2 to each clause vertex containing the literal x.
Since the assignment is satisfiable each clause has at least one
literal which is 1 and therefore at least one pair of paths of
value 1 entering it. Therefore we can route these paths through
the clause vertices without splitting them.

For each variable x if x = 1 we take a single path of value
4 from s to s(x) to ui(x) and u′

i(x), 1 ≤ i ≤ om(x) to t(x),
and four paths of value 1 from s to s(x) to wi(x) and w′

i(x),
1 ≤ i ≤ om(x) to t(x). Two of these paths use the arcs from
wi(x) to w′

i(x) of flow 1 and the other two use the arc of flow
4. If x = 0 we take a single path of value 4 from s to s(x)

to wi(x) and w′
i(x), 1 ≤ i ≤ om(x) to t(x), and four paths

of value 1 from s to s(x) to ui(x) and u′
i(x), 1 ≤ i ≤ om(x)

to t(x). Two of these paths use the arcs from ui(x) to u′
i(x)

of flow 1 and the other two use the arc of flow 4.
If x = 1 we take 2o(x) paths of value 1 from s to a(x)

to ui(x) and u′
i(x), and then to a clause vertex containing

the literal x, for 1 ≤ i ≤ o(x). If o(x) < om(x) then we
take 2(om(x) − o(x)) paths of value 1 from a(x) to ui(x)
and u′

i(x), and then to t for o(x) + 1 ≤ i ≤ om(x). We
also take o′(x) paths of value 2 from s to a(x) to wi(x) and
w′

i(x), and then to a clause vertex containing x, for every
1 ≤ i ≤ o′(x). If o′(x) < om(x) then we take om(x)− o′(x)
paths of value 2 from s to a(x) to wi(x) and w′

i(x), and then
to t for o′(x)+1 ≤ i ≤ om(x). Each of these paths uses an arc
from wi(x) to w′

i(x) of flow 4, and if the path goes through a
clause vertex (which must correspond to a clause containing
x) it uses an arc of flow 2 outgoing from this clause vertex.

Symmetrically, if x = 0 we take o(x) paths of value 2 from
s to a(x) to ui(x) and u′

i(x), and then to a clause containing
x, for 1 ≤ i ≤ o(x). If o(x) < om(x) we take om(x) − o(x)
additional paths of value 2 from s to a(x) to ui(x) and u′

i(x),
and then to t, for o(x) ≤ i ≤ om(x). Each of these paths
ships two units of flow on an arc from ui(x) to u′

i(x) of flow
4, and if the path goes through a clause vertex (which must
correspond to a clause containing x) it uses an arc of flow 2
outgoing from this clause vertex. We also take 2o′(x) paths
of value 1 from s to a(x) to wi(x) and w′

i(x), and then to a
clause vertex containing x for 1 ≤ i ≤ o′(x). If o′(x) < om(x)
we take 2(om(x)−o(x)) paths of value 1 from a(x) to wi(x)
and w′

i(x) to t, for o′(x) ≤ i ≤ o′m(x).
To show that this decomposition is well defined we have

to argue that each path of value 2 arriving to a clause vertex
can use an arc of flow 2 outgoing from this vertex. Since
the assignment satisfies Φ every clause has at least one literal
which equals 1. This literal corresponds to two paths of value
1 arriving to the clause vertex. Therefore, the corresponding
clause vertex has at most two paths of value 2 reaching it each
using one of the arcs of flow 2 outgoing from the vertex.

We omit the other direction in this version due to lack of
space.

A variation of the proof of Theorem VI.1 using a reduction
from a variant of MAX-3-SAT that is hard to approximate
gives the following stronger result.

Theorem VI.2. Let F be a flow such that on each arc the
flow value is either 1, 2 or 4. Then there is an ε > 0 such
that it is NP-hard to find a decomposition of F of size at most
(1 + ε)OPT .

VII. EXPERIMENTAL RESULTS

We conducted experiments on two types of networks. The
first one is the Google backbone production network. The
second one is a synthetically generated layered network that
resembles the topology inside a data center (which is a big
cluster of interconnected machines).

Google’s backbone network is one of the largest networks
in the world today, recently mentioned as the second largest

ISP backbone in terms of overall traffic in Arbors list of the
top 10 carriers of Internet traffic4.

Our first set of experiments were conducted on this network
using a real topology and the actual set of pop-level high
priority demands. We used a linear program (LP) solver with
the objective of maximizing overall throughput to generate
several hundred flows between the source-destination pairs.
This models a traffic engineering setup in an MPLS network
(as many large backbone networks are) where an ISP is
seeking to optimize network utilization.

The LP solver outputs for each commodity the amount of
flow through each arc in the network. As discussed before, we
need to decompose these flows into distinct paths which then
can be set as LSPs (Labeled Switched Paths) in the relevant
routers. Routers have constraints on the number of LSPs which
they can support, both due to table size restrictions in the
router hardware, as well as CPU load when updating the tables
as paths change.

We decomposed the flows obtained from the LP into paths
using 4 algorithms: Greedy width, greedy length, bicriteria
length and bicriteria width. Specifically, we decomposed (1−
ε) of each flow separately for ε ranging from 0.5 to 0.001, and
compared the aggregated (sum of all flows) number of paths
used by each algorithm to decompose all the flows.

Our results show that on this input, greedy width finds the
minimum number of paths amongst the algorithms compared.
Bicriteria width achieves similar results. Bicriteria length lags
behind and the greedy length finds almost twice as many paths,
depending on ε. See the left plot in Figure 7.

For all the algorithms, the number of paths increases expo-
nentially with the fraction of flow that they cover. To route
70% of the flows, greedy width uses an average of 3.34 paths.
To cover 90% it needs an average of 5.8 paths, and to cover
99.99% of the flows almost 12 paths are used on the average
per demand. The bicriteria algorithms behave similarly. The
number of paths used by the greedy length also increase with
the fraction of flow covered, but less rapidly. This can be due to
the fact that this is the only algorithm that ignores the width of
the paths completely (bicriteria length decomposes a subgraph
of the original flow graph consisting of wide arcs).

The maximum and average latency of the decompositions
found by each of the algorithms are depicted in Figure 6 .
We found that the latencies for all algorithms are comparable.
When looking at the average latencies, the greedy length and
bicriteria length perform slightly worse than the greedy width
and bicriteria width. This seems counter intuitive, but can be
explained by the fact that the number of paths found by the
greedy width and bicriteria width was smaller than the number
of paths found by the greedy length and bicriteria length.

The second network we tested models an intra cluster topol-
ogy. The topology inside a data-center is typically organized
as a tree-like layered network to allows one to can get a
large scale communication network. Common architectures
today consist of several layers of switches forming a tree-like

4See http://asert.arbornetworks.com/2010/03/how-big-is-google/.

topology [1], where the number of the layers depends on the
size of the cluster.

The edge-tier consists of the machines themselves, each
node (leaf) in this layer corresponds to a rack with a few
dozens machines. The next layer is an aggregation layer
consisting of switches where each rack is connected to a
constant number d1 of switches in the aggregation layer and
each switch of the aggregation layer is connected to a constant
number d2 of racks. Typically d1 � d2, so the number
of switches in the aggregation layer is d1/d2 fraction of
the number of racks. There may be several such layers and
the last layer is the core or the root layer. It consists of a
similar number of switches as the aggregation layers, and
interconnects switches in the previous layer. Data-centers in
the same geographic location are further connected using a
similar tree-like layered network.

Several routing strategies have been suggested for data
centers including a traffic engineering approach based on open
flow [3]. The topology of the data center forces each flow from
a leaf node in one data-center to a leaf node in the same cluster
to look as a layered network as well. Each layer of the flow
consists of the switches that the flow goes through either on
the way up from the source leaf, or on its way down to the
destination leaf.

To test the decomposition algorithms in this setting, we
generated a network that consists of 10 layers, each containing
5 switches. Two adjacent layers are connected as a full
bipartite graph. All arcs between adjacent layers have the
same latency. To generate a specific flow between 2 racks we
combined 100 paths that connect the source and the destination
each having a uniformly distributed flow value into a single
flow. This ensures us that an optimal decomposition uses at
most 100 paths.

The results for this scenario were similar to the results for
the Google backbone network. The right plot in Figure 7 shows
the average number of paths found by the different algorithms
for 10 random layered networks as above. Again, the greedy
width found the smallest number of paths and bicriteria width
performed slightly worse. Greedy length and bicriteria length
performed 3 to 6 times worse than greedy width, depending
on ε. The bad behavior of greedy length and bicriteria length
in this case is due to the fact that all the source-destination
paths have the same latency. This causes greedy length and
bicriteria length to effectively choose paths arbitrarily when
decomposing this flow.

For greedy width and bicriteria width, similarly to the
Google backbone network, we see an exponential increase
in the number of paths with the fraction of the flow routed.
This increase is less rapid and closer to linear for the greedy
length and bicriteria length, which is again a side effect
of the arbitrary choice of paths of these algorithms when
decomposing this flow.

We also notice that the number of paths found by the bicri-
teria algorithms does not necessarily monotonically increase
as a function of the amount of flow routed. For instance, the
bicriteria width algorithm routes 85% of the flow using 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

fr
ac

tio
n

of
 fl

ow
s

average latency

greedy-width
greedy-length

bicriteria-width
bicriteria-length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

fr
ac

tio
n

of
 fl

ow
s

max latency

greedy-width
greedy-length

bicriteria-width
bicriteria-length

Fig. 6. Cumulative distribution of maximum and average latency of the paths that cover 70% of the flows in the Google network.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0.75 0.8 0.85 0.9 0.95 1

nu
m

be
r

of
 p

at
hs

fraction of flow

greedy-width
greedy-length

bicriteria-width
bicriteria-length

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.75 0.8 0.85 0.9 0.95 1

nu
m

be
r

of
 p

at
hs

fraction of flow

greedy-width
greedy-length

bicriteria-width
bicriteria-length

Fig. 7. The number of paths in the decomposition for different values of ε. The left figure is for an aggregation over few hundred commodities in the Google
backbone network. The right figure is for a graph consisting of 10 layers with 5 vertices in each, representing intra data center network. For each flow there
is a decomposition with at most 100 paths.

paths, but routes 86% of the flow with less than 40 paths. This
is due to the fact that when increasing the amount of flow that
we have to cover we increase the subgraph that the bicreteria
algorithms pick. A larger subgraph contains more paths and
maybe counter-intuitively may have a smaller decomposition.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[2] G. Baier, E. Köhler, and M. Skutella, “The k-splittable flow problem,”
Algorithmica, vol. 42, pp. 231–248, 2005.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “The case for fine-
grained traffic engineering in data centers,” in Proceedings of the 2010
internet network management conference on Research on enterprise
networking (INM/WREN’10). USENIX Association, 2010.

[4] MPLS Traffic Engineering (TE) – Automatic Bandwidth Adjustment for
TE Tunnels, Cisco.

[5] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[6] H. N. Gabow and R. E. Tarjan, “Algorithms for two bottleneck optimiza-
tion problems,” J. Algorithms, vol. 9, pp. 411–417, September 1988.

[7] L. D. Ghein, MPLS Fundamentals. Cisco Press, 2006.
[8] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and

its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

[9] Y. Hendel and W. Kubiak, “Decomposition of flow into paths to
minimize their length.”

[10] L. Khachiyan, “A polynomial time algorithm in linear programming,”
Soviet Math. Dokl., vol. 20, pp. 191–195, 1979.

[11] J. M. Kleinberg, “Single-source unsplittable flow,” in FOCS, 1996, pp.
68–77.

[12] S. G. Kolliopoulos, “Edge-disjoint paths and unsplittable flow,” in Hand-
book of Approximation Algorithms and Metaheuristics, ser. Chapman
and Hall/CRC, T. F. Gonzalez, Ed., 2007.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp.
69–74, March 2008.

[14] V. S. Mirrokni, M. Thottan, H. Uzunalioglu, and S. Paul, “A simple
polynomial time framework for reduced-path decomposition in multipath
routing,” in INFOCOM, 2004.

[15] E. Osborne and A. Simha, Traffic Engineering with MPLS. Pearson
Education, 2002.

[16] A. Premji, Using MPLS Auto-bandwidth in MPLS Networks, Juniper
Networks, Sunnyvale, CA 94089 USA.

[17] M. Thorup, “Integer priority queues with decrease key in constant time
and the single source shortest paths problem,” J. Comput. Syst. Sci.,
vol. 69, no. 3, pp. 330–353, 2004.

[18] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple bounds
and greedy algorithms for decomposing a flow into a minimal set of
paths,” European Journal of Operational Research, vol. 185, pp. 1390–
1401, 2008.

