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ABSTRACT

As much of the world’s computing continues to move into
the cloud, the overprovisioning of computing resources to
ensure the performance isolation of latency-sensitive tasks,
such as web search, in modern datacenters is a major con-
tributor to low machine utilization. Being unable to accu-
rately predict performance degradation due to contention for
shared resources on multicore systems has led to the heavy
handed approach of simply disallowing the co-location of
high-priority, latency-sensitive tasks with other tasks. Per-
forming this precise prediction has been a challenging and
unsolved problem.

In this paper, we present Bubble-Up, a characteriza-
tion methodology that enables the accurate prediction of
the performance degradation that results from contention
for shared resources in the memory subsystem. By using a
bubble to apply a tunable amount of “pressure” to the mem-
ory subsystem on processors in production datacenters, our
methodology can predict the performance interference be-
tween co-locate applications with an accuracy within 1%
to 2% of the actual performance degradation. Using this
methodology to arrive at “sensible” co-locations in Google’s
production datacenters with real-world large-scale applica-
tions, we can improve the utilization of a 500-machine clus-
ter by 50% to 90% while guaranteeing a high quality of ser-
vice of latency-sensitive applications.

Categories and Subject Descriptors

B.3.3 [Hardware]: Memory Structures—Performance Anal-
ysis and Design Aids; C.4 [Computer Systems Orga-
nization]: Performance of Systems—Design studies; D.4.8
[Operating Systems]: Performance—measurements, mon-
itors

General Terms

Design, Performance, Measurement
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Figure 1: Some co-locations violate web search’s
90% QoS threshold. The inability to precisely pre-
dict this performance interference leads to disallow-
ing co-location for web search and consequently, low
machine utilization.

1. INTRODUCTION
“Warehouse scale computers” (WSCs) [12,22] house large

scale web applications and cloud services. The cost of con-
struction and operation of these datacenters ranges from
tens to hundreds of millions of dollars. As more computing
moves into the cloud, it is becoming exceedingly important
to leverage the resources in WSCs as efficiently as possi-
ble. However, the utilization of the computing resources in
modern WSCs remains low, often not exceeding 20% [2].

Each machine in the datacenter house numerous cores, of-
ten 4 to 8 cores per socket, and 2 to 4 sockets per machine.
However, in light of the significant potential for parallelism
on a single machine, there are a number of resources shared
among cores. This sharing can result in performance inter-
ference across-cores, negatively and unpredictably impact-
ing the quality of service (QoS) of user-facing and latency-
sensitive application threads [36]. To avoid the potential for
interference, co-location is disallowed for latency-sensitive
applications, leaving cores idle, and resulting in an overpro-
visioning that negatively impacts the utilization of the entire
datacenter.

This overprovisioning is often unnecessary, as co-locations
may or may not result in significant performance interfer-
ence. Figure 1 demonstrates this uncertainty. In this fig-
ure, we show the performance ( 1

latency
), normalized to solo

execution, of a key user-facing component of Google’s web
search when co-located with other Google workloads on a
single socket. The horizontal line shows the maximum al-
lowable performance interference. The co-location of some
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Figure 2: Example sensitivity curve for A. Assum-
ing B’s pressure score is 2 we can predict A will be
performing at 90% of full performance.

workloads does not violate this QoS threshold (light bars),
while others violate the threshold (dark bars). An inabil-
ity to precisely predict the performance impact for a given
co-location leads to the heavy handed solution of simply
disallowing co-location. On the other hand, without pre-
diction, profiling all possible co-locations’ performance in-
terference beforehand to guide co-location decisions is pro-
hibitively expensive. The profiling complexity for all pair-
wise co-locations is O(N2) (N as the number of applica-
tions). With hundreds to thousands of applications running
in a datacenter, and the frequent development and updating
of these applications, a brute-force profiling approach is not
practical.

The goal of this work is to enable the precise prediction
of the performance degradation that results from contention
for shared resources in the memory subsystem. A precise
prediction is one that provides an expected amount of per-
formance lost when co-located. With this information, co-
locations that do not violate the QoS threshold of an appli-
cation can be allowed, resulting in improved utilization in
the datacenter.

This is a challenging problem. The most relevant re-
lated work aims to classify applications based on how ag-
gressive they are for the shared memory resources and iden-
tify co-locations to reduce contention based on the classifi-
cation [3,16,17,21,23,24,37,39,41]. However prior work has
not presented a solution to precisely predict the amount of
performance degradation suffered by each application due
to co-location, which is essential for co-location decisions of
latency-sensitive applications in WSCs. In this work, we
present such a solution: The Bubble-Up methodology.

The key insight of Bubble-Up is that predicting the perfor-
mance interference of co-running applications can be decou-
pled into 1) measuring the pressure on the memory subsys-
tem an application generates, and 2) measuring how much
an application suffers from different levels of pressure. The
underlying hypothesis is both pressure and sensitivity can
be quantified using a common pressure metric. Having such
a metric reduces the complexity of co-location analysis. As
opposed to the brute force approach of profiling and charac-
terizing every possible pairwise co-location, Bubble-Up only
requires characterizing each application once to produce pre-
cise pairwise interference predictions (e.g. O(N)).

Bubble-Up is a two-step characterization process. First,
each application is tested against an expanding bubble to
produce a sensitivity curve. The bubble is a carefully de-
signed stress test for the memory subsystem that provides
a “dial” for the amount of pressure applied to the entire

memory subsystem. This bubble is run along with the host
application being characterized. As this dial is increased au-
tomatically (expanding the bubble), the impact on the host
application is recorded, producing a sensitivity curve for the
host application such as the one illustrated in Figure 2. On
the y-axis, we have the normalized QoS performance of the
application (latency, throughput, etc), and the x-axis shows
the bubble pressure. In the second step, we identify a pres-
sure score for the application using a bubble pressure score
reporter. After these two steps of the Bubble-Up method-
ology is applied to each application, we have a sensitivity
curve and a pressure score for each application. Given two
applications A and B, we can then predict the performance
impact of application A when co-located with application B
by using A’s sensitivity curve to look up the relative perfor-
mance of A, at B’s pressure score. In the example shown
in Figure 2, B has a pressure score of 2, and as we can
see from A’s sensitivity curve, A’s predicted QoS with that
co-location is 90%.

The specific contributions of this work are as follows:

• We present the design of Bubble-Up, a general char-
acterization methodology that enables the precise pre-
diction of the performance degradation suffered by ar-
bitrary applications when co-located.

• We introduce 17 production Google workloads and char-
acterize their propensity to performance interference
when co-located on production servers.

• In addition to demonstrating the prediction accuracy
of our Bubble-Up methodology on the spectrum of
contentious kernel in our SmashBench suite, we also
evaluate the prediction accuracy and the improvement
in utilization when applying the Bubble-Up method-
ology to steer pairwise co-locations of Google applica-
tions in a production datacenter environment.

Using Bubble-Up, we are able to precisely predict the
performance degradation due to arbitrary co-locations of
Google applications with at most a 2.2% error and often
less than 1%. To evaluate using Bubble-Up to steer QoS
enforced co-locations of production workloads, we perform
a study in a 500-machine cluster and are able to increase the
machine utilization in the cluster by 50%–90%, depending
on the latency-sensitive applications’ allowable QoS thresh-
old.

2. BACKGROUND
In this section, we describe how large-scale web-services

are run in modern datacenters. We then discuss QoS and
co-locations in production datacenters.

2.1 Datacenter Task Placement
In modern warehouse scale computers, each web-service is

composed of one to hundreds of application tasks, and each
task runs on a single machine. A task is composed of an
application binary, associated data, and a configuration file
that specifies the machine level resources required. These
resources include the number of cores, amount of memory,
and disk space that are to be allocated to the task. The
configuration file for a tasks may also include special rules for
the cluster manager such as whether to disallow co-locations
with other tasks.
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Figure 3: Task placement in a cluster. The cluster
manager does not co-locate latency-sensitive appli-
cations with others to protect their QoS from perfor-
mance interference, causing low machine utilization.

Task placement is conducted by a cluster-level manager
that is responsible for a number of servers. Based on the re-
source requirement, the cluster manager uses an algorithm
similar to bin-packing to place each task in a cluster of ma-
chines [25]. After a task is assigned a machine, a machine
level manager (in the form of a deamon running in user-
mode) uses resource containers [1] to allocate and manage
the resources belonging to the task. For the remainder of
this work, we use the term application to represent the pro-
gram binary for a given component of a web-service, and
application task as this binary coupled with its execution
configuration file.

2.2 QoS and Co-location

2.2.1 Application QoS

As multicores become widely adopted in datacenters, the
cluster manager consolidates multiple disparate tasks on a
single server to improve the machine utilization. However,
various application tasks in a datacenter often have different
quality-of-service (QoS) priorities. User-facing applications
for web search, maps, email and other internet services are
latency-sensitive, and have high QoS priorities. Applica-
tions such as file backup, offline image processing, and video
compression are batch applications that often have no QoS
constraints. For these, latency is not as important. We de-
fine the QoS of a latency-sensitive application in terms of
the relevant performance metric specified in its internal ser-
vice level requirements (SLAs). For example, the QoS of
Google’s web search is measured using query latency and
queries-per-second, in contrast to Bing’s [15,18], which uses
the quality of search results provided. More details and ex-
amples are presented in Section 4.

2.2.2 QoS Flexibility

As discussed above, there is a trade-off between the QoS
performance of latency-sensitive applications and the ma-
chine utilization in datacenters. When equipped with a pre-
cise prediction, we can allow a small amount of QoS degrada-
tion from co-location to improve the machine utilization. As
long as a co-location pair is predicted to cause only a small
amount of QoS degradation within a specified threshold, the
cluster manager can allow the co-location. We specify the

tolerable amount of QoS degradation in a QoS policy. For
example, a 95% QoS policy indicates that we are willing
to sacrifice 5% of the QoS performance to improve machine
utilization. To enforce these QoS policies, the precise pre-
diction for QoS degradation due to co-location is needed.

2.2.3 Co-location

A simplified illustration of the task placement process is
shown in Figure 3. The amount of required core and mem-
ory resources specified in the configuration of each task are
carefully tuned by the developers of that task to achieve the
QoS requirements. Latency-sensitive tasks that disallow co-
location inadvertently occupies more resources on a server
leading to unnecessary overprovisioning and lower machine
utilization.

3. THE BUBBLE-UP METHODOLOGY
The key insight of Bubble-Up is that predicting the per-

formance interference of co-running applications can be de-
coupled into two steps, 1) measuring how much an applica-
tion suffers from different levels of pressure on the shared
memory subsystem; and 2) measuring the pressure on the
memory subsystem an application generates.

3.1 Two Step Methodology
Figure 4 illustrates the Bubble-Up methodology. The two

steps to Bubble-Up are,

1. In Step 1, we characterize the sensitivity of each appli-
cation task to pressure in the memory subsystem. In
this step, we use a carefully designed stress test we call
the bubble to iteratively increase the amount of pres-
sure applied to the memory subsystem (e.g. bubble up
in the subsystem). As we incrementally increase this
pressure “dial”, we produce what we call a sensitivity
curve for the application with QoS on the y-axis and
pressure on the x-axis. This sensitivity curve shows
how each application’s QoS degrades as pressure in-
creases.

2. In Step 2, we characterize the contentiousness of each
application task in terms of its pressure on the memory
subsystem. We call this measure of contentiousness a
bubble score. To identify the bubble score of an appli-
cation, we use a reporter which observes how its own
performance is affected by the application to generate
a score for the application.

With the sensitivity curves and bubble scores of each ap-
plication we are able to precisely predict the performance
degradation from arbitrary co-locations. It is important to
note that step one needs only to be applied to applications
whose QoS needs to be enforced. Step two only needs to be
applied to the applications that may threaten an applica-
tion’s QoS.

3.2 Modeling Bubble-Up and Error
In this section, we present the formal modeling of our

Bubble-Up methodology and the source of errors. We first
provide a general model the performance degradation an ap-
plication A suffers when co-running with other applications
as,

DegAC
=

N
∑

i

(SARi × PCRi) (1)
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Figure 4: Bubble-Up Methodology. In Step 1, we characterize the sensitivity of the host application task to
pressure in the memory subsystem using a bubble. In Step 2, we characterize the contentiousness of the host
application in terms of the amount of pressure it causes on a reporter.

where A is the application, C is the co-runner or set of co-
runners, DegAC

is the A’s degradation when running with
C, Ri is a shared memory resource component such as shared
cache, memory bandwidth or memory controller, PCRi is the
pressure C generates on the shared resource Ri, and SARi

is A’s performance sensitivity to the pressure on the shared
resource Ri. The total degradation is the sum of the stalled
cycles caused by contention for each shared resource.

The main component of the Bubble-Up methodology is an
expandable bubble, which functions as a “dial” for pressure
on the memory system. We denote the bubble dial levels as
a set B : {B0, B1, ..., BM} where M is the number of dial
levels for the bubble. As we dial up, the bubble generates
an increasing amount of pressure on each shared resource
Ri, denoted as PBjRi . In step 1 of Bubble-Up, we increase
the bubble size and at each bubble dial j, we measure the
degradation of application A when co-running with the bub-
ble Bj . The result is a set of A’s degradations at varying

bubble sizes:
{

DegAB0
, DegAB1

, ..., DegABM

}

. This set is

the discretized sensitivity curve of application A.
When the bubble reporter provides a pressure score of a

co-running application C, it reports this pressure in the form
of a bubble dial level, BK , that generates the closest amount
of pressure as C (for details see Section 3.4). To approxi-
mate application A’s degradation when co-running with C
(DegAC

), Bubble-Up then uses A’s degradation when run-
ning with bubble BK (DegABK

).

Because the pressure score is using the bubble’s pressure
to approximate an application’s pressure, Bubble-Up intro-
duces a small amount of error when predicting the degrada-
tion of A. This error stems from the mismatch of the relative
pressures applied to the various individual shared resources.
As we discuss in Section 3.3, this mismatch is minimized by
designing the bubble to prioritize those resources that act
as first-order effects in the degradation to A. By substitut-
ing DegAC

and DegABK
using Equation 1, we can formally

model the prediction error as:

Error =
∣

∣

∣
DegAC

− D̃egAC

∣

∣

∣
(2)

=
∣

∣

∣
DegAC

−DegABK

∣

∣

∣
(3)

=
N
∑

i

|SARi × PBKRi − SARi × PCRi | (4)

3.3 Step One: Characterizing Sensitivity
As described in Section 2.1, each task is configured to use

a prescribed number of cores for the cluster level bin packing
algorithm used to assign tasks to machines in the datacenter.
This number is usually less than the number of cores avail-
able on a socket. The bubble is run on the remaining cores.
It is important to understand that there is no correct design
for the bubble. Each design needs only to approximate vary-
ing levels of pressure, and there may be many good designs.
In this paper, we present one such design, and show that
our single bubble design is effective across myriad applica-
tion workloads and architectures. Keep in mind that there
are a number of assumptions made about the architectures
for which this type of bubble design is applicable. Most im-
portantly we assume the microarchitecture uses shared last
level caches, memory controller, and bandwidth to memory.

3.3.1 The Art of Bubble Design

Although there may be many ways to design a bubble,
to arrive at a good design that is not prone to error and
imprecision, there is a set of key requirements and guidelines
that apply generally to bubble design.

1. Monotonic Curves - As the bubble’s pressure in-
creases (turning the pressure “dial” up) the amount of
performance interference should also increase mono-
tonically. Assuming the host application task is sensi-
tive to cross-core interference, higher amounts of pres-
sure should result in worse performance.



// S u p e r c h e a p r and u s i n g a l i n e a r f e e d b a c k s h i f t r e g i s t e r
unsigned l f s r ;
#define MASK 0xd0000001u
#define rand ( l f s r = ( l f s r >> 1) ˆ (unsigned int ) \

(0 − ( l f s r & 1u) & MASK))

unsigned int f o o t p r i n t s i z e =0; // S i z e o f f o o t p r i n t
unsigned int dump [ 1 0 0 ] ; // Dumps ( manua l s s a )

#define r ( rand%f o o t p r i n t s i z e )

Figure 5: Bubble’s LFSR number generator.

while (1)
{

dump[0]+=data chunk [ r ]++;
dump[1]+=data chunk [ r ]++;
dump[2]+=data chunk [ r ]++;
. . .
dump[98]+=data chunk [ r ]++;
dump[99]+=data chunk [ r ]++;

}

Figure 6: Manual SSA for no dependencies.

2. Wide Dial Range - The pressure dial should have a
range that captures the contentiousness of all the ap-
plication tasks of interest. It should start from essen-
tial no pressure, and incrementally increase pressure
to a point close to the maximum possible pressure, or
at least worse than the most contentious application
task in the set.

3. Broad Impact - The bubble should be designed to
apply pressure to the memory subsystem as a whole,
not stressing a single component in the memory sub-
system. However, keep in mind that, as mentioned
in Section 3.2, error is introduced in the difference in
component pressure relative to the host task’s sensi-
tivity. This error is generally minimized if first-order
effects are prioritized.

3.3.2 Designing the Bubble

The design principle of our bubble is to use working set
size as our measure of pressure. For a given working set size,
we perform memory operations in software to excercise that
working set as aggressively as possible.

Our bubble is a multithreaded kernel that generates mem-
ory traffic using both loads and stores with a mixture of
random and streaming accesses. The number of threads
spawned is based on the configuration file of the task being
characterized. The pressure “dial” we use is the working set
size on which our kernel works. For example, a pressure
size of 1 means our bubble will continuously smash a 1MB
chunk of memory. As we increase the pressure, we increase
our kernel’s working set size. This increases the amount of
data being pumped through the memory subsystem, as com-
putation is not the bottleneck. Figures 5 – 7 show the key
design points for our bubble.

As shown in Figure 5, we use a linear shift feedback reg-
ister (LFSR) based psuedo random number generator as
opposed the rand function provided by the C standard li-
brary. Minimizing the amount of computation in between
memory accesses is critical to maximize the activity applied
to a particular footprint. Using the standard library incurs
a significant amount of computation between random num-
bers. However, an LFSR implementation requires only a
few cycles to arrive at the next random number on modern
processors. In our LFSR implementation, we use a mask of

while (1)
{

double ∗mid=bw data+(bw st r eam s i z e /2 ) ;
for ( int i =0; i<bw st r eam s i z e /2 ; i++)
{

bw data [ i ]= s c a l a r ∗mid [ i ] ;
}
for ( int i =0; i<bw st r eam s i z e /2 ; i++)
{

mid [ i ]= s c a l a r ∗bw data [ i ] ;
}

}

Figure 7: Streaming access for bandwidth.

0xd0000001u, which produces a period of 232 random num-
bers.

Figure 6 shows the random memory accesses used in our
bubble. Here we have manually constructed a basic block of
100 memory operations that are in single static assignment
form such that there are no dependencies in between oper-
ations. This basic block has a high level of instruction level
parallelism to maximize the number of operations applied
to the footprint of the kernel.

As Figure 7 shows, we also use a streaming access pattern
in our bubble. This implementation is based on the scalar
portion of the STREAM bandwidth stressing benchmark.
Using this access pattern further stresses the bandwidth to
memory, and also triggers the prefetcher, another shared
resource at the level of the shared last level cache.

3.4 Step Two: Bubble Scoring
The second step of Bubble-Up is to produce a pressure

score for an application task that describes what size of bub-
ble is representative of that task. To detect this score we use
a bubble score reporter. The reporter is a carefully designed
single threaded workload that is sensitive to contention. Like
the bubble, the reporter is only designed once and then can
be used with myriad applications and architectures.

3.4.1 Designing the Reporter

The reporter’s own sensitivity to performance interference
is used as a basis for reporting how its own performance has
been affected by the pressure generated by a host applica-
tion. The impact felt by the reporter is then translated in
terms of the predicted bubble score of the host application.
The only guideline to designing a good reporter is to have a
broad sensitivity, e.g. it should be sensitive to the memory
subsystem holistically.

[Designing the Reporter] Like the bubble, there is also
no correct design for the reporter. However, unlike the bub-
ble, there is more flexibility in designing the reporter. This
flexibility comes from the fact that the reporter is trained,
and the sensitivity curve serves as a rubric for score report-
ing, no matter the shape. To implement the reporter, we
use a mixture of random accesses and streaming accesses
similar to those used for the bubble itself, without the high
ILP. The working set of the reporter is about 20MB, thus it
uses the last level cache, memory bandwidth and prefetcher.

Before the reporter can be used, it must first be trained
using the bubble on the architecture for which it will be re-
porting. This training involves running the reporter against
the bubble on the architecture of interest, and collecting the
sensitivity curve of the reporter. This needs to be done only
once. The reporter can then use its own sensitivity curve
to translate a performance degradation it suffers to the cor-
responding bubble score. The curve is essentially used in



workload description type metric

bigtable A distributed storage system for managing petabytes of structured
data

latency-
sensitive

user time (secs)

ads-servlet Ads sever responsible for selecting and placing targeted ads on
syndication partners sites

latency-
sensitive

cpu latency
(ms)

maps-detect-face Face detection for streetview automatic face blurring batch user time (secs)
maps-detect-lp OCR and text extraction from streetview batch user time (secs)
maps-stitch Image stitching for streetview batch user time (secs)
search-render Web search frontend server, collect results from many backends

and assembles html for user.
latency-
sensitive

user time (secs)

search-scoring Web search scoring and retrieval (traditional) latency-
sensitive

queries per sec

nlp-mt-train Language translation latency-
sensitive

user time (secs)

openssl Secure Sockets Layer performance stress test. latency-
sensitive

user time (secs)

protobuf Protocol Buffer, a mechanism for describing extensible commu-
nication protocols and on-disk structures. One of the most
commonly-used programming abstractions at Google.

latency-
sensitive

aggregated

docs-analyzer Unsupervised Bayesian clustering tool to take keywords or text
documents and ”explain” them with meaningful clusters.

both throughput

docs-keywords Unsupervised Bayesian clustering tool to take keywords or text
documents and ”explain” them with meaningful clusters.

both throughput

rpc-bench Google rpc call benchmark both throughput
saw-countw Sawzall scripting language interpreter benchmark both user time (secs)
goog-retrieval Web indexing batch ms per query
youtube-x264yt x264yt video encoding. batch user time (secs)
zippy-test A lightweight compression engine designed for speed over space. both user time (secs)

Table 1: Production Datacenter Applications

reverse. Instead of using scores to predict QoS, we use the
QoS of the reporter to ascertain the score of the co-located
application.

4. LARGE-SCALE WSC WORKLOADS
In this section, we present the large-scale datacenter ap-

plication workloads used in this work, and characterize their
susceptibility to performance interference due to contention
for the shared memory sybsystem resources. We also intro-
duce SmashBench, our in house benchmark suite for the
characterization of performance interference.

4.1 Large-Scale Data Intensive Workloads
While a large portion of the world’s computation is housed

in the cloud, little is known about the application work-
loads that live in this computing domain. The characteris-
tics of the tasks that compose a large scale web-service vary
significantly. In addition to data retrieval tasks, there are
compute-intensive tasks for the analysis, organization, scor-
ing, and preparation of information for applications such as
search, maps, ad serving, etc.

Table 1 presents a number of key application tasks housed
in Google’s production datacenters. These application tasks
comprise a majority of the CPU cycles in arguably the largest
datacenter infrastructure in the world. In addition to each
application task’s name, Table 1 shows the description, pri-
ority class, and key optimization metric for each workload.
Each application task corresponds to an actual binary that
is run in the datacenter. Application tasks that are user-
facing, both directly and indirectly, are classified as latency-
sensitive as the response time is paramount. Throughput
oriented tasks that are not user-facing are classified as batch.
Notice that some tasks may be used in both roles, and are
denoted as Both in the table. The column marked metric
shows the key metric for each application. In the context of
this work, each task’s QoS is defined to be its performance
along this metric.
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Figure 8: The performance degradation suffered by
search-render when co-located with each of the other
datacenter applications on Xeon and Opteron

We have highlighted search-render in Table 1. This task
is responsible for assembling the final view of the search
process for the user, which includes assembling scored search
results (including web, image, and video), relevent ads from
the ads-servlet, etc. This task is highly latency-sensitive and
presents a compelling case that we use throughout this work
to illustrate the necessity and value of Bubble-Up.

Figure 8 shows the performance degradation of search-

render when co-located with the other application tasks
shown in Table 1. This figure shows this performance inter-
ference on a production six-core Nehalem-based Xeon and a
production six-core K10-based Opteron respectively. Each
task in the co-location is configured to use three out of
the six cores on the same socket of each platform. Note
that docs-analyzer, docs-keywords and goog-retrieval

do not have a data point for the Opteron. These particular



kernel access pattern stress point w.s. size type

blockie-small Dense 3D Matrix Transformations cpu-bound 7KB streaming
blockie-medium Dense 3D Matrix Transformations cache 10MB streaming
blockie-large Dense 3D Matrix Transformations bandwidth 46MB streaming
bst-small Binary Search Tree Traversal cache (partial) 4MB structured
bst-medium Binary Search Tree Traversal cache 8MB structured
bst-large Binary Search Tree Traversal bandwidth 50MB structured
lfsr-small Linear Shift Feedback Register Random

Access
cache (partial) 4MB random

lfsr-medium Linear Shift Feedback Register Random
Access

cache 8MB random

lfsr-large Linear Shift Feedback Register Random
Access

bandwidth 50MB random

naive-small STL Random Access cache (partial) 4MB random
naive-medium STL Random Access cache 8MB random
naive-large STL Random Access bandwidth 50MB random
sledge1 Streaming Sparse Matrix Operations cache 7MB streaming
sledge2 Streaming Sparse Matrix Operations bandwidth 42MB streaming
sledge3 Streaming Sparse Matrix Operations bandwidth 399MB streaming

Table 2: SmashBench Suite (stress point assumes a last level cache size of 6MB to 12MB)

workloads must be run on the Xeon platform as they have
been specially configured for this platform. As shown in the
figure, we observe a significant amount of cross-core interfer-
ence. This has led to a policy to disallow the co-location of
search-render and other tasks on the same machine. How-
ever, some co-locations result in minimal to no interference.
With the ability to precisely predict the performance inter-
ference suffered, those co-locations can be identified as safe,
and the utilization of idle cores can be reclaimed.

4.2 SmashBench: Performance Interference
Benchmark Suite

It is also important to note that various applications gen-
erate contention with various access patterns and working
set sizes, which results in differing amounts of pressure across
shared resources such as on-chip caches and buses to main
memory. To characterize the sensitivity of our large-scale
datacenter workloads to a spectrum of contention types,
and to properly evaluate the effectiveness of Bubble-Up for
predicting the performance interference that results from
these various types of contention, we have created an in-
house benchmark suite of contentious kernels, which we call
SmashBench.

Table 2 shows the various kernels in our SmashBench
suite. This suite of contentious workloads were designed
specifically to exercise the resources that lie between the
cores of a multicore processor and main memory in a spec-
trum of access patterns and working set sizes. As shown
in the figure, SmashBench spans five access patterns. Each
pattern continuously performs memory operation on a chunk
of memory, which is of the size denoted w.s. size. The
stress point of each application is either the shared on-chip
caches or the bandwidth to memory, which is primarily a
function of its working set size. Note that this instance of
the suite assumes a last level cache size of approximately
6MB to 12MB. Current production datacenter deployments
house processors with these specifications. It is important
to note that while this version of the suite was designed for
the platforms used in current production datacenters, it can
be easily extended for future processor designs by modifying
the working set size.

5. EVALUATION
In this section, we evaluate both 1) the accuracy of Bubble-

Up in precisely predicting performance degradations due to
interference, and 2) the effectiveness of leveraging Bubble-
Up to improve utilization in a production datacenter envi-
ronment.

The primary platform used in our evaluation is a six-core
Nehalem-based Xeon. The performance metric used to de-
scribe the QoS of each Google application is the internal
metric as presented in Table 1. Each application task is con-
figured to use three cores on the six-core machines and two
cores on the quad-core machines. As previously described,
during the characterization phase, the bubble runs on the
remaining cores.

5.1 Sensitivity Curves of WSC Workloads
We first present the sensitivity curves for Google bench-

marks generated by our Bubble-Up methodology. The goal
is to 1) examine our Bubble-Up design through analyzing
the resulted sensitivity curves and 2) to further improve our
understanding of how pressure in the shared resources af-
fects the QoS of Google’s applications. To generate sen-
sitivity curves, we adjust the pressure Bubble-Up generates
and measure an application’s QoS under each given pressure.
Figures 9 to 17 present the sensitivity curve of each Google
application. For each figure, the x-axis shows the pressure
on the shared memory system generated using Bubble-Up’s
bubble. The y-axis shows the QoS performance of each ap-
plication, normalized by its performance when it is running
alone on the platform.

5.1.1 Bubble Design

Figures 9 to 17 illustrate that our bubble design does in-
deed have the three properties described in Section 3.3. We
observe Monotonic Curves. In general, each application’s
QoS is decreasing as the pressure increases. This confirms
our hypothesis that we can create an aggregate pressure
“dial” in software that negatively and monotonically impacts
an application’s QoS. We also observe Wide Dial Range.
The sensitivity curves generally flatten after the Bubble-Up
pressure goes beyond 20MB. At this point, the pressure on
the shared cache and memory bandwidth saturates and fur-
ther increase of the pressure would not have much more
impact on an application’s QoS. Finally, we observe Broad
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Figure 9: bigtable
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Figure 10: ads-servlet
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Figure 11: maps-detect-face
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Figure 12: search-render
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Figure 13: search-scoring
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Figure 14: protobuf
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Figure 15: docs-analyzer
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Figure 16: saw-countw
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Figure 17: youtube-x264yt

Impact. The monotonic trend beyond 12MB shows that we
are not only saturating the cache, but also the bandwidth
to memory. The pressure generated by the bubble stresses
the caches, bandwidth and prefetchers (due to streaming
behavior described in Section 3.3).

5.1.2 Workload Characteristics

Some curves (e.g., search-render) are decreasing more
sharply than others (e.g., protobuf). Also, at a given pres-
sure point, each application suffers a different amount of QoS
degradation. For example, at pressure point 10, search-

render’s normalized QoS is only 0.7, while protobuf’s QoS
is still around 0.95. When the curve flattens, each applica-
tion’s plateau QoS is also different, ranging from 0.6 to 0.85.
This shows that Google applications’ QoS have different lev-
els of sensitivity to the pressure in the shared resources.
Also, each application’s sensitivity to various resources may
be different. Since the experimental platform has a 12MB
last level cache, the pressure before 12MB is only applied on
the shared cache, and after 12MB, the pressure is applied
on both shared cache and memory bandwidth. Comparing
the gradients of an application’s curve before and after 12
MB can help gain insights on its sensitivity to various re-
sources. For example, protobuf’s curve is fairly flat before
12 MB but has a steep dip after 12MB. This indicates that
protobuf’s QoS may be more sensitive to the pressure on
the memory bandwidth than the shared cache.

5.2 Bubble Up Prediction Accuracy
In this section, we evaluate Bubble-Up’s accuracy when

predicting the QoS degradation of the applications due to
performance interference.

5.2.1 Co-locating Google with SmashBench

We first evaluate the effectiveness of Bubble-Up in predict-
ing the impact of our SmashBench workloads on Google’s
applications. In this experiment, we apply step one of our
methodology to 9 memory intensive Google applications,
and step two to our 15 SmashBench workloads. As pre-
viously mentioned, step one needs only to be applied to ap-
plications whose QoS needs to be enforce. Step two only
needs to be applied to the applications that may threaten
an application’s QoS. Figure 18 to 26 present the results for
each of the 9 Google applications. For each figure, the x-axis
shows each of the 15 SmashBench benchmarks. The y-axis
shows the Google application’s QoS degradation. For each
benchmark on the x-axis, the first bar shows the Google ap-
plication’s predicted degradation when co-located with the
benchmark; the second bar is its measured degradation. The
closer the two bars are, the more accurate the Bubble-Up
prediction is. Each figure’s caption also documents the aver-
age prediction error for each Google application, calculated
using the absolute difference between the prediction and the
measured value. In general, Bubble-Up’s prediction error
is quite small. For the nine Google applications, the pre-
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Figure 18: bigtable, avg. error -
2.2%
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Figure 19: ads-servlet, avg. error
- 0.8%
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Figure 20: maps-detect-face, avg.
error - 0.7%
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Figure 21: search-renderer, avg.
error - 1.8%
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Figure 22: search-scoring, avg. er-
ror - 0.8%
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Figure 23: protobuf, avg. error -
2.2%
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Figure 24: docs-analyzer, avg. er-
ror - 1.7%
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Figure 25: saw-count2, avg. error -
1.2%
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Figure 26: youtube-x264yt, avg. er-
ror - 1.5%

diction error is 2.2% or less. SmashBench exhibits a wide
range of memory access patterns, stress points and working
set sizes. The fact that a single Bubble-Up design can pre-
dict accurately the QoS degradation caused by SmashBench
demonstrates the generality of the Bubble-Up methodology.

5.2.2 Pairwise Google Co-location

Figure 27 summarizes the prediction accuracy of Bubble-
Up for pairwise co-locations with nine of the most sensitive
Google applications with the complete set of Google applica-
tions (shown in the x-axis). Each bar shows the error (delta)
between the performance degradation predicted by Bubble-
Up and the actual measured performance degradation in the
co-location. Errors in the negative direction imply that the
actual QoS degradation is worse (more) than predicted; er-
rors in the positive direction implies that the actual QoS
degradation is better (less) than predicted. Only errors in
the negative direction can result in a violation of a QoS pol-
icy. As the figure shows, Bubble-Up’s prediction error is
fairly small across all Google pairwise co-locations.

5.3 Applying Bubble-Up in the Datacenter
In this section, we present an evaluation of applying Bubble-

Up’s QoS prediction to increase co-location and machine uti-
lization in datacenters. To predict the performance degra-
dation on an application A when co-located with B, we use
B’s bubble score to index into A’s sensitivity curve. To

improve machine utilization, we allow latency-sensitive ap-
plications to have a small amount of QoS degradation. The
tolerable degradation threshold is specified in a QoS pol-
icy (Section 2). Using Bubble-Up, we can predict the QoS
degradation and allow co-location of latency-sensitive ap-
plications with other applications when the predicted QoS
degradation is within the specified threshold. To evaluate
the effectiveness of Bubble-Up, we constructed a scenario
where we evaluate 1) the machine utilization improvement
when using Bubble-Up; and 2) the success of Bubble-Up’s
prediction in satisfying a QoS policy without violating the
specified QoS threshold.

For the production scenario presented in this section, we
conducted our evaluation using a cluster that is composed
of 500 machines, described in Section 5. In this experiment,
we focused on search-render as our main latency-sensitive
application whose QoS degradation must be limited within
a small amount. In this cluster, there are 500 instances
of search-render, each placed on a single machine. There
are 500 other Google applications, evenly distributed across
15 application types shown in Table 1. Every application
uses three cores. Our evaluation baseline is the currently
deployed cluster management that disallows co-location of
search-render with any other applications. In this experi-
ment, we investigated the potential co-location and utiliza-
tion gained using Bubble-Up predictions under varying QoS
policies.
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Figure 27: Bubble-Up’s predication accuracy for pairwise co-locations of Google applications.
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Figure 28: Improvement in cluster utilization when
allowing Bubble-Up co-locations with search-render

under each QoS policy.
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Figure 29: Number of Bubble-Up co-locations under
each QoS policy.

Figure 28 presents the cluster’s utilization achieved by
Bubble-Up prediction under various QoS policies. The base-
line is the utilization of the cluster when co-location is dis-
allowed and each instance of search-render is occupying
three out of the six cores on a single machine, and thus at
50% cluster utilization. The max utilization is achieved by
allowing all co-locations; placing each of all 500 other Google
applications to co-run with a search-render on every ma-
chine, regardless of search-render’s QoS degradation. The
max utilization is not 100% because we define a machine’s
utilization as the aggregate performance of all applications
running on the machine, normalized by their solo perfor-
mance. For example, application A and B are co-locating
and occupying all six cores on a machine, but due to cross-
core interference, their performance is only 90% of that when
running alone occupying three cores on a machine. Then the
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Figure 30: Reduction in QoS violations when apply-
ing a tolerance to each QoS policy. Having a toler-
ance of just a few percent results in no violations.

machine utilization when co-located is only 90% instead of
100%.

As Figure 28 demonstrates, Bubble-Up prediction greatly
improves machine utilization. Even under 99% of QoS pol-
icy (when the tolerable QoS degradation is only 1%), the
utilization is improved from 50% to close to 70%. Allow-
ing a more relaxed QoS policy improves the utilization even
more. Under 80% QoS policy, the utilization improvement
is close to 80%, showing great potential benefit of adopting
Bubble-Up in datacenters.

Figure 29 presents the total number of co-locations al-
lowed by the cluster manager according to Bubble-Up pre-
diction under each QoS policy. Similar to utilization, the
number of co-location increases as the allowed QoS degra-
dation increases. The baseline co-location is 0. With 99%
QoS policy, the co-location is close to 200. With 80% QoS
policy, the allowed co-locations increase to 400. However,
because of Bubble-Up’s prediction error, there may be co-
locations that violate the QoS threshold specified in the pol-
icy. Both the number of co-locations that satisfy the QoS
policy and the number of violations are presented in stack
bars. The violations are broken down into three categories:
violations that cause less than 1% extra degradation beyond
the QoS policy, 1-2% extra degradation and 2-3% degrada-
tion. For example, as shown in the figure, under 99% QoS
policy, around 10% of the co-locations violate the policy.
However, all of these violations only cause less than 1% ex-
tra QoS degradation beyond the policy, meaning their QoS
is within a 98% QoS policy. Figure 30 shows the effect of
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locations with search-render under each QoS policy.
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Figure 32: Improved utilization in a clusters com-
posed of AMD K10 Opteron servers and Intel Core
2 Xeon servers.

updating the QoS policy to include an error tolerance. As
shown in the figure, increasing error tolerance at each QoS
policy reduces the number of violations. Note that most of
the violations cause only less than 2% of extra QoS degrada-
tion beyond the QoS policy. Figure 31 shows the percentage
of violating co-locations when allowing all co-locations for
each QoS policy.

5.4 Impact of Varying Architecture
To evaluate the generality of our Bubble-Up across mi-

croarchitectures, we conducted similar experiments on two
additional platforms (a six-core K10-based Opteron and a
four-core Core2-based Xeon) with the same bubble and re-
porter used on the Nehalem processor. The experimental
setup is similar as Section 5.3. Figure 32 demonstrates the
utilization improvement for the cluster when using Bubble-
Up prediction for a cluster composed of Opteron and a clus-
ter composed of Core2-based Xeons. As Figure 33 shows,
Bubble-Up can effectively increase the number of co-locations
with a small amount of error on both platforms. The plat-
forms presented here both have a smaller shared cache sizes
and lower bandwidth than the Nehalem processor. This
leads to a higher degree of contention on these processors.
As a result, we observe fewer co-locations at higher QoS
policy thresholds. At the 90% threshold the number of co-
locations allowed increases dramatically.

6. RELATED WORK
While there has been a lot of work on mitigating the per-

formance interference due to resource contention on multi-
core, not much work is directly applicable to the datacen-
ter co-location problem. Perhaps the closest related work
is the Quarta work by Govindan et al. [9]; however this
work requires access to physical memory addresses which
can only be attained via custom changes to the OS, and
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Figure 33: Co-locations allowed in Opteron and
Xeon clusters.

as the authors themselves mention, such an approach is
not feasible at user-level. One direction that has attracted
much research attention is the management of shared cache
and bandwidth through techniques such as resource parti-
tioning [4, 20, 27–34, 38], throttling [7] and adaptive cache
replacement policies [14]. Previous work has also investi-
gated providing QoS management for different applications
on multicore [10,11,13,26]. While demonstrating promising
results, the previous work on QoS management and resource
partitioning typically requires changes to the hardware de-
sign, which is not applicable to deployed servers. Software
resource partitioning has also been proposed [6,19,35]. How-
ever, most software partitioning techniques focus on shared
cache, while ignoring memory bandwidth contention, which
is another main cause of performance interference. In gen-
eral, our work is complementary to the above resource man-
agement research. While previous work focuses on providing
resource management for performance isolation or perfor-
mance optimization for co-running applications, our work
focus on predicting which applications can be co-run with a
given application without degrading its QoS beyond a cer-
tain threshold.

Previous work on scheduling to mitigate contention and
to improve cache sharing is closely related to our work [5,
8, 16, 17, 40]. For an application, different co-runners may
cause different amounts of performance interference on a
CMP. The intuition of many contention-aware scheduling
is to classify applications based on how aggressively they
are for shared memory resources and intelligently matches
highly aggressive applications with not aggressive applica-
tions to minimize the performance degradation [16, 17, 41].
However, most previous work focuses on maximizing the
overall throughput or maintaining performance fairness. The
approaches cannot address challenges when applications have
different priorities and a subset of the applications have
strict requirements in terms of the tolerable QoS degra-
dation. The challenge for scheduling to provide such QoS
guarantee is that the scheduler needs to accurately predict
the potential performance degradation for co-running appli-
cations. Current classifiers in contention-aware schedulers
only indirectly classify or rank applications in terms of their
levels of aggressiveness [17,37,41] or predict their potential
cache misses [3, 16, 21], but cannot provide direct accurate
prediction in terms of performance degradation.

7. CONCLUSIONS
In this work, we have presented a novel methodology for

the precise prediction of the performance degradation that
results from contention for shared resources. This mecha-
nism is of particular importance in the emerging domain of



warehouse scale computing. By decoupling the characteriza-
tion of an application’s sensitivity to contentious pressure to
the memory subsystem, and the pressure it generates in the
subsystem, we are able to predict pairwise co-locations with
only a 1% prediction error on average. Using Bubble-Up in
our experimental cluster setup, we are able to increase the
utilization in the datacenter by 50% to 90% while enforcing
a range of QoS policies.
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