
DISTRIBUTED ACOUSTIC MODELING WITH BACK-OFF N-GRAMS

Ciprian Chelba, Peng Xu, Fernando Pereira

Google, Inc.,
1600 Amphiteatre Pkwy,

Mountain View, CA 94043, USA

Thomas Richardson

Statistics Department
Box 354322, University of Washington,

Seattle, WA 98195, USA

ABSTRACT
The paper proposes an approach to acoustic modeling that
borrows from n-gram language modeling in an attempt to
scale up both the amount of training data and model size (as
measured by the number of parameters in the model) to ap-
proximately 100 times larger than current sizes used in ASR.

Dealing with unseen phonetic contexts is accomplished
using the familiar back-off technique used in language mod-
eling due to implementation simplicity. The new acoustic
model is estimated and stored using the MapReduce dis-
tributed computing infrastructure.

Speech recognition experiments are carried out in an N-
best rescoring framework for Google Voice Search. 87,000
hours of training data is obtained in an unsupervised fashion
by filtering utterances in Voice Search logs on ASR confi-
dence. The resulting models are trained using maximum like-
lihood and contain 20-40 million Gaussians. They achieve
relative reductions in WER of 11% and 6% over first-pass
models trained using maximum likelihood, and boosted MMI,
respectively.

1. INTRODUCTION

The most common technique in dealing with data sparsity
when estimating context-dependent HMMs in automatic
speech recognition (ASR) is the well known decision tree
(DT) state clustering approach [1]. To make sure the clus-
tered states have enough data for reliable estimation, the
algorithm guarantees a minimum number of frames at each
context dependent state (leaf of the DT). At the other end of
the spectrum, states for which there is a lot more training data
than the minimum can have more mixture components. An
effective way of sizing the GMM as a function of the number
of frames n in training data is the varmix rule [2]:

log(no. mix components) = log(β) + α · log(n) (1)

Typical amounts of training data used for the acoustic
model (AM) in ASR vary from 100 to 1,000 hours. The
frame rate in most systems is 10 milliseconds, which means
that about 360 million samples are used to train the 0.5
million or so Gaussians in an ASR system. Assuming that

n = 1, 000 frames are sufficient for robustly estimating a sin-
gle Gaussian, a back-of-the-envelope calculation shows that
1,000 hours of speech would allow for a system with about
0.36 million Gaussians—quite close to values encountered in
ASR practice, see Section 4.1, or Table VI in [2]. We can
thus say that current AMs achieve “estimation efficiency”.

Recent applications have led to availability of data far
beyond those used in ASR systems. Filtering Google Voice
Search logged utterances at an adequate ASR confidence
threshold guarantees transcriptions that are close to human
annotator performance, e.g. we can obtain 87,000 hours of
transcribed speech at ASR confidence of 0.8 or higher. If we
are to strive for ”estimation efficiency” then this much speech
data would allow estimation of an AM whose size is about 40
million Gaussians.

As a first direction we chose to use longer context: the
phonetic context for an HMM state is determined by M con-
text independent phones to the left and right of the current
phone and state. We experimented with values for M =
1 . . . 5—thus reaching the equivalent of 11-phones. For such
large values of M not all M-phones (context dependent HMM
states in our model) can be reliably estimated and thus saved
in the model. We deal with unseen M-phones by backing-
off, similar to what is done in n-gram language modeling: the
context for an unseen M-phone encountered on test data is de-
creased gradually until we reach an M-phone that is present
in the model.

The next section describes our approach to increasing the
state space using back-off acoustic modeling (BAM), and ex-
plains why standard DT state-tieing does not easily scale to
such large amounts of data. Section 3 describes the BAM im-
plementation using Google’s distributed infrastructure. Sec-
tion 4 presents our experiments in an N-best rescoring frame-
work, followed by conclusions.

2. BACK-OFF N-GRAMS FOR ACOUSTIC
MODELING

Consider a short utterance whose transcription is:
W = <S> action </S>, and assume the pronuncia-
tion lexicon provides the following mapping to context-

independent (CI) phones sil eh k sh ih n sil.
<S>, </S> denote sentence boundaries, pronounced as
long silence sil.

A typical triphone approach would model the 3 states of
ih as sh-ih+n_{1,2,3} using the decision tree cluster-
ing algorithm for tieing each of the 3 states across various
instances *-ih+*_{1,2,3}, respectively. This yields the
so-called context-dependent states in the HMM.

In contrast, BAM with M = 3 extracts the following
training data instances for the maximal order M-phone, as
well as the back-off ones:
ih_1 / eh k sh ___ n sil frames
ih_1 / k sh ___ n sil frames
ih_1 / sh ___ n frames
for the first HMM state of the ih instance in the example ut-
terance above.

To achieve this we first compute the context-dependent
state level Viterbi alignment between transcription W and
speech feature frames using the transducer composition H ◦
C ◦ L ◦W , where L, C, H denote respectively the pronun-
ciation lexicon, context dependency tree, and HMM-to-state
FST transducers [3]. From the alignment we then extract
modeling units called M-phones along with the corresponding
speech feature frames. Each M-phone is uniquely identified
by its key, e.g. ih_1 / eh k sh ___ n sil. The key
is a string representation obtained by joining on / the CI-
state, i.e. ih_1 above and the surrounding phonetic context,
in this case eh k sh ___ n sil; ___ is a placeholder
marking the position where the central CI-state ih_1 occurs
in the context.

Besides the maximal order M-phones we also collect
back-off M-phones, as outlined above. There are other possi-
ble back-off strategies, but we currently implement only the
one above: if the M-phone is symmetric (same left and right
context length) back-off at both ends; if not, then back-off
from the longer end until the M-phone is symmetric, and
proceed with symmetric back-offs from there on. With each
back-off we clone the speech feature frames from the maxi-
mal order M-phone to the back-off one. We found it useful to
augment the CI-phones with word boundaries, which has its
own symbol, and occupies its own context position.

2.1. Comparison with Existing Approaches

BAM can be viewed as a simplified DT state clustering al-
gorithm that uses question sets consisting of atomic context
independent phones, queried in a pre-defined order. The ap-
proach is not novel, see [4], and it is likely suboptimal but we
prefer it to DT AMs for ease of implementation in MapRe-
duce.

Our approach to obtaining large amounts of training data
is very similar to [2]. Table VI there highlights the gains from
using increasing amounts of training data (from 375 hours up
to 2,210 hours), and shows that past 1,350 hours a system with

9K states and about 300k Gaussians gets diminishing returns
in recognition accuracy. Our approach allows both the use of
significantly more training data and estimation of much larger
models: in our experiments we used 87,000 hours of training
data and built models of up to 1.1 million states and 40 million
Gaussians.

3. DISTRIBUTED ACOUSTIC MODELING

3.1. BAM Estimation Using MapReduce

BAM estimation and run-time are implemented using MapRe-
duce [5] and SSTable (immutable persistent B-tree1), and
draws heavily from the large language modeling approach for
statistical machine translation [6].

Each Mapper instance processes a chunk of the input data,
one record at a time. Each record consists of a key-value
pair; the value stores the waveform, the word level transcript
for the utterance, and other elements. For each record arriv-
ing at the Mapper we: generate context-dependent-state level
Viterbi alignment after composing H ◦ C ◦ L with the tran-
script W ; extract maximal order M-phones and output
< M − phone key, frames > pairs; compute back-off M-
phones and output < M − phone key, < empty >> pairs.

After shuffling, M-phones have their frame data (if they
carry any) collated and presented to the Reducer along with
the M-phone key. Every time a maximal order M-phone ar-
rives at the reducer we estimate and output a GMM from
its data (assuming the number of frames is above the lower
threshold), and also accumulate its data in the reservoirs for
all of its back-off M-phones—which are cached in a stack un-
til all instances of that back-off M-phone have arrived at the
Reducer and we can estimate and output its GMM.

For each M-phone that meets a lower threshold on the
number of frames aligned against it we estimate a GMM using
the standard splitting algorithm [7], following the varmix rule
to size the GMM. The M-phones that have more frames than
an upper threshold on the number frames (256k) are estimated
using reservoir sampling. Variances that become too low are
floored to a small value (0.00001). The resulting SSTable
stores the BAM, a distributed (partitioned) associative array
< M − phone key, GMM >.

3.2. BAM Test Run-time

At test time we rescore 10-best lists for each utterance us-
ing BAM. We load the model into an in-memory key-value
serving system (SSTable service) with S servers each holding
1/S-th of the data. For each hypothesis in the 10-best list for
an input utterance, we: generate context-dependent state level
Viterbi alignment after composing H ◦ C ◦ L with the tran-
script W ; extract maximal order M-phones; compute back-

1A format similar to SSTable has been open-sourced as part of the Lev-
elDB project http://code.google.com/p/leveldb/

off M-phones; add all M-phones to a pool initialized once for
each input record (utterance).

Once the pool is finalized, it is sent as a batch request to
the SSTable service. The M-phones that are actually stored in
the model are returned to the Mapper, and are used to rescore
the alignment for each of the hypotheses in the 10-best list.
For each segment in the alignment we use the highest or-
der M-phone that was retrieved from the BAM SSTable. If
no back-off M-phones are retrieved for a given segment, we
back-off to the first pass AM score for that segment—already
computed during Viterbi alignment.

To penalize the use of lower order M-phones, we incur a
per-frame back-off cost fbo×(M−o) > 0.0 when rescoring a
segment with an M-phone of lower order o ≥ 0 than the max-
imum one M ; the order of an asymmetric M-phone is com-
puted as the maximum of the left and right context lengths.
When the model backs-off all the way to using the first pass
AM (clustered state), o = 0.

The final AM score for each hypothesis is then computed
by log-linear interpolation between the first pass AM, and the
second pass one (BAM, or first pass AM if running sanity
checks, see Table 1):

logPAM (A|W) = λ · logPfirst pass(A|W) + (2)
(1.0− λ) · logPsecond pass(A|W)

where A denotes the acoustic features, and W denotes the
word sequence.

4. EXPERIMENTS

We ran our experiments on Google Voice Search training and
test data. There are two training sets that we used in our ex-
periments:

• ML baseline: 1 million manually transcribed Voice
Search spoken queries—approx. 1,000 hours of speech

• filtered logs: 110 million Voice Search spoken queries
+ 1-best ASR transcript, filtered by confidence at 0.8
threshold—approx. 87,000 hours of speech. The whole
query-level confidence measure used for filtering is de-
rived using standard lattice-based word posteriors.

As development/test data we used two sets of manually
transcribed data that do not overlap with the training data
(the utterances originate from non-overlapping time periods
in our logs). Let’s denote them as data sets T9b/T9a, consist-
ing of 27,273/26,722 spoken queries (87,360/84,918 words),
respectively. All query data used in the experiments (train-
ing/development/test) is anonymized.

4.1. First Pass AMs

The first pass AM is estimated on the ML baseline data in
the usual staged approach after extracting 39 dimensional fea-
tures for every frame:

1. 3-state, context independent phone HMMs with single
Gaussian, diagonal covariance output distributions

2. standard decision tree clustering for triphones, 8k
context-dependent states

3. GMM splitting up to 0.33 million diagonal covariance
Gaussians; the minimum/maximum number of frames
for a given context-dependent state is 18k/256k respec-
tively; states with more than the maximum number of
frames are estimated by sampling randomly down to
256k frames; varmix estimation is used to determine
the number of mixtures according to the amount of
training data

4. boosted-MMI training [8] on the ML baseline data aug-
mented with another 10 million Voice Search spoken
queries + 1-best ASR transcript, filtered by confidence.

4.2. N-best Rescoring Experiments

The T9b development data is used to optimize the model order
M = 1 . . . 5 (triphones to 11-phones); AM weight in log-
linear mixing of first pass AM scores with the rescoring AM,
λ; language model weight: lmw; and the per frame back-
off weight: fbo. Across all experiments we kept constant
the baseline AM (in all cases the ML one trained on the ML
baseline data) and the maximum number of frames for an M-
phone state (256k). For the α/β = 0.3/2.2 setting this means
a maximum number of 92 mixture components per state.

Table 1 shows the results when rescoring 10-best with
BAM, along with the best settings as estimated on develop-
ment data. We built models for M = 1, . . . 5 but as the results
show there was no gain in performance for values of M > 2.

The first three rows show the performance, and size (in
number of Gaussians) of the maximum likelihood AM base-
line (stage 3 in Section 4.1) on the test set T9a. Somewhat
surprisingly, there is a small gain (0.3% absolute) obtained by
interpolating the first and second pass scores produced by the
ML baseline AM for the same utterance. We point out this
oddity because the same second pass alignments are rescored
with the BAM, and hence this small improvement should not
be credited to better modeling using BAM, but rather to the
re-computation of alignments in the second pass.

The first training regime for BAM used the same data as
that used for the ML part of the baseline AM training se-
quence. When matching the threshold on number of frames
with the one used for the baseline AM (18k), BAM ends
up with fewer Gaussians than the baseline AM—223k vs.
327k. This is not surprising, since no decision tree cluster-
ing is done, and the data is not used as effectively—many
triphones/1-phones are discarded, along with their data. How-
ever, its performance matches that of the baseline AM—in a
10-best rescoring setup; no claims are made about the perfor-
mance in the first pass. Lowering the threshold on the number

Model WER (Sub/Del/Ins) No. Gaussians
(39 dim, diag cov)

TRAINING DATA = ML baseline data (1k hours)
ML baseline AM, λ = 0.0, lmw = 17 12.4 (1.3/2.5/8.6) 327,438
ML baseline AM, λ = 0.6, lmw = 17 11.6 (1.2/2.3/8.1) 327,438
ML baseline AM, λ = 1.0 (1-st pass), lmw = 17 11.9 (1.2/2.4/8.3) 327,438
TRAINING DATA = ML baseline data (1k hours)
BAM (min no. frames=18k, M = 1, λ = 0.8, lmw = 17, fbo = 0.0) 11.6 (1.2/2.2/8.2) 223,211
BAM (min no. frames=4k, M = 1, λ = 0.8, lmw = 17, fbo = 0.0) 11.5 (1.2/2.2/8.1) 489,640
TRAINING DATA = 1% filtered logs data (1k hours)
BAM (min no. frames=4k, M = 2, λ = 0.8, lmw = 17, fbo = 1.0) 11.3 (1.2/2.2/7.9) 600,291
TRAINING DATA = 10% filtered logs data (9k hours)
BAM (min no. frames=4k, M = 2, λ = 0.6, lmw = 17, fbo = 0.4) 10.9 (1.1/2.2/7.7) 3,974,917
TRAINING DATA = 100% filtered logs data (87k hours)
BAM (min no. frames=4k, M = 2, λ = 0.6, lmw = 17, fbo = 0.0) 10.6 (1.0/2.2/7.4) 22,210,429

Table 1. Maximum Likelihood Back-off Acoustic Model (BAM) Results on the Test Set T9a, 10-best Rescoring

of frames to 4k (26 mixture components at α/β = 0.3/2.2)
does increase the number of Gaussians in the model to 490k.

The second training regime for BAM uses the filtered logs
data, in varying amounts: 1%, 10%, 100%, respectively. A
surprising result is that switching from manually annotated
data to the same amount of confidence filtered data provides
a small absolute WER gain of 0.1-0.2%. This shows that the
confidence filtered data is just as good as the manually anno-
tated data for training AMs to be used in N-best rescoring.

From then on, BAM steadily improves as we add more
filtered logs data: the first 10X increase brings a 0.4-0.5% ab-
solute WER reduction, and the second 10X increase brings
a 0.3% absolute WER reduction. This amounts to 1.3% ab-
solute reduction (11% relative) on the one-pass baseline of
11.9% WER.

When switching to using the boosted MMI AM (stage 4 in
Section 4.1) as the first-pass AM in both training and test, the
baseline result is significantly better at 9.8% WER. Despite
the fact that it is not discriminatively trained BAM provides a
0.6% (6% relative) reduction in WER over the MMI baseline.

5. CONCLUSIONS AND FUTURE WORK

We find these results very encouraging, and think that dis-
tributed acoustic modeling is something to look into for im-
proving ASR. Expanding phonetic context is not really pro-
ductive: ”more model” by increasing M > 2 yields no gain
in accuracy, so we still need to find good ways of using large
amounts of data.

Obvious future work items that are perfectly feasible at
this scale include: DT state tieing, re-computing alignments
in ML training, and discriminative GMM training. On the
more exploratory side, non-parametric modeling techniques
hold promise with such large amounts of training data.

Acknowledgments
Many thanks to my colleagues that helped with comments,
suggestions, and solving various speech infrastructure issues,

in particular: Alex Gruenstein, Brian Strope, Doug Beefer-
man, Erik McDermott, Jeff Dean, Johan Schalkwyk, Michiel
Bacchiani, Thorsten Brants, Vincent Vanhoucke, and Will
Neveitt. Special thanks go to Olivier Siohan for help with
prompt code reviews and detailed comments.

6. REFERENCES

[1] S. Young, J. Odell, and P. Woodland, “Tree-based state
tying for high accuracy acoustic modelling,” in Proceed-
ings ARPA Workshop on Human Language Technology,
Berlin, 1994, pp. 307–312.

[2] M.J.F. Gales et al., “Progress in the CU-HTK broad-
cast news transcription system,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 14, no. 5,
pp. 1513 –1525, September 2006.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 69–88, 2002.

[4] Rich Schwartz et al., “Improved Hidden Markov model-
ing of phonemes for continuous speech recognition,” in
Proceedings of ICASSP, 1984, vol. 9, pp. 21–24.

[5] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: sim-
plified data processing on large clusters,” Commun. ACM,
vol. 51, pp. 107–113, January 2008.

[6] Thorsten Brants et al., “Large language models in ma-
chine translation,” in Proceedings of the Joint Conference
EMNLP-CoNLL, 2007, pp. 858–867.

[7] Steve Young et al., The HTK Book, Cambridge Univer-
sity Engineering Department, Cambridge, England, De-
cember 2002.

[8] Dan Povey et al., “Boosted MMI for model and fea-
ture space discriminative training,” in Proceedings of
ICASSP, April 2008, pp. 4057 –4060.

