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Abstract—In this paper we present a data-driven framework
for detecting machine-generated traffic based on the IP size, i.e.,
the number of users sharing the same source IP. Our main ob-
servation is that diverse machine-generated traffic attacks share
a common characteristic: they induce an anomalous deviation
from the expected IP size distribution. We develop a principled
framework that automatically detects and classifies these devia-
tions using statistical tests and ensemble learning. We evaluate
our approach on a massive dataset collected at Google for 90
consecutive days. We argue that our approach combines desirable
characteristics: it can accurately detect fraudulent machine-
generated traffic; it is based on a fundamental characteristic
of these attacks and is thus robust (e.g., to DHCP re-assignment)
and hard to evade; it has low complexity and is easy to parallelize,
making it suitable for large-scale detection; and finally, it does
not entail profiling users, but leverages only aggregate statistics
of network traffic.

I. I NTRODUCTION

Today, a large number of Internet services such as web
search, web mail, maps, and other web-based applications
are provided to the public free of charge. At the same
time, designing, deploying, and maintaining these services is
expensive. They must have high availability, be able to serve
any user, anonymous or logged in, and from anywhere in the
world. This is often possible due to the revenue generated by
Internet advertising, an industry that in 2009 generated over
$22 billion [1], [2] in the U.S. alone.

For the above-mentioned reasons, fraud detection is a crit-
ical component for the well-being of many Internet services.
Hit inflation attacks refer to the fraudulent activities of gener-
ating charges for online advertisers without a real interest in
the products advertised. They can be classified into publishers’
and advertisers’ attacks. Publishers’ hit inflation attacks use
fraudulent traffic in an attempt to increase publishers’ revenues
from online advertising. Advertisers’ hit inflation attacks aim
at increasing the overall amount of activities, such as impres-
sions or clicks associated with the advertisements of their
competitors. The main objective of advertisers’ hit inflation
attacks is depleting their competitors advertising budgets. In
this paper, we focus on publishers’ attacks, but the same
discussion applies to advertisers’ attacks.

Hit inflation attacks can be performed in many ways, using
different network infrastructures and levels of sophistication.
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Fig. 1 depicts a simple scenario with three publishers, where
each publisher represents a different type of traffic. Adver-
tisements on the publisher sitesthispagemakesmoney.comand
thispagetoo.comreceive legitimate traffic,i.e., users interested
in the advertisements clicked on them. Advertisements on
thispagetoo.comalso receive fraudulent traffic. For instance,
the publisher might ask her friends to repeatedly click on ad-
vertisements displayed on her site. Finally, in a more sophisti-
cated hit inflation attack, publisheriwontmakemoney.comuses
a botnet to automatically generate a large amount of fraudulent
traffic. This simple example illustrates the complexity of the
problem.

Fig. 1. Three publishers contract with an advertising network to host
advertisements for a commission, for each click on these advertisements.
The three publishers illustrate three types of traffic: (1) advertisements on
the publisher sitethispagemakesmoney.comare clicked only by legitimate
users (white pointers); (2) advertisements onthispagetoo.comare clicked by
both legitimate and fraudulent users (red pointers); and (3) advertisements on
iwontmakemoney.comare not clicked by legitimate users–instead,iwontmake-
money.comuses a large botnet to generate fraudulent traffic.

Hit inflation attacks represent the biggest threat to the
Internet advertising industry [3], [4], [5]. In this paper,we
share our experience in building a fraud detection system at
Google. Hit inflation attacks represent a specific application
of the techniques and methodologies presented here. However,
these can be applied, generally, to detect machine-generated
traffic. The main contributions of this work are as follows:

• For the first time, theIP size, defined as the number of
users sharing the source IP, is used as a discriminative
feature for detecting machine-generated traffic. Our key
observation is that several types of attacks induce an
anomalous deviation from the expected publishers’ IP
size distribution.
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• We design a principled framework that estimates the
expected IP size distribution, based on historical data, and
domain-specific insights, and detects anomalous traffic
using statistical learning techniques.

• We evaluate our approach on a massive data set of click
logs collected at Google for over 90 consecutive days.
This allows us to validate our implementation on a rich
data set comprising diverse types of click traffic and
machine-generated attacks.

Our approach combines several desirable characteristics:it
successfully detects fraudulent traffic; it has low complexity
and is easy to parallelize, making it suitable for large-scale
detection; it is based on a fundamental characteristic of
machine-generated traffic, and is thus robust (e.g., to DHCP
re-assignment) and hard to evade; and finally, it does not
entail profiling users individually, but leverages only aggregate
statistics.

The remainder of this paper is organized as follows. In
Section II, we define the IP size and describe how attacks
using machine-generated traffic affect the IP size distribution.
In Section III, we describe the data set used in this study. In
Section IV, we summarize the notation used throughout this
paper. In Section V, we show how to distinguish a publisher’s
legitimate traffic from fraudulent traffic. In Section VI, we
show how to detect fraud at the publisher’s level. In Section
VIII, we discuss the strengths and limitations of this work.In
Section IX, we conclude the paper.

II. IP SIZE AND MACHINE-GENERATED ATTACKS

A. IP Size

We define theIP size as the number of users sharing the
same IP address. Estimating the IP size is a challenging
problem in its own. Several users might share the same host
machine, or might connect through the same Network Address
Translation (NAT) device or even a cascade of NATs, as
illustrated in Fig. 2. Moreover, the IP size changes over time
as new users join the local network and share the same public
IP and others leave, or as the IP address gets reassigned to a
different host.

In this paper, we use the IP size estimation provided by
the Google IP Size system [6]. In [6], application-level logs
of trusted users, including search queries and advertisement
clicks, are aggregated at the IP level. This data is used to
build a probabilistic model of users activities. Then, the IP
size is estimated as a function of both the rate of activities
observed and the diversity of the observed traffic.

B. Observed IP Size Distributions

For each publisher, and a given time periodT , we measure
its IP size distribution. This is defined as the empirical
distribution of the sizes associated with advertisements on her
website during time periodT .

Different publishers naturally exhibit different IP size dis-
tributions. Fig. 3 shows two examples of IP size distributions
that are typically seen on (1) a website that receives average
desktop traffic, and (2) a website that receives average mobile

Fig. 2. Public IP address 213.18.112.34 is shared by 4 users.Thus, the IP
size of 213.18.112.34 is 4. Intuitively, this means that we expect this specific
IP address to roughly generate 4 times the number of activities generated by
a single user.

traffic. First, where a website receives mainly desktop traffic,
most of the clicks have small sizes because, typically, onlya
handful of users share the same IP address. As such, the IP size
distribution is highly skewed toward the left. Second, where a
website receives mainly mobile traffic, the IP size distribution
exhibits two distinct modes. This is because mobile users
typically access the Internet either with public IP addresses,
which have relatively small sizes, or through large proxies,
which are shared by numerous users. Generally, different
publishers have different IP size distributions dependingon
both the type of their services, and the type of traffic driven
to their websites.

Fig. 3. Two example of publishers with two different IP size distributions.

C. IP size Distributions

machine-generated attacks are performed in various ways,
depending on the resources available, motivations and skills
of the attackers. For instance, if an attacker controls a large
number of hosts through a botnet, the attack can be highly
distributed across the available hosts to maximize the overall
amount of traffic generated while maintaining a low activity
profile for each host individually. We refer to this type of
attacks asbotnet-basedattacks. Conversely, if an attacker
controls a few hosts but still wants to generate a large amount
of traffic, she can use anonymizing proxies, such as TOR
nodes, to hide the actual source IPs involved. We refer to
this type of attacks asproxy-basedattacks. Botnet- and proxy-
based attacks are two diverse examples in the wide spectrum
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of possible attacks using machine-generated traffic, in terms
of both the resources required and level of sophistication.

Fig. 4 illustrates these two attacks and how they affect the IP
size distribution associated with a publisher. Assume thatwe
have an a-priori knowledge of the expected IP size distribution
based on historical data. Let the blue curve be the expected
distribution of IP sizes. Fig. 4(a) depicts an example of botnet-
based attack. Bots are typically end-user machines and so have
a relative small IP size. Intuitively, this is because end-user
machines are easier to compromise than large well-maintained
proxies. As a result, a botnet-based attack generates a higher
than expected number of clicks with small size. Analogously,
a proxy-based attack skews the IP size distribution towards
large IP sizes because a higher than expected number of clicks
comes from large proxies, as in Fig. 4(b).

Despite their differences, most attacks share a common
characteristic: they induce an unexpected deviation of theIP
size distribution. The attacks in Fig. 4 represent two opposite
scenarios. However, in both cases the attack is revealed as a
deviation from the expected IP size distribution. In general,
different deviations represent different signatures of attacks.

(a) botnet-based attack

(b) proxy-based attack

Fig. 4. Types of attacks and their effect on the IP size distribution: The blue
curve represents the expected IP size distribution. The redcurve represents
the IP size distribution during the attack. Fig. (a) illustrates a botnet-based
attack: clicks are generated by a large number of bots. Theseare typically
end-user machines and thus skew the distribution toward small IP sizes. Fig.
(b) illustrates a proxy-based attack: the IP addresses generating the clicks are
rerouted through anonymizing proxies (e.g., TOR nodes). Since many users
share these proxies, this attack skews the IP size distribution toward large IP
sizes.

III. T HE DATA SET

A. Key Features

In this paper, we use advertisement click logs collected at
Google from a sample of hundreds of thousands of different
publisher websites. We use these logs to gain insights into
modern machine-generated traffic attacks, as well as to test
and evaluate the performance of our system on real data. In
this section, we briefly describe the data set and the specific
features used in this study.

We analyze a sample of click logs collected for a period
of 90 consecutive days. Our analysis and development rely on
the following fields in each entry:

• Source IP: the source IP address that generated the click.
• Publisher ID: the unique identifier associated with each

publisher.
• Time: the timestamp associated with the click.
• Fraudulent click flag: a binary flag which indicates

whether or not the click was labeled as fraudulent by
any of the fraud detection systems already in place at
Google.

In addition to the click logs, we also used two Google
internal databases:

• IP Sizedatabase, which keeps tracks of the IP size [6].
We use the sizes estimated from the click traffic to filter
fraudulent clicks. These were called click sizes of the IPs
in [6].

• Geographical IP database, which provides up-to-date
geographical information on source IP addresses.

B. Assessing the Quality of Traffic

In this paper, we leverage an internal classifier that takes
as input click logs of network traffic and determines the
likelihood that the network traffic is fraudulent machine-
generated traffic. We call the score obtained through this
system thequality score. This classification system takes as
input a variety of features that accounts for different types of
user inputs, and different types of anomalies. This classifier
provides us with an estimate on the aggregate quality of a
large set of clicks. Similar classifiers exist for other kinds of
attacks depending on the application. For instance, in the case
of email spam a classifier can be built on several features
of the email. One of the features could be the ratio of users
that labeled this email as spam. Another feature could be the
number of valid and invalid recipient addresses, and so on.

We also define thefraud scoreas a function of the ratio
between the number of fraudulent clicks and the total number
of clicks, with different weights assigned to the fraudulent
clicks depending on the reason for tagging them as fraudulent.

Finally, we also use two sets of blacklists, the Gmail
Blacklist [7] and the Spamhaus Exploit Blacklist (XBL) [8],
to determine whether or not the IP addresses that generate
fraudulent ad events are also known to generate other types
of abusive traffic. Gmail blacklist is a list of source IPs that
are likely to send email spam. Spamhaus XBL is a realtime
database of hosts infected by some exploits.
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IV. N OTATION

Each click, c, is associated with a source IP address,
IPc, that generated the click, and with a publisher site,Pk,
that hosted the advertisement clicked. LetSc be the IP size
associated withIPc, and letn be the number of clicks on
advertisements hosted byPk in a certain time period,T .

Let us first consider a single publisher,Pk. We model the
IP sizes,S1, ..., Sn, as the realizations of a sample ofn i.i.d.
random variables,S1, ...,Sn, that can take a finite number of
positive valuesB1 < B2 < ... < Bm, whereB1 = 1 is
the minimum number of legitimate users sharing an IP, and
Bm is the largest IP size observed in the training period. The
probability distribution associated with{Sc}, is defined by
some (unknown) valuesp1, ..., pm, wherepi = P[Sc = Bi] ∀c.
In general, when dealing with multiple publishers these values
depend on the publisher itself,i.e., pi = pi(Pk).

Let f̃i be the observed frequency of IP sizes associated with
Bi, i.e., the count of clicks that have sizeBi: f̃i = #{Sc :
Sc = Bi}, andfi be the relative number of clicks of sizeBi,
i.e., fi = f̃i/n. As the number of observed clicks increases,
fi approachespi as quantified by the Central Limit Theorem,
fi−pi

pi
√

n

→n→∞ N (0, 1−pi). This allows us to approximate the

unknown valuepi with measurable quantities,fi, and derive
formal confidence bounds. Finally, assume that we have an
estimate of the true (unknown) probability distribution:pi =
ri, ∀i. We will describe how to estimate thefi andri variables
and use these values to detect frauds.

V. CLICK FILTERING

In this section, we focus on the general scenario where
the click traffic received by a publisher is a mixture of both
legitimate and fraudulent clicks. Our goal is to automatically
detect and filter out the fraudulent clicks.

A. IP Size Histogram Filter: Overview

As shown in Fig. 4, machine-generated traffic attacks natu-
rally induce an anomalous IP size distribution. Keeping this in
mind, we implement a detection system based on the IP size
histogram that automatically filters fraudulent clicks associated
with any publisher. Our system proceeds through the following
main steps.

• First, we group publishers with similar legitimate IP size
distributions.

• Second, for each group, we build a statistical model of
the click traffic based on historical data. Since the IP size
distribution might change over time, a fresh estimation is
periodically computed.

• Third, we partition live click traffic of each publisher
into separate buckets depending on the IP size value, and
filter out sets of clicks of any publishers that violate the
computed model with some statistical confidence1.

1We remove from this analysis publishers that do not receive astatistically
significant number of clicks in the period of time considered. In these cases,
we do not have enough information to provide a statisticallysound estimation.

B. Grouping Publishers

Identifying a proper grouping of publishers is the first
fundamental step in combating machine-generated traffic. A
good grouping of publishers should ensure that publishers in
the same group naturally share a similar IP size distribution,
while publishers in different groups might not.

As observed in Sec. II-B, the type of services provided
by the publisher’s website and the type of traffic driven to
her website affect the IP size distribution of a publisher.
Furthermore, this is also influenced by the geo-location of
the source IP addresses visiting her website. The rationale
behind this is that different countries have different IP size
distributions due to various reasons, such as heavy use of
proxy, population density vs. number of IP addresses available,
and government policies.

For these reasons, we group together publishers that provide
the same type of service (e.g.,web search, services for mobile
users, content sites, and parked domain websites), and receive
clicks from the same type of connecting device (e.g.,desktops,
smart-phones, and tablets), and from IP addresses assignedto
the same country. For instance, if a publisher receives clicks
from more than one type of device, its traffic is split depending
on the type of devices, and accordingly assigned to different
groups. This provides a fine grained grouping of publishers
which takes into account the various factors that affect theIP
size.

C. Threshold Model for Legitimate Click Traffic

After grouping publishers, we compute a statistical thresh-
old model of the click traffic associated with each group.

First, we aggregate the click traffic received by any pub-
lisher within the same group, over a time periodτ . To account
for the long tail of IP size distributions [6], we bin the click
traffic of each publisher using a function of the actual IP size.

Next, we set a minimum quality score,qmin, that a set
of legitimate clicks should satisfy. Different websites have
different quality scores depending on various factors, such as
the services provided and the advertisements displayed. Thus,
we computeqmin as a fixed fraction of the average quality
score associated with each group of publishers.

For each group and each bucket we compute a percentile
threshold,t. In real time, if any publisher receives more than
t% of her traffic on this bucket, its traffic from this bucket
gets filtered. To sett, we carry out a fine-grain scan of all
the possible percentiles of this bucket. For each percentile, p,
we aggregate the traffic from all the publishers that received
more thanp% of their traffic from that bucket, with some
binomial confidence threshold. If the quality score of this
aggregated traffic is lower thanqmin, we setp as a candidate
threshold. At the end, we pick the threshold,t, to be the
candidate threshold that has the highest impact, i.e., the largest
number of discarded traffic. This technique takes into account
the observed empirical distributions, the number of available
samples (IP sizes), and the desired confidence level.

Intuitively, the filtered clicks represent regions of high
probability for specific publishers,i.e., spikes in their IP size
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distributions, that also have a significantly lower qualitythan
what we would expect for the same group of publishers and
set of advertisements.

D. Performance Results

In this section, we assess the effectiveness of the IP size
histogram filter in identifying attacks. We implement our
system using Sawzall [9], a Google-built language specifically
designed to handle massive data sets using a distributed
MapReduce-based infrastructure. Each phase of the above
filter is distributed across a few hundred machines using the
MapReduce framework [10]. For the results described in this
section we used a training period ofτ = 90 days to build the
threshold model, and a testing period ofτlive = 30 day.

Figures with sensitive values, including the quality score,
the fraud score, and the number of clicks have been
anonymized as follows: the original values have been trans-
formed by arbitrary constants so as to preserve trends and
relative differences while obscuring the absolute numbers.

IP size Distributions. Fig. 8(a) through Fig. 8(d) depict
two groups of publishers, named here A and B for anonymity
purpose. These groups consist of publishers whose websites
provide similar services and whose click traffic comes from
the same country and the same type of device.

Each figure is a four-dimensional plot. Thex-axis represents
the bucket of the IP size, while they-axis represents the
probability value. Each point is associated with a single
publisher and represents the probability that the publisher
receives a click of a certain size. In Fig. 8(a) and 8(c) the size
of data points represents the number of clicks and the color
represents the scaled fraud score. Fig. 8(b) and 8(d) display
the same points as in Fig. 8(a) and 8(c) with the difference
that the size represents the number of clicks fed to the quality
classifier system, and the color represents the scaled quality
score. We chose to plot circles with different sizes to represent
different levels of statistical confidence.

These figures confirm on real data the motivating intuition
discussed in Fig. 4. Fig. 8(a) and Fig. 8(b) show the results on
one of the largest groups, comprising hundreds of publishers.
Despite the complexity of the problem and the variety of
possible attacks, Fig. 8(a) shows that spikes in the IP size
distribution of a publisher are reliable indicators of highfraud
score. In fact, most points associated with an anomalous
high probability are red, thus indicating that they are known
to be fraudulent clicks. As an additional validation, in Fig.
8(b) we analyze the corresponding quality score. The spikes
corresponding to high fraud score also have very low, or zero,
quality score. This confirms that the clicks identified by our
systems are indeed fraudulent clicks.

Fig. 8(c) and Fig. 8(d) illustrate a sample group where the IP
size distribution detects machine-generated traffic that would
have been undetected otherwise. For instance, Fig. 8(c) shows
the case of a publisher that has about 70% of its clicks in
bucket 6. This spike in distribution is particularly suspicious
since all other publishers in the same group have 15% or less
click of this size. The quality score associated with this point

confirms this intuition. In fact, despite the large number of
clicks (size in Fig. 8(d)) we observe a very low quality score.
Similarly, a small group of publishers have most of clicks in
buckets 11 or 12. Also in this case, the known fraud score
is low, but the so is the quality score. This hints towards a
previously undetected attacks, possibly orchestrated by agroup
of colluding publishers.

Analysis of a single bucket.In Fig. 5, we focus on bucket
0 of Fig. 8(a), as this is the bucket with the largest number
of data points. We study how the number of filtered clicks,
the fraud score, and the quality score vary with the percentile
threshold set by the histogram filter for this bucket. We also
analyze the number of incremental fraudulent clicks,i.e., the
number of fraudulent clicks detected solely by the IP size
histogram filter and not by other systems, as well as the
incremental quality score,i.e., the quality score associated
with the incremental fraudulent clicks. As we can see from
Fig. 5, there is a sweet spot around 0.7 that identifies a small
fraction of clicks, about 1% of the total number of clicks in
this buckets, that have both high fraud score and low quality
score.

Fig. 5. Analysis of a single bucket.

Performance over time. Fig. 6 shows how the proposed
system performs over time. We run the IP size histogram
detection every day for a month and we compute the fraud
score and quality score of the filtered click traffic. The
fraud score is consistently high and stable over time, while
the quality score of the filtered traffic remains an order of
magnitude lower than the quality score of the unfiltered traffic
for the same group of publishers.

Overlap with Other Blacklists. In Fig. 7 we analyze the
overlap between IPs filtered by the IP size histogram filter,
and IPs listed in Gmail blacklist [7] and in Spamhaus Exploit
blacklist (XBL) [8]. For each day, we compile a blacklist of
IPs that sent fraudulent clicks during that day. Thex-axis
represents the time difference between the day we compile our
blacklist, and the day the Gmail and Spamhaus blacklists were
compiled. A zero value indicates that we compare blacklists
associated with the same day. Negative values indicate that
our blacklist is some days older than the blacklist compiled
by Gmail or Spamhaus XBL. Positive values indicate the
opposite scenario. They-axis represents the percentage of IPs
detected with our system that are also found in other blacklists.
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Fig. 6. Fraud score and quality score for different days

Interestingly, we observe that a large percentage of fraudulent
clicks are generated by IPs that also generate other kinds of
abusive traffic, such as spam emails. In particular, up to 45%
of fraudulent clicks are generated by source IPs listed either
in Gmail blacklist or in Spamhaus XBL.

Fig. 7. Percentage of fraudulent clicks generated by IPs listed on the Gmail
blacklist or on Spamhaus XBL.

VI. FLAGGING ENTITIES

The IP size histogram filter described in Section V can
distinguish between a set of legitimate and a set of fraudu-
lent clicks by automatically detecting anomalous spikes ina
distribution associated with low quality click traffic. To avoid
detection a fraudster could attempt to spread its clicks across
various buckets so as to achieve the same overall effect while
avoiding generating high probability regions in few buckets.
Therefore, we need additional methods that look at the entire
IP size distribution.

In this section, we consider the IP size distributions asso-
ciated with entities. An entity can be a user-agent, an e-mail
domain, a publisher, a city, a country, and so on. In general,
an entity is any dimension that aggregates ad events. For each
type of entity, we can build a detection system based on the IP
size distribution. This is useful to build several complementary
defense mechanisms that protect against different types of
attacks.

Assume that we have an estimate of the expected entity’s
IP size distribution,r = {ri}

Bm

i=0
, and that the observed IP size

distribution isf(P ) = {f(P )i}
Bm

i=0
. In this section, we want
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Fig. 9. Flagging entities - system overview: We feed as inputthe click logs
and the information provided by Google IP size and Geographical databases.
The feature extractor module extracts only the features we are interested in, as
discussed in Section III. Next, the sharder partitions the data into groups based
on the type of entity, the type of connecting device, and the geo-location of
the source IP. For each of these groups, we compute an expected distribution,
r, from the historical data of legitimate clicks. For each entity, we compute an
observed distribution of IP sizes,f = f(P ). We compare the observed and
expected distribution using several statistical methods.Finally, these results
are combined in a signature vector specific to each entity andwe use this
information to predict the entity’s fraud score.

to detect deviations between the expected and the observed
entity distribution,r andf(P ), that are induced by machine-
generated traffic.

A. Flagging Entities: System Overview

Fig. 9 illustrates the workflow of the system we imple-
mented at Google. The first step is the estimation of the
expected IP size distribution of each entity. Each group might
have a different IP size distribution. However, entities within
the same group are expected to share a similar distribution.
Since the majority of fraudulent clicks are already filtered
out by existing detection systems, we use the aggregate
distribution of legitimate IP sizes within each group as an
estimation of the true (unknown) IP size distribution for that
group. Next, we use a set of statistical methods to accurately
characterize the deviation between the observed and expected
distribution. As noted in Fig. 4, different attacks result in
different deviations in the IP size distribution. Finally,we use
an ensemble learning model [11] to combine the outcome of
these methods in a signature vector specific to each entity,
and we train a regression model that identifies and classifies
signatures associated with fraudulent entities.

B. Measuring Anomalous Deviations

To accurately characterize the deviation, if any, between
the observed and the expected distribution of each entity we
use an ensemble of different statistical methods. These canbe
grouped in four wide categories:

• vector-based methods: include theLp distance, the cosine
similarity, and the Pearson correlation coefficient. These
methods measure either the geometrical or the angular
distance between two distributions.

• skewness-based methods: include computing the sample
skewness, and the Bowley skewness [12], as well as other
domain-specific metrics. These methods measure both the
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Fig. 8. Figures (a)-(d) show the IP size distribution of two groups of publishers, named A and B for anonymity purpose, which include hundreds of different
publishers. Each point represents the percentage of clicks, of a given size, received by a publisher. For each group of publishers, we illustrate two figures. In
Figure (a), (c), the color indicates the scaled fraud score.The volume is proportional to the number of clicks associated with the data point. In Figure (b),
(d), the color indicates the scaled quality score.

direction – left-skew vs. right-skew, and the magnitude of
the asymmetry exhibited by the given distributions.

• entropy based methods: include the Jensen-Shannon and
the Kullback-Leibler divergence [13]. These methods
measure how concentrated or spread apart the values
realized by the given distributions are.

• goodness-of-fit tests: include the Kolmogorov-Smirnov
and the Chi-square test statistic. These methods estimate
the likelihood that the observed IP sizes are generated by
the expected distribution.

C. Combining Statistical Methods

In general, different methods for comparing probability
distributions provide different information as they measure
different properties. For instance, if we measure the skewness
of a distribution, all symmetric distributions will be considered
similar to each other as they have null skewness. However,
if we measure other properties, such as, theL2 distance,
two symmetric distributions will, in general, be differentfrom
each other. Using an ensemble of statistical methods provides
a more accurate characterization of the observed deviation
than using a single methods. This is particularly important
in analyzing massive data sets, comprising a wide range of
different patterns.

In order to precisely measure the observed deviation and
identify fraudulent entities, we combine the outcome of the
statistical methods described in Sec.VI-B in a signature vector,
σk, specific to each entity,Pk. Intuitively, significant devi-
ations from the expected distribution, measured by several
statistical methods, represent strong indicators of fraudulent
click traffic. For this reason, we model the fraud score,φk, as
a linear function of the observed deviations,

φk =

p
∑

j=1

θjσkj (1)

where, σkj indicates thej-th component ofσk and θj is
the weight associated with it. We determine the optimal
set of weights,θ, in Eq. (1) that minimize the least-square

cost function,J(θ) =
∑

k∈K

(

φ̄k −
∑p

j=1
θjσkj

)2

using a
stochastic gradient descent method trained on a small subset of
entities,K, which includes legitimate distributions and known

attacks provided both by other automated systems, and by
manual investigation of the logs. The model in Eq. (1) is then
applied to a large data set of entities to predict the fraud score
as a function of their IP size distribution.

D. Performance Results

Fig. 10 shows the accuracy of the model in Eq. (1) in
predicting the fraud score as a function of the number of
statistical methods used to compare distributions. First,we
analyze the accuracy of our system when all methods are used.
Next, we iteratively remove the feature that causes the least
amount of variation in the prediction accuracy until we are
left with a single feature [14]. We train on 10% of the entities,
and test it on the remaining entities. Fig. 10 shows that using
multiple comparison methods that measure different type of
deviations allows us to reduce the prediction errors, down to
a 3% error. This is about 3 times lower than when using a
single method. Moreover, we observe that additional methods
improve the accuracy of the model but with decreasing gain.

Fig. 10. Prediction accuracy: number of comparison methodsvs. average
error in predicting the fraud score.

To validate the goodness-of-fit of the model in Eq. (1) we
also compute the adjusted coefficient of determination,R̄2:

R̄2 = 1−
n− 1

n− p

SSerr

SStot

(2)

where, SSerr =
∑

k(φ̃k − φ)2 is the sum of squares of
residuals. Eq. (2) can be interpreted as the amount of variance
captured by proposed model. Moreover, in contrast with the
R2 statistic, which does not decrease with more regressors,



8

R̄2 penalizes the use of a large number of regressors unless
it significantly improves the explanatory power of the model.
Fig. 11 shows that as we use more statistical tests, the adjusted
coefficient of determination increases. This demonstratesthat
additional features increase the explained variance of the
model. When all features are used, the model in Eq. (1)
captures over 40% of the total variation in the data. This result
is particularly significant in a large data set that includesa wide
range of patterns of click traffic.

Fig. 11. Prediction accuracy: number of comparison methodsvs.R2. As the
number of features increases, the adjusted coefficient of determination,R2 ,
increases as well, and so does the explained variance.

VII. R ELATED WORK

Prior to this work, few research papers presented methods to
systematically combat click fraud. [15], [16] propose alterna-
tives to the current pay-per-click (PPC) model in an attemptto
remove the incentives for click fraud. [15] proposes to charge
advertisers based on the percentage of time an ad is displayed
(pay-per-percentage of impressions) rather than on the number
of clicks it generated. [16] uses cryptographic credentials to
authenticate clients. However, impressions are not a measure
of a customer’s interest and thus, advertisers cannot easily
quantify their return on investment. Moreover, modifying the
current PPC model will require changes at a global scale that
are not likely to occur in the forecastable future.

A different line of research has proposed a data analysis
approach to discriminate legitimate from fraudulent clicks.
[17] focuses on the problem of finding colluding publishers.
The proposed system analyzes the IP addresses generating
the click traffic for each publisher and identifies groups of
publishers that receive their clicks from roughly the same IPs.
[18] addresses the scenario of a single publisher generating
fraudulent traffic from several IPs. The authors propose a
system to automatically detect pairs of publisher and IP
address that are highly correlated. [19] presents a detailed
investigation on how a large botnet was used to launch click
fraud attacks.

In the wide area of anomaly detection, [20] represents
a recent survey on various categories of anomaly detection
systems. Our work in this paper falls in the category of
statistical anomaly detection,i.e., we define as an anomaly an
observation that is extremely unlikely to have been generated
by the probabilistic model assumed. [21] discusses various

fraudulent schemes in telecommunications and possible tech-
niques to mitigate them. [22] presents a histogram filter similar
in spirit to the IP size histogram filter. However, our work
differs in both the problem scope and the approach used to
measure deviations and compare distributions.

VIII. D ISCUSSION

In Sections V and VI, we used the IP size distribution
for detecting machine-generated traffic and we evaluated the
effectiveness of our detection with respect to various metrics.
In this section, we discuss strengths and limitations of our
approach beyond those metrics.

Strengths.First, our approach does not require any identi-
fication or authentication of the users generating the clicks.
It only uses aggregate statistical information about the IP
size. Second, the proposed system is fully automated, has
low complexity (it scales linearly in the amount of data to be
processed), and is easy to parallelize. This makes it suitable
for large-scale detection. Third, the IP size is robust to DCHP
reassignment. Clicks generated from a specific host have the
same size regardless the specific IP address assigned. This
is particularly useful in practice, since a large fraction of
IPs are dynamically reassigned every 1-3 days [23]. Fourth,
the IP size-based detection is hard to evade. In fact, even
if the attacker knows the legitimate distribution of IP sizes
for all publishers in her group, and the exact mechanisms
used to estimate the IP size, she still would need to generate
clicks according to the legitimate IP size distribution. However,
the attacker has access only to a limited number of bots.
Further, even for those bots, she cannot control the activities
of legitimate users sharing the compromised machines. This
in turn affects the IP size and limits her ability to arbitrarily
shape the IP size distribution.

Limitations and the bigger picture.The methods developed
in this paper are currently used as part of a larger detection
system deployed at Google in conjunction with complemen-
tary techniques. In fact, it is part of Google’s strategy to have
several defenses in place so that they complement each other
in covering the attack space and providing defense in depth.
A limitation of our approach is that it requires a statistically
significant number of clicks for each publisher. A single
publisher that receives a few clicks can evade the proposed
system, but at the expense of throttling its own attacks. A set
of publishers with a few clicks each can potentially collude
to generate an aggregate large number of fraudulent clicks.In
this case, approaches that identify colluding publishers,such
as [17], would catch them. Moreover, applying the techniques
proposed in this paper entails having an automated way of
assessing the quality of large bodies of traffic.

Finally, the focus of this paper is on click traffic. However,
we believe that the key features exploited here, namely, the
IP size generating the malicious activity, and the techniques
we developed, are potentially applicable to a wide range of
fraud detection problems. Instead of looking at the “size”
of IP sources generating clicks, we can analyze the size of
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IPs generating other malicious activities, and apply a similar
statistical framework for detecting anomalous distributions.

IX. CONCLUSION

In this paper, we present a data-driven approach to combat
machine-generated traffic based on the IP size information–
defined as the number of users sharing the same source
IP address. Our main observation is that diverse machine-
generated traffic attacks share a common characteristic: they
induce an anomalous deviation from the expected IP size
distribution. Motivated by this observation, we implemented
a fraud detection system that detects hit inflation attacks at
different levels of granularity using statistical learning models.
We show that the proposed model can accurately estimate
fraud scores with a 3% average prediction error.
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