Traffic Anomaly De
IP Size D

Fabio Soldo

Google Inc.
fsoldo@google.com

Abstract—In this paper we present a data-driven framework
for detecting machine-generated traffic based on the IP sizeé.e,,
the number of users sharing the same source IP. Our main ob-
servation is that diverse machine-generated traffic attack share
a common characteristic: they induce an anomalous deviatio
from the expected IP size distribution. We develop a princifed
framework that automatically detects and classifies these eVia-
tions using statistical tests and ensemble learning. We elumte
our approach on a massive dataset collected at Google for 90
consecutive days. We argue that our approach combines dealvle
characteristics: it can accurately detect fraudulent maclne-
generated traffic; it is based on a fundamental characterist
of these attacks and is thus robustég., to DHCP re-assignment)
and hard to evade; it has low complexity and is easy to paralleze,
making it suitable for large-scale detection; and finally, t does
not entail profiling users, but leverages only aggregate statics
of network traffic.

|. INTRODUCTION

Today, a large number of Internet services such as w
search, web mail, maps, and other web-based applicatic
are provided to the public free of charge. At the sarmr

time, designing, deploying, and maintaining these sesvise

expensive. They must have high availability, be able toeser
any user, anonymous or logged in, and from anywhere in t

world. This is often possible due to the revenue generated
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Fig. 1 depicts a simple scenario with three publishers, wher
each publisher represents a different type of traffic. Adver
tisements on the publisher sitdispagemakesmoney.c@mnd
thispagetoo.comeceive legitimate traffid,e., users interested
in the advertisements clicked on them. Advertisements on
thispagetoo.conalso receive fraudulent traffic. For instance,
the publisher might ask her friends to repeatedly click on ad
vertisements displayed on her site. Finally, in a more siphi
cated hit inflation attack, publishewontmakemoney.conses

a botnet to automatically generate a large amount of fraurdul
traffic. This simple example illustrates the complexity bét
problem.
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Internet advertising, an industry that in 2009 generategr ov

$22 billion [1], [2] in the U.S. alone.

Fig. 1.
vertisements for a commission, for each click on theseeréidements.

Three publishers contract with an advertising neétwtm host

] For the above-mentioned re"_"sonsv fraud detection is a C'?'ié three publishers illustrate three types of traffic: (dyeatisements on
ical component for the well-being of many Internet serviceghe publisher sitethispagemakesmoney.coare clicked only by legitimate

Hit inflation attacks refer to the fraudulent activities afrgpr-
ating charges for online advertisers without a real inteires
the products advertised. They can be classified into puksh
and advertisers’ attacks. Publishers’ hit inflation attacise
fraudulent traffic in an attempt to increase publisherseraies
from online advertising. Advertisers’ hit inflation attackim
at increasing the overall amount of activities, such as @spr

users (white pointers); (2) advertisementsthispagetoo.conare clicked by

both legitimate and fraudulent users (red pointers); an@g8ertisements on
iwontmakemoney.coire not clicked by legitimate users—insteadontmake-

money.conuses a large botnet to generate fraudulent traffic.

Hit inflation attacks represent the biggest threat to the
Internet advertising industry [3], [4], [5]. In this papexe
share our experience in building a fraud detection system at

sions or clicks associated with the advertisements of thé&oogle. Hit inflation attacks represent a specific applicati

competitors. The main objective of advertisers’ hit inBati
attacks is depleting their competitors advertising buslgkt

of the techniques and methodologies presented here. Howeve
these can be applied, generally, to detect machine-geukerat

this paper, we focus on publishers’ attacks, but the saraffic. The main contributions of this work are as follows:

discussion applies to advertisers’ attacks.

Hit inflation attacks can be performed in many ways, using

different network infrastructures and levels of sophéiian.
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« For the first time, thdP size defined as the number of
users sharing the source IP, is used as a discriminative
feature for detecting machine-generated traffic. Our key
observation is that several types of attacks induce an
anomalous deviation from the expected publishers’ IP
size distribution.



o« We design a principled framework that estimates the

expected IP size distribution, based on historical datd, an s. 192168.32.1

domain-specific insights, and detects anomalous traffic e

using statistical learning techniques. %\%S 0018 == iy
o We evaluate our approach on a massive data set of click g /A intemet

logs collected at Google for over 90 consecutive days. %ﬁ%ﬁ oons etwerk

This allows us to validate our implementation on a rich Tl ' o) S

data set comprising diverse types of click traffic and j 10017, o

machine-generated attacks.

Our approach combines several desirable characteritics:
successfully detects fraudulent traffic; it has low comitjex Fig. 2. Public IP address 213.18.112.34 is shared by 4 uShts, the IP
and is easy to paraIIeIize, making it suitable for |arge|60asize of 213.18.112.34 is 4. Intuitive_ly, this means that wpeu‘at_t_his specific

L . .. IP.address to roughly generate 4 times the number of aesvigenerated by

detection; it is based on a fundamental characteristic 9&ingie user.
machine-generated traffic, and is thus robwesy.(to DHCP
re-assignment) and hard to evade; and finally, it does not
entail profiling users individually, but leverages only eggate traffic. First, where a website receives mainly desktoditraf
statistics. most of the clicks have small sizes because, typically, anly

The remainder of this paper is organized as follows. Imandful of users share the same IP address. As such, thesIP siz
Section I, we define the IP size and describe how attacistribution is highly skewed toward the left. Second, vehar
using machine-generated traffic affect the IP size distiobu website receives mainly mobile traffic, the IP size distiiidiu
In Section Ill, we describe the data set used in this study. &xhibits two distinct modes. This is because mobile users
Section IV, we summarize the notation used throughout thigpically access the Internet either with public IP addesss
paper. In Section V, we show how to distinguish a publishenghich have relatively small sizes, or through large proxies
legitimate traffic from fraudulent traffic. In Section VI, wewhich are shared by numerous users. Generally, different
show how to detect fraud at the publisher’s level. In Sectigsublishers have different IP size distributions depending
VIIl, we discuss the strengths and limitations of this wdrk. both the type of their services, and the type of traffic driven

Section 1X, we conclude the paper. to their websites.
Il. IP SizE AND MACHINE-GENERATED ATTACKS 04
A. IP Size r  Mabie Taffc
We define thelP sizeas the number of users sharing the o.sl"‘.‘
same IP address. Estimating the IP size is a challenging K
problem in its own. Several users might share the same host 502 ':_‘ -
machine, or might connect through the same Network Address > kS ,,." “‘.
Translation (NAT) device or even a cascade of NATs, as o ,
illustrated in Fig. 2. Moreover, the IP size changes oveetim ~“.‘ 'b,;" Ly
as new users join the local network and share the same public 0 o ® "*-»-»;..:’: )
IP and others leave, or as the IP address gets reassigned to a 0 2 4 8,8 10 12

different host.
In this paper, we use the IP size estimation provided I®y. 3. Two example of publishers with two different IP sizetdbutions.
the Google IP Size system [6]. In [6], application-leveldog
of trusted users, including search queries and advertisem IP size Distributions
clicks, are aggregated at the IP level. This data is used o
build a probabilistic model of users activities. Then, tie | Machine-generated attacks are performed in various ways,
size is estimated as a function of both the rate of activiti€é¢pending on the resources available, motivations ands skil

observed and the diversity of the observed traffic. of the attackers. For instance, if an attacker controls gelar
) S number of hosts through a botnet, the attack can be highly
B. Observed IP Size Distributions distributed across the available hosts to maximize theativer

For each publisher, and a given time peribdwe measure amount of traffic generated while maintaining a low activity
its IP size distribution. This is defined as the empiricgirofile for each host individually. We refer to this type of
distribution of the sizes associated with advertisementear attacks asbotnet-basedattacks. Conversely, if an attacker
website during time period'. controls a few hosts but still wants to generate a large amoun

Different publishers naturally exhibit different IP sizésd of traffic, she can use anonymizing proxies, such as TOR
tributions. Fig. 3 shows two examples of IP size distribugio nodes, to hide the actual source IPs involved. We refer to
that are typically seen on (1) a website that receives aeerabis type of attacks agroxy-basedattacks. Botnet- and proxy-
desktop traffic, and (2) a website that receives averagelemoliiased attacks are two diverse examples in the wide spectrum



of possible attacks using machine-generated traffic, imger [1l. THE DATA SET
of both the resources required and level of sophistication. A Key Features
Fig. 4 illustrates these two attacks and how they affectkhe |

size distribution associated with a publisher. Assume weat In this paper, we use advertisement click logs collected at

have an a-priori knowledge of the expected IP size distiobut Google from a sample of hundreds of thousands of different

based on historical data. Let the blue curve be the expecfé dllsher wert:_snes. we tjsde tth?fge Izgskto gain |r|1IS|ghtts '?tot
distribution of IP sizes. Fig. 4(a) depicts an example ohlkot modern machine-generated traffic attacks, as well as 1o tes

based attack. Bots are typically end-user machines andv&o h r_'d eval_uate the p_erformanc_e of our system on real data._ I_n

a relative small IP size. Intuitively, this is because esd+u this section, we br|_efly describe the data set and the specific

machines are easier to compromise than large WeII-maHrdair{eatureS used in this study. _ :

proxies. As a result, a botnet-based attack generates arhigi}we analyze a sglmple of cl|ck| qus cgll(;ectetlj for a per||od

than expected number of clicks with small size. Analogausl 90 con;ecupve ays. Our analysis and development rely on

a proxy-based attack skews the IP size distribution towar following fields in each entry:

large IP sizes because a higher than expected number of click® Source IP: the source IP address that generated the click.

comes from large proxies, as in Fig. 4(b). o Publisher ID: the unique identifier associated with each
Despite their differences, most attacks share a common Publisher.

characteristic: they induce an unexpected deviation ofifne * Time: the timestamp associated with the click.

size distribution. The attacks in Fig. 4 represent two ofipos ¢ Fraudulent click flag: a binary flag which indicates

scenarios. However, in both cases the attack is revealed as a Whether or not the click was labeled as fraudulent by

deviation from the expected IP size distribution. In gehera ~ any of the fraud detection systems already in place at

different deviations represent different signatures tdckis. Google.
In addition to the click logs, we also used two Google
0.4 internal databases:

o IP Sizedatabase, which keeps tracks of the IP size [6].
We use the sizes estimated from the click traffic to filter
fraudulent clicks. These were called click sizes of the IPs

20-2 During the attack in [6]
o Geographical IP database, which provides up-to-date
0.1 - geographical information on source IP addresses.

B. Assessing the Quality of Traffic

00 5 4 8 8 10 12 14 In this paper, we leverage an internal classifier that takes
IP Size as input click logs of network traffic and determines the
likelihood that the network traffic is fraudulent machine-
generated traffic. We call the score obtained through this
0.2 system thequality score This classification system takes as
input a variety of features that accounts for different g/pé
user inputs, and different types of anomalies. This classifi
provides us with an estimate on the aggregate quality of a
large set of clicks. Similar classifiers exist for other lsnof
attacks depending on the application. For instance, indise c
of email spam a classifier can be built on several features

(a) botnet-based attack

During the attack

QL8 Reference PDF | of the email. One of the features could be the ratio of users
that labeled this email as spam. Another feature could be the
0 — number of valid and invalid recipient addresses, and so on.
0 2 4 B8 8 10 12 14

We also define thdéraud scoreas a function of the ratio

between the number of fraudulent clicks and the total number
(b) proxy-based attack of clicks, with different weights assigned to the fraudulen

Fig. 4. Types of attacks and their effect on the IP size tistion: The blue Clicks depending on the reason for tagging them as fraudulen
curve represents the expected IP size distribution. Thecvede represents  Finally, we also use two sets of blacklists, the Gmail
the IP_ size distribution during the attack. Fig. (a) illasés a botnet‘-based Blacklist [7] and the Spamhaus EXplOit Blacklist (XBL) [8],
attack: clicks are generated by a large number of bots. Thesdypically .
end-user machines and thus skew the distribution towardl $fnaizes. Fig. O determine whether or not the IP addresses that generate
(b) illustrates a proxy-based attack: the IP addressesrgtamg the clicks are fraudulent ad events are also known to generate other types
rerouted through anonymizing proxies.¢., TOR nodes). Since many usersof gy sive traffic. Gmail blacklist is a list of source IPsttha
share these proxies, this attack skews the IP size disoibtdward large IP . . . .
sizes. are likely to send email spam. Spamhaus XBL is a realtime

database of hosts infected by some exploits.

IP Size



[V. NOTATION B. Grouping Publishers

Each click, ¢, is associated with a source IP address, ldentifying a proper grouping of publishers is the first
IP., that generated the click, and with a publisher sifg, fundamental step in combating machine-generated traffic. A
that hosted the advertisement clicked. L%t be the IP size 900d grouping of publishers should ensure that publishers i
associated with/ P., and letn be the number of clicks on the same group naturally share a similar IP size distributio
advertisements hosted S, in a certain time period7'. while publishers in different groups might not. _

Let us first consider a single publishd?,. We model the AS observed in Sec. II-B, the type of services provided
IP sizes,S, ..., S,, as the realizations of a sample sfi.i.d. by the publisher's website and the type of traffic driven to
random variablesS, ..., S,,, that can take a finite number ofher website affect the IP size distribution of a publisher.
positive valuesB; < Bs < .. < B, where B; = 1 is Furthermore, this is also influenced by the geo-location of
the minimum number of legitimate users sharing an IP, afie source IP addresses visiting her website. The rationale
B, is the largest IP size observed in the training period. Tieehind this is that different countries have different IResi
probability distribution associated withS,}, is defined by distributions due to various reasons, such as heavy use of
some (unknown) values,. ..., pm, Wherep; = P[S. = B;] Ve.  POXY, population density vs. number of IP addresses daila
In general, when dealing with multiple publishers theseieal @nd government policies.

depend on the publisher itselfe., p; = p;(Py). For these reasons, we group together publishers that @rovid
Let f; be the observed frequency of IP sizes associated wilf Same type of service.g.,web search, services for mobile
B;, i.e., the count of clicks that have sizB;: f; = #{S, : USers, contentsites, and parked domain websites), andeece

S. = B;}, and f; be the relative number of clicks of siz@i; clicks from the same type of connecting devieeg(,desktops,
ie., fi = f:/n. As the number of observed clicks increase§Mart-phones, and tablets), and from IP addresses asdgned
f; approaches; as quantified by the Central Limit Theorem,the same country. For instance, if a publisher receivegslic

Lizpi . N(0,1—p,). This allows us to approximate theTom more than one type of device, its traffic is split dependi
g on the type of devices, and accordingly assigned to difteren

%rﬁ)ups. This provides a fine grained grouping of publishers
ich takes into account the various factors that affectifhe
size.

Vi _ . .
unknown valuep; with measurable quantitieg;, and derive
formal confidence bounds. Finally, assume that we have
estimate of the true (unknown) probability distributign: =
r;, Vi. We will describe how to estimate thfg andr; variables
and use these values to detect frauds. C. Threshold Model for Legitimate Click Traffic

After grouping publishers, we compute a statistical thresh
old model of the click traffic associated with each group.

In this section, we focus on the general scenario whereFirst, we aggregate the click traffic received by any pub-
the click traffic received by a publisher is a mixture of botlisher within the same group, over a time periadlo account
legitimate and fraudulent clicks. Our goal is to automalyca for the long tail of IP size distributions [6], we bin the dic

V. CLICK FILTERING

detect and filter out the fraudulent clicks. traffic of each publisher using a function of the actual IR siz
Next, we set a minimum quality score,,;,, that a set
A. IP Size Histogram Filter: Overview of legitimate clicks should satisfy. Different websitesvea

As shown in Fig. 4, machine-generated traffic attacks naffifferent quality scores depending on various factorshsag

rally induce an anomalous IP size distribution. Keeping thi 1€ Services provided and the advertisements displaye, Th

mind, we implement a detection system based on the IP sE compute_qmi,a as_,r? f|xer<]j fracuonf of gll_ehaverage quality
histogram that automatically filters fraudulent clicksasated score associated with each group of publishers.

with any publisher. Our system proceeds through the foligwi For each group a}nd e_ach bucke.t we compute a percentile
main steps. thresholdt. In real time, if any publisher receives more than

. . L " . t% of her traffic on this bucket, its traffic from this bucket
¢ F_|rst_, we group publishers with similar legitimate 1P S'Z%ets filtered. To set, we carry out a fine-grain scan of all
distributions. ) o the possible percentiles of this bucket. For each peregptil
« Second, for each group, we build a statistical model gf¢ 54regate the traffic from all the publishers that reckive
the click traffic based on historical data. Since the IP Sizfiore thanp% of their traffic from that bucket, with some

distribution might change over time, a fresh estimation i, nia| confidence threshold. If the quality score of this
per|od|cally computeq. ) i i aggregated traffic is lower thap,;,, we setp as a candidate

« Third, we partition live click traffic of each publishery, .cchoid At the end. we pick the threshold,to be the
Into separate buck_ets depending on the IP sizé value, anfl jidate threshold that has the highest impact, i.e. atiges$t
filter out sets of clicks of any publishers that violate thg, per of discarded traffic. This technique takes into astou
computed model with some statistical confidehce the observed empirical distributions, the number of atédéla

. . . ) o samples (IP sizes), and the desired confidence level.
We remove from this analysis publishers that do not receistatistically

significant number of clicks in the period of time considerkdthese cases, IntU|t_|\(er, the f||_t§red C!ICkS .repres.ent _reg|or_1$ of .h'gh
we do not have enough information to provide a statisticetlynd estimation. probability for specific publishers.e., spikes in their IP size



distributions, that also have a significantly lower quatitan confirms this intuition. In fact, despite the large number of
what we would expect for the same group of publishers awticks (size in Fig. 8(d)) we observe a very low quality score
set of advertisements. Similarly, a small group of publishers have most of clicks in
buckets 11 or 12. Also in this case, the known fraud score
is low, but the so is the quality score. This hints towards a
In this section, we assess the effectiveness of the IP sfa@viously undetected attacks, possibly orchestrateddogap
histogram filter in identifying attacks. We implement ouof colluding publishers.
system using Sawzall [9], a Google-built language spediifica Analysis of a single bucket.In Fig. 5, we focus on bucket
designed to handle massive data sets using a distribu@df Fig. 8(a), as this is the bucket with the largest number
MapReduce-based infrastructure. Each phase of the abo¥elata points. We study how the number of filtered clicks,
filter is distributed across a few hundred machines using ttiee fraud score, and the quality score vary with the perleenti
MapReduce framework [10]. For the results described in thisreshold set by the histogram filter for this bucket. We also
section we used a training period of= 90 days to build the analyze the number of incremental fraudulent clidles,, the
threshold model, and a testing periodf,.. = 30 day. number of fraudulent clicks detected solely by the IP size
Figures with sensitive values, including the quality scoréistogram filter and not by other systems, as well as the
the fraud score, and the number of clicks have beémcremental quality scorei.e., the quality score associated
anonymized as follows: the original values have been trangith the incremental fraudulent clicks. As we can see from
formed by arbitrary constants so as to preserve trends d&id. 5, there is a sweet spot around 0.7 that identifies a small
relative differences while obscuring the absolute numbers fraction of clicks, about 1% of the total number of clicks in
IP size Distributions. Fig. 8(a) through Fig. 8(d) depict this buckets, that have both high fraud score and low quality
two groups of publishers, named here A and B for anonymiggcore.
purpose. These groups consist of publishers whose websites
provide similar services and whose click traffic comes from

D. Performance Results

the same country and the same type of device. 3 = -
Each figure is a four-dimensional plot. Theaxis represents £ * e, )
the bucket of the IP size, while thg-axis represents the ; o8 N *
probability value. Each point is associated with a single 2 g
. - . g 98 b= Filtered Clicks N, a
publisher and represents the probability that the publishe g e et Arared ] \ S
receives a click of a certain size. In Fig. 8(a) and 8(c) tkze si L o S o ity Score Y % e
of data points represents the number of clicks and the color S Lo Normalized Froud score _
represents the scaled fraud score. Fig. 8(b) and 8(d) displa E N
the same points as in Fig. 8(a) and 8(c) with the difference o e ez e as o5 de o7 od 03"
that the size represents the number of clicks fed to the tyuali
classifier system, and the color represents the scaledtyuali Fig. 5. Analysis of a single bucket.
score. We chose to plot circles with different sizes to repn¢
different levels of statistical confidence. Performance over time.Fig. 6 shows how the proposed

These figures confirm on real data the motivating intuitiosystem performs over time. We run the IP size histogram
discussed in Fig. 4. Fig. 8(a) and Fig. 8(b) show the results detection every day for a month and we compute the fraud
one of the largest groups, comprising hundreds of publsshescore and quality score of the filtered click traffic. The
Despite the complexity of the problem and the variety dfaud score is consistently high and stable over time, while
possible attacks, Fig. 8(a) shows that spikes in the IP sittee quality score of the filtered traffic remains an order of
distribution of a publisher are reliable indicators of highud magnitude lower than the quality score of the unfiltereditraf
score. In fact, most points associated with an anomalofas the same group of publishers.
high probability are red, thus indicating that they are know Overlap with Other Blacklists. In Fig. 7 we analyze the
to be fraudulent clicks. As an additional validation, in Figoverlap between IPs filtered by the IP size histogram filter,
8(b) we analyze the corresponding quality score. The spikasd IPs listed in Gmail blacklist [7] and in Spamhaus Exploit
corresponding to high fraud score also have very low, or,zetdacklist (XBL) [8]. For each day, we compile a blacklist of
quality score. This confirms that the clicks identified by oulPs that sent fraudulent clicks during that day. Thexis
systems are indeed fraudulent clicks. represents the time difference between the day we compile ou

Fig. 8(c) and Fig. 8(d) illustrate a sample group where the acklist, and the day the Gmail and Spamhaus blackliste wer
size distribution detects machine-generated traffic thaildv compiled. A zero value indicates that we compare blacklists
have been undetected otherwise. For instance, Fig. 8(@)sshassociated with the same day. Negative values indicate that
the case of a publisher that has about 70% of its clicks aur blacklist is some days older than the blacklist compiled
bucket 6. This spike in distribution is particularly suspics by Gmail or Spamhaus XBL. Positive values indicate the
since all other publishers in the same group have 15% or legsposite scenario. Thg-axis represents the percentage of IPs
click of this size. The quality score associated with thismpo detected with our system that are also found in other blstskli
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Fig. 9. Flagging entities - system overview: We feed as inpatclick logs
and the information provided by Google IP size and Geograpliatabases.
Fig. 6. Fraud score and quality score for different days The feature extractor module extracts only the featuresrevéngerested in, as
discussed in Section Ill. Next, the sharder partitions @@ éhto groups based
on the type of entity, the type of connecting device, and tbe-lgcation of
. the source IP. For each of these groups, we compute an edpeistebution,
Interestingly, we observe that a large percentage of fri@mtlu r, from the historical data of legitimate clicks. For eachitgntve compute an
clicks are generated by IPs that also generate other kindsobﬁfef\t/eg| g!sy!gugon of IP S'ZG$=I ft(lf_)-t_Wle compare Itlhetﬁbse”/ed ﬁmd
. . . . ected distribution using several statistical methddisally, these results
abusive traffic, such as Spam emails. In partlcular, up to 4 combined in a signature vector specific to each entityvemdise this
of fraudulent clicks are generated by source IPs listedeeithnformation to predict the entity's fraud score.

in Gmail blacklist or in Spamhaus XBL.

to detect deviations between the expected and the observed

: —t——e entity distribution,r and f(P), that are induced by machine-
I L S generated traffic.
9 e ™~ A. Flagging Entities: System Overview
L iy Fig. 9 illustrates the workflow of the system we imple-
) mented at Google. The first step is the estimation of the
" expected IP size distribution of each entity. Each grouphtnig
n generc@ serens SR ETR RIS have a different IP size distribution. However, entitieghivi
T ! the same group are expected to share a similar distribution.

Since the majority of fraudulent clicks are already filtered
Fig. 7. Percentage of fraudulent clicks generated by IRsdisn the Gmail out by existing detection systems, we use the aggregate

blacklist or on Spamhaus XBL. distribution of legitimate IP sizes within each group as an
estimation of the true (unknown) IP size distribution foatth
VI. ELAGGING ENTITIES group. Next, we use a set of statistical methods to accyratel

characterize the deviation between the observed and edect

The IP size histogram filter described in Section V Calistribution. As noted in Fig. 4, different attacks resuit i

dlstmg_wsh between a set of Ieg|t|_mate and a set O.f fragdé'ﬁ‘ferent deviations in the IP size distribution. Finallye use
lent clicks by automatically detecting anomalous spikestin

distributi iated with | litv click traffic. Toaid an ensemble learning model [11] to combine the outcome of
dlstr' tl'J 'on ?SSO(;)I?G Wlld ci\{v qur;ltly cle c;gt IC'I' ﬁm these methods in a signature vector specific to each entity,

ctec 'OE akratu Ster ctou ;?. em?h 0 spread its I(I:ICff e?r ard we train a regression model that identifies and classifies
various buckets so as 1o achieve the same overall efiec W@ gnatures associated with fraudulent entities.
avoiding generating high probability regions in few busket
Thereforg, we qeed additional methods that look at theeentg' Measuring Anomalous Deviations
IP size distribution. _ o

In this section, we consider the IP size distributions asso-T0 accurately characterize the deviation, if any, between

ciated with entities. An entity can be a user-agent, an @-miie observed and the expected distribution of each entity we
domain, a publisher, a city, a country, and so on. In generdf€ an ensemble of different statistical methods. Theséean
an entity is any dimension that aggregates ad events. Far egfouped in four wide categories:
type of entity, we can build a detection system based on the IP. vector-based methods: include thg distance, the cosine

size distribution. This is useful to build several complernagy similarity, and the Pearson correlation coefficient. These
defense mechanisms that protect against different types of methods measure either the geometrical or the angular
attacks. distance between two distributions.

Assume that we have an estimate of the expected entity'ss skewness-based methods: include computing the sample
IP size distributiony = {m}f’;’g, and that the observed IP size skewness, and the Bowley skewness [12], as well as other
distribution is f(P) = {f(P);}27. In this section, we want domain-specific metrics. These methods measure both the
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Fig. 8. Figures (a)-(d) show the IP size distribution of twoups of publishers, named A and B for anonymity purposeckvhiclude hundreds of different
publishers. Each point represents the percentage of clidka given size, received by a publisher. For each group bfighers, we illustrate two figures. In
Figure (a), (c), the color indicates the scaled fraud scohe volume is proportional to the number of clicks assodiatéth the data point. In Figure (b),
(d), the color indicates the scaled quality score.

direction — left-skew vs. right-skew, and the magnitude afttacks provided both by other automated systems, and by
the asymmetry exhibited by the given distributions.  manual investigation of the logs. The model in Eq. (1) is then
« entropy based methods: include the Jensen-Shannon apglied to a large data set of entities to predict the frawdesc
the Kullback-Leibler divergence [13]. These methodas a function of their IP size distribution.
measure how concentrated or spread apart the values
realized by the given distributions are. D. Performance Results
» goodness-of-fit tests: include the Kolmogorov-Smirnov Fig. 10 shows the accuracy of the model in Eqg. (1) in
and the Chi-square test statistic. These methods estimpatedicting the fraud score as a function of the number of
the likelihood that the observed IP sizes are generated $fptistical methods used to compare distributions. Fingt,
the expected distribution. analyze the accuracy of our system when all methods are used.
- - Next, we iteratively remove the feature that causes the leas
C. Combining Statistical Methods amount of variation in the prediction accuracy until we are
In general, different methods for comparing probabilityeft with a single feature [14]. We train on 10% of the enttie
distributions provide different information as they me®&su and test it on the remaining entities. Fig. 10 shows thatgusin
different properties. For instance, if we measure the sks&n multiple comparison methods that measure different type of
of a distribution, all symmetric distributions will be cadsred deviations allows us to reduce the prediction errors, dawn t
similar to each other as they have null skewness. Howevgr3oy, error. This is about 3 times lower than when using a
if we measure other properties, such as, the distance, single method. Moreover, we observe that additional method
two symmetric distributions will, in general, be differéndm  improve the accuracy of the model but with decreasing gain.
each other. Using an ensemble of statistical methods peevid
a more accurate characterization of the observed deviation

than using a single methods. This is particularly important 50081
in analyzing massive data sets, comprising a wide range of 9go.o7-
different patterns. 5 0.06}
In order to precisely measure the observed deviation and 23
. . . . © 0.05¢
identify fraudulent entities, we combine the outcome of the 5
statistical methods described in Sec.VI-B in a signatuntore <004
ok, Specific to each entityP;,. Intuitively, significant devi- 0.03; . .
ations from the expected distribution, measured by several 5 10 15

statistical methods, represent strong indicators of fuéent Number of Features

click traffic. For this reason, we model the fraud sce¥g, as Fig. 10. Prediction accuracy: number of comparison methadsaverage

a linear function of the observed deviations, error in predicting the fraud score.
p
_ To validate the goodness-of-fit of the model in Eqg. (1) we
= 00k 1 1
P ; IOk @ also compute the adjusted coefficient of determinati®t,
where, o,; indicates thej-th component ofo;, and ¢; is 2158 @)
the weight associated with it. We determine the optimal n—p SStot

set of weights,f, in Eq. (1) that minimize the IQ\east-squarQNhere, SS.,, — Zk(égk — $)? is the sum of squares of
cost function,J(0) = >, (dx — 25—, 9,j0k,j) using a residuals. Eq. (2) can be interpreted as the amount of vaian
stochastic gradient descent method trained on a smallsobsecaptured by proposed model. Moreover, in contrast with the
entities,C, which includes legitimate distributions and knownR? statistic, which does not decrease with more regressors,



R? penalizes the use of a large number of regressors unléssidulent schemes in telecommunications and possible tec

it significantly improves the explanatory power of the modehiques to mitigate them. [22] presents a histogram filterlaim

Fig. 11 shows that as we use more statistical tests, thetadjusn spirit to the IP size histogram filter. However, our work

coefficient of determination increases. This demonstridias differs in both the problem scope and the approach used to

additional features increase the explained variance of threasure deviations and compare distributions.

model. When all features are used, the model in Eq. (1)

captures over 40% of the total variation in the data. Thisltes VIIl. DISCUSSION

is particularly significant in a large data set that includegde

range of patterns of click traffic. In Sections V and VI, we used the IP size distribution
for detecting machine-generated traffic and we evaluated th

05 effectiveness of our detection with respect to various iTetr

In this section, we discuss strengths and limitations of our

% approach beyond those metrics.

5 StrengthsFirst, our approach does not require any identi-
2 fication or authentication of the users generating the slick
303 It only uses aggregate statistical information about the IP

size. Second, the proposed system is fully automated, has
: : low complexity (it scales linearly in the amount of data to be
5 10 15 . . ) R
Number of Features processed), and is easy to parallelize. This makes it daitab
for large-scale detection. Third, the IP size is robust taHPC
Fig. 11. Prediction accuracy: number of comparison metivsd&®?. As the reassignment. Clicks generated from a specific host have the
_number of features increases, the adjustgzd coeff_icient tefrdation, R?, same size regardless the specific IP address assigned. This
increases as well, and so does the explained variance. . . . . . .
is particularly useful in practice, since a large fractioh o
IPs are dynamically reassigned every 1-3 days [23]. Fourth,
the IP size-based detection is hard to evade. In fact, even
if the attacker knows the legitimate distribution of IP size
Prior to this work, few research papers presented methodgdo all publishers in her group, and the exact mechanisms
systematically combat click fraud. [15], [16] propose aie used to estimate the IP size, she still would need to generate
tives to the current pay-per-click (PPC) model in an attetopt clicks according to the legitimate IP size distribution wéwver,
remove the incentives for click fraud. [15] proposes to gear the attacker has access only to a limited number of bots.
advertisers based on the percentage of time an ad is displafarther, even for those bots, she cannot control the aesvit
(pay-per-percentage of impressions) rather than on théorumof legitimate users sharing the compromised machines. This
of clicks it generated. [16] uses cryptographic credesttal in turn affects the IP size and limits her ability to arbithar
authenticate clients. However, impressions are not a measshape the IP size distribution.
of a customer’s interest and thus, advertisers cannotyeasil Limitations and the bigger picturélhe methods developed
quantify their return on investment. Moreover, modifyifngt in this paper are currently used as part of a larger detection
current PPC model will require changes at a global scale thsgistem deployed at Google in conjunction with complemen-
are not likely to occur in the forecastable future. tary techniques. In fact, it is part of Google’s strategy &wén
A different line of research has proposed a data analysieveral defenses in place so that they complement each other
approach to discriminate legitimate from fraudulent dick in covering the attack space and providing defense in depth.
[17] focuses on the problem of finding colluding publisher# limitation of our approach is that it requires a statisica
The proposed system analyzes the IP addresses generaiggificant number of clicks for each publisher. A single
the click traffic for each publisher and identifies groups giublisher that receives a few clicks can evade the proposed
publishers that receive their clicks from roughly the saR& | system, but at the expense of throttling its own attacks. tA se
[18] addresses the scenario of a single publisher gengratof publishers with a few clicks each can potentially collude
fraudulent traffic from several IPs. The authors proposeta generate an aggregate large number of fraudulent clicks.
system to automatically detect pairs of publisher and HRis case, approaches that identify colluding publishensh
address that are highly correlated. [19] presents a détaites [17], would catch them. Moreover, applying the technique
investigation on how a large botnet was used to launch cligkoposed in this paper entails having an automated way of
fraud attacks. assessing the quality of large bodies of traffic.
In the wide area of anomaly detection, [20] representsFinally, the focus of this paper is on click traffic. However,
a recent survey on various categories of anomaly detectiwe believe that the key features exploited here, namely, the
systems. Our work in this paper falls in the category dP size generating the malicious activity, and the techesqu
statistical anomaly detectione., we define as an anomaly anwe developed, are potentially applicable to a wide range of
observation that is extremely unlikely to have been geedratiraud detection problems. Instead of looking at the “size”
by the probabilistic model assumed. [21] discusses varioof|P sources generating clicks, we can analyze the size of

o
Jy
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IPs generating other malicious activities, and apply alaimi[17] A. Metwally, D. Agrawal, and A. EI Abbadi, “Detectivesietecting
statistical framework for detecting anomalous distribns.

IX. CONCLUSION

coalition hit inflation attacks in advertising networksestms,” inPro-
ceedings of the 16th international conference on World Wideb
ACM, 2007, pp. 241-250.

[18] A. Metwally, F. Emekgi, D. Agrawal, and A. El Abbadi, LEUTH:
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In this paper, we present a data-driven approach to combat . 'the i DB Endowmentol. 1, no. 2, pp. 1217-1228, 2008.
machine-generated traffic based on the IP size informatiops] N. Daswani and M. Stoppelman, “The anatomy of Clickbat’ in
defined as the number of users sharing the same source Proceedings of the first conference on First Workshop on Hipics

IP address. Our main observation is that diverse machi 551

in Understanding Botnets USENIX Association, 2007, p. 11.
V. Chandola, A. Banerjee, and V. Kumar, “Anomaly dei@tt A

generated traffic attacks share a common characteriség: th ~ survey,” ACM Computing Surveys (CSURJol. 41, no. 3, pp. 1-58,
induce an anomalous deviation from the expected IP size 2009.

distribution. Motivated by this observation, we implemesht
a fraud detection system that detects hit inflation attadks a pp. 20-33, 2010.
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We show that the proposed model can accurately estimate

fraud scores with a 3% average prediction error.
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