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ABSTRACT
This work proposes V-SMART-Join, a scalable MapReduce-
based framework for discovering all pairs of similar entities.
The V-SMART-Join framework is applicable to sets, mul-
tisets, and vectors. V-SMART-Join is motivated by the
observed skew in the underlying distributions of Internet
traffic, and is a family of 2-stage algorithms, where the first
stage computes and joins the partial results, and the second
stage computes the similarity exactly for all candidate pairs.
The V-SMART-Join algorithms are very efficient and scal-
able in the number of entities, as well as their cardinalities.
They were up to 30 times faster than the state of the art
algorithm, VCL, when compared on a real dataset of a small
size. We also established the scalability of the proposed al-
gorithms by running them on a dataset of a realistic size,
on which VCL never succeeded to finish. Experiments were
run using real datasets of IPs and cookies, where each IP
is represented as a multiset of cookies, and the goal is to
discover similar IPs to identify Internet proxies.

1. INTRODUCTION
The recent proliferation of social networks, mobile appli-

cations and online services increased the rate of data gath-
ering. Such services gave birth to Internet-traffic-scale prob-
lems that mandate new scalable solutions. Each online surfer
contributes to the Internet traffic. Internet-traffic-scale prob-
lems pose a scalability gap between what the data analysis
algorithms can do and what they should do. The MapRe-
duce [11] framework is one major shift in the programming
paradigms proposed to fill this gap by distributing algo-
rithms across multiple machines.
This work proposes the V-SMART-Join (Versatile Scal-

able MApReduce all-pair similariTy Join) framework as a
scalable exact solution to a very timely problem, all-pair
similarity joins of sets, multisets and vectors. This problem
has attracted much attention recently [2, 3, 4, 5, 6, 9, 10,
13, 22, 29, 33, 34] in the context of several applications. The
applications include clustering documents and web content

[3, 13, 34], detecting attacks from colluding attackers [22],
refining queries and doing collaborative filtering [4], cleaning
data [2, 10], and suggesting friends in social services based
on common interests [12].

The motivating application behind this work is commu-
nity discovery, where the goal is to discover strongly con-
nected sets of entities in a huge space of sparsely-connected
entities. The mainstream work in the field of community dis-
covery [20, 27, 30, 36] has assumed the relationships between
the entities are known a priori, and has proposed clustering
algorithms to discover communities. While the relationships
between entities are usually volunteered by domain experts,
like in the case of bioinformatics, or by the entities them-
selves, like in social networks, this is not always the case.
When information about the relationships is missing, it is
reasonable to interpret high similarity between any two enti-
ties as an evidence of an existing relationship between them.
Hence, our focus is to discover similar pairs of entities.

We propose using community discovery for classifying IP
addresses as load balancing proxies. An Internet Service
Provider (ISP) that assigns dynamic IP addresses (IPs for
short) to its customers sends their traffic to the rest of the
Internet via a set of proxy IPs. For advertisement target-
ing, and traffic anomalies detection purposes, it is crucial
to identify these load balancing proxies, and treat each set
of load balancers as one indivisible source of traffic. For
instance, for the application of traffic anomalies detection
based on the source IP of the traffic [23, 24], the same
whitelisting/blacklisting decision should be taken for all the
IPs of an ISP load balancer. For the application of targeting
advertisement, the IP of the surfer gets resolved to a specific
country or city, and the ads are geographically targeted ac-
cordingly. Some ISPs provide services in multiple locations,
and their IPs span an area wider than the targeting granu-
larity. No ads should be geo-targeted for the IPs of the same
load balancer if the IPs resolve to multiple locations.

To that end, we propose representing each IP using a mul-
tiset, also known as a bag, of the cookies that appear with
it, where the multiplicity of the cookies is the number of
times it appeared with the IP. Identifying IPs of a load bal-
ancer reduces to finding all pairs of IPs with similar multi-
sets of cookies. Representing IPs as multisets, as opposed
to sets, makes the results more sensitive to the activities of
the cookies, and hence increases the confidence in the re-
sults. A post-processing step is to cluster these IPs, where
each pair of similar IPs are connected by an edge in an IP-
similarity graph. A clusters correspond to IPs of the same
load balancer. This work complements the work in [24] that



Mapper 
1

Input 1

Input 2

Mapper 
2

Mapper 
3

Reducer 
1

Reducer 
2

Reducer 
3

Output 
1

Output 
2

S
hu

ffl
e

(G
ro

up
 in

te
rm

ed
ia

te
_v

al
ue

s 
by

 o
ut

_k
ey

)

Map Input:
<key1, value1>

Map Output:
[<key2, value2>]

Reduce Input:
<key2, [value2]>

Reduce Output:
[value3]

Figure 1: The MapReduce framework.

estimates the number of users behind IPs, which can also be
used for identifying large Internet proxies.
To discover all pairs of similar IPs, this work proposes V-

SMART-Join, a scalable MapReduce based framework. The
contributions of this work is as follows.

1. Versatility : V-SMART-Join is carefully engineered to
work on vectors, sets, and multisets using a wide vari-
ety of similarity measures.

2. Speed and Scalability : V-SMART-Join employs a two
stage approach, which achieves significant scalability
in the number of entities, as well as their cardinali-
ties, since it does not entail loading whole entities into
the main memory. Moreover, V-SMART-Join care-
fully handles skewed data distributions.

3. Wide Adoption: The proposed V-SMART-Join algo-
rithms can be executed on the publicly available ver-
sion of MapReduce, Hadoop [1].

4. Experimental Verification: On real datasets, the V-
SMART-Join algorithms ran up to 30 times faster than
the state of the art algorithm, VCL [33].

The rest of the paper is organized as follows. The MapRe-
duce framework is explained in § 2. In § 3, the problem is for-
malized and an insight is presented to build distributed algo-
rithms. This insight is based on a classification of the partial
results necessary to calculate similarity. The V-SMART-
Join framework is presented in § 4. The V-SMART-Join
algorithms are presented in § 5. The related work is re-
viewed in § 6. The experimental evaluation is reported in
§ 7, and we conclude in § 8.

2. THE MAPREDUCE FRAMEWORK
The MapReduce framework was introduced in [11] to fa-

cilitate crunching huge datasets on shared-nothing clusters
of commodity machines. The framework tweaks the map
and reduce primitives widely used in functional program-
ming and applies them in a distributed computing setting.
Each record in the input dataset is represented as a tu-

ple 〈key1, value1〉. The first stage is to partition the input
dataset, typically stored in a distributed file system, such as
GFS[14], among the machines that execute the map func-
tionality, the mappers. In the second stage, each mapper
applies the map function on each single record to produce
a list on the form (〈key2, value2〉)∗, where (.)∗ represents
lists of length zero or more. The third stage is to shuffle the
output of the mappers into the machines that execute the

reduce functionality, the reducers. This is done by group-
ing the mappers’ output by the key, and producing a re-
duce value list of all the value2’s sharing the same value of
key2. In addition to key2, the mapper can optionally out-
put tuples by a secondary key. Each reducer would then
receive the reduce value list sorted by the secondary key.
Secondary keys are not supported by the publicly available
version of MapReduce, Hadoop [1]1. The input to the re-
ducer is typically tuples on the form 〈key2, (value2)∗〉. For
notational purposes, the reduce value list of key k is de-
noted reduce value listk. In the fifth stage, each reducer
applies the reduce function on the 〈key2, (value2)∗〉 tuple to
produce a list of values, (value3)

∗. Finally, the output of
the reducers is written to the distributed file system. The
framework is depicted in Figure 1.

MapReduce became the de facto distributed paradigm for
processing huge datasets because it disburdens the program-
mer of details like partitioning the input dataset, scheduling
the program across machines, handling failures, and manag-
ing inter-machine communication. Only the map and reduce
functions on the forms below need to be implemented.

map:

〈key1, value1〉 → (〈key2, value2〉)∗

reduce:

〈key2, (value2)∗〉 → (value3)
∗

For better fault tolerance, the map and reduce functions
are required to be pure and deterministic. For higher effi-
ciency, the same machines used for storing the input can be
used as mappers to reduce the network load. In addition,
partial reducing can happen at the mappers, which is known
as combining. The combine function is typically the same
as the reduce function. While combining does not increase
the power of the framework, it reduces the network load2.

The amount of information that need to fit in the memory
of each machine is a function of the algorithm and the input
and output tuples. In terms of the input and output tuples,
during the map stage, at any time, the memory needs to ac-
commodate one instance of each of the tuples 〈key1, value1〉
and 〈key2, value2〉. Similarly, during the reduce stage, the
memory needs to accommodate one instance of each of key2,
value2 and value3. Nevertheless, accommodating multiple
values of 〈key1, value1〉, 〈key2, value2〉 or value3 allows for
I/O buffering. Accommodating the entire reduce value list
in memory allows for in-memory reduction.

For more flexibility, the MapReduce framework also al-
lows for loading external data both when mapping and re-
ducing. However, to preserve the determinism and purity of
1Two ways to support secondary keys were proposed in [21].
One of them is not scalable, since it entails loading the en-
tire reduce value list in the memory of the reducer, and the
second solution entails rewriting the partitioner, the MapRe-
duce component that assigns instances of key2 to reducers.
The second solution was adopted on the web page of [1]. We
propose algorithms that avoid this limitation
2Combiners can be either dedicated functions or part of the
map functions. A dedicated combiner operates on the out-
put of the mapper. Dedicated combiners involve instanti-
ation and destruction. On the other hand, an on-mapper-
combiner is part of the mapper, is lightweight, but may in-
volve fitting all the keys the mapper observes in memory,
which can result in thrashing. This is discussed in details in
[21]. We used dedicated combiners for higher scalability.



the map and reduce functions, loading is allowed only at the
beginning of each stage. Moreover, the types of key1, key2,
value1, value2 and value3 are independent3.
This framework, albeit simple, is powerful enough to serve

as the foundation for an array of platforms. Examples in-
clude systems that support issuing SQL(-like) queries that
get translated to MapReduce primitives and get executed
in a distributed environment [25, 35, 32]. Another relevant
example is adapting stream analysis algorithms to a dis-
tributed setting by the Sawzall system [26].
It is difficult to analyze the complexity of a MapReduce-

based algorithm due to several factors, including the overlap
between mappers, shufflers and reducers, the use of combin-
ers, the high I/O and communication cost as compared to
the processing cost. However, to the best of our abilities, we
will try to identify the bottlenecks throughout the sequel.
Having described the necessary background, the insight

for scalable MapReduce-based algorithms is described next.

3. PROBLEM FORMALIZATION AND
INSIGHTS

We start by the formalization, and then use it to present
the insight for more scalable solutions.

3.1 Formalizing the Problem
Given a set, S, of multisets, M1, . . . ,M|S| on the alphabet

A = a1, . . . , a|A|, find all pairs of multisets, 〈Mi,Mj〉, such
that their similarity, Sim(Mi,Mj) exceeds some threshold,
t. The similarity measure, Sim(., .) is assumed to be com-
mutative. A multiset, identified by Mi, is represented as
Mi = 〈A,A → N〉 = {mi,1, . . . ,mi,|A|}, where mi,k rep-
resents the element in multiset Mi that have the alphabet
element ak. More formally, mi,k = 〈ak, fi,k〉 and fi,k ∈ N is
themultiplicity of ak inMi. The cardinality ofMi is denoted
|Mi| = ∑

1≤k≤|A| fi,k. The set of alphabet elements that are

present in Mi is called its underlying set, U(Mi). That is,
U(Mi) = ak : fi,k > 0. Hence, U(Mi) = 〈A,A → {0, 1}〉.
The underlying cardinality of Mi is the number of unique
elements present in Mi, i.e., |U(Mi)| = |ak : fi,k > 0| [31].
The frequency of an element, ak, denoted Freq(ak), is the
number of multisets ak belongs to.
Representing multisets as non-negative vectors is trivial if

A is totally ordered. The semantics of sets can also be used
to represent the more general notion of multisets. A multiset
can be represented as a set by expanding each element mi,k

into the elements 〈〈ak, j〉, 1〉, for 1 ≤ j ≤ fi,k [10]. In the
sequel, the focus is on multisets, but the formalization and
algorithms can be applied to sets and vectors.
Since this work focuses only on sets, multisets, and vec-

tors, we only consider the similarity measures that exhibit
the Shuffling Invariant Property (SIP). A measure exhibit-
ing SIP is agnostic to the order of the elements in the al-
phabet A. Hence, shuffling the alphabet does not impact
the similarity between multisets. For measures exhibiting
SIP, the term Nominal Similarity Measures (NSMs) was
coined in [8]4. All the sets, multisets, and vectors simi-
larity measures handled in the literature we are aware of
are NSMs. For instance, the Jaccard similarity of two sets,

Si and Sj , is given by
|Si∩Sj |
|Si∪Sj | . The Ruzicka similarity [7]

3Hadoop supports having different types for keys of the re-
ducer input and output. The Google MapReduce does not.
4Similarity measures are surveyed in [7, 8, 15].

is the generalization of the Jaccard similarity to multisets.
For any two multisets, Mi ∩ Mj =

∑
A min(fi,k, fj,k), and

Mi ∪ Mj =
∑

A max(fi,k, fj,k). The set Dice similarity is

given by 2× |Si∩Sj |
|Si|+|Sj | , and the set cosine similarity is given

by
|Si∩Sj |√
|Si|×|Sj ||

. Both Dice and cosine similarity can be triv-

ially generalized to multisets using the set representation of
multiset in [10]. The vector cosine similarity is given by
∑

A |fi,k|×|fj,k|
|Mi|×|Mj | . All these measures are agnostic to the order

of the alphabet, and hence can be computed from partial
results aggregated over the entire alphabet. More formally,
NSMs can be expressed on the form of eqn. 1.

Sim(Mi,Mj) = F (

A∏
1
(g1(fi,k, fj,k)),

A∏
2
(g2(fi,k, fj,k)),

. . .

A∏
L
(gL(fi,k, fj,k))) (1)

In eqn. 1, the F () function combines the partial results of
the gl(., .) functions as aggregated over the alphabet by the∏A

l aggregators, where 1 ≤ l ≤ L, for some constant L.

3.2 Insight for High Scalability
The entire alphabet does not need to be scanned to com-

pute the partial results combined using F (). We classify
the gl(., .) functions into three classes depending on which
elements need to be scanned to compute the partial results.

The first unilateral class comprises functions whose partial
results can be computed using a scan on the elements in only
one multiset, either U(Mi) or U(Mj). Unilateral functions
consistently disregard either fi,k or fj,k. For instance, to
compute the partial result |Mi|, gl(., .) is set to the identity

of the first operand, fi,k, and
∏A

l to the
∑

aggregator.
Scanning only the elements in U(Mi), instead of the entire
A, and applying the formula

∑
ak∈U(Mi)

fi,k yields |Mi|.
The second class of conjunctive functions can be computed

using a scan on the elements in the intersection of the two
multisets, U(Mi∩Mj). For instance, to compute the partial
result |Mi×Mj |, gl(., .) is set to the multiplication function,

and
∏A

l to the
∑

aggregator. Scanning only the elements
in U(Mi ∩ Mj), instead of the entire A, and applying the
formula

∑
ak∈U(Mi∩Mj)

fi,k × fj,k yields |Mi ×Mj |.
Similarly, we define the class of disjunctive functions for

those whose partial results can only be computed using a
scan on the elements in the union of the two multisets,
U(Mi∪Mj). For instance, to compute the symmetric differ-
ence, |MiΔMj |, gl(., .) is set to the absolute of the difference,

and
∏A

l to the
∑

aggregator. Scanning only the elements
in U(Mi ∪ Mj), instead of the entire A, and applying the
formula

∑
ak∈U(Mi∪Mj)

|fi,k − fj,k| yields |MiΔMj |.
Given this classification of functions, it is crucial to ex-

amine the complexity of accumulating the partial results of
each of these classes. The partial results of the unilateral
functions, denoted Uni(Mi) for multiset Mi, can be accu-
mulated for all multisets in a single scan on the dataset. The
conjunctive partial results, denoted Conj (Mi,Mj), can be
accumulated for all pairs of multisets in a single scan on an



inverted index of the elements5. To compute the disjunctive
partial results, for every pair of multisets that are candidates
to be similar, their data needs to be scanned concurrently.
Fortunately, all the similarity measures we are aware of can
be expressed in terms of unilateral and conjunctive func-
tions. We leave disjunctive functions for future work. All
the published algorithms we are aware of, reviewed in § 6,
cannot handle disjunctive function in the general case, since
they generate candidate pairs from inverted indexes.
Some examples are given on expressing the widely used

similarity measures in terms of unilateral and conjunctive

functions. The Ruzicka similarity is given by
|Mi∩Mj |
|Mi∪Mj | . Hence,

the Ruzicka similarity is expressed in the form of eqn. 1 when
g1(., .) is the min(., .) function, g2(., .) is the max(., .), both∏A

1 and
∏A

2 are the
∑

aggregator, and Sim(Mi,Mj) is
∑

A g1(fi,k,fj,k)∑
A g2(fi,k,fj,k)

. Notice that the denominator contains the

disjunctive function, max(., .). Ruzicka can be rewritten as
|Mi∩Mj |

|Mi|+|Mj |−|Mi∩Mj | , which is expressible in the form of eqn. 1

as
∑

A g1(fi,k,fj,k)∑
A g2(fi,k,fj,k)+|g3(fi,k,fj,k)|−|g1(fi,k,fj,k)| , where g1(., .) is

the min(., .) function, g2(., .) and g3(., .) are the identity of

the first and second operand, respectively, and
∏A

1,
∏A

2,

and
∏A

3 are all
∑

aggregators. In this example, Uni(Mi) =
〈|Mi|〉 = 〈∑A g2(fi,k, fj,k)〉. Similarly, Uni(Mj) = 〈|Mj |〉 =
〈∑A g3(fi,k, fj,k)〉. Finally, Conj (Mi,Mj) = 〈|Mi ∩Mj |〉 =
〈∑A g1(fi,k, fj,k)〉. Similarly, the multiset cosine similarity,

|Mi∩Mj |√
|Mi|×|Mj ||

, and the multiset Dice similarity, 2× |Mi∩Mj |
|Mi|+|Mj | ,

is expressed in the form of eqn. 1 by setting g1(., .) to the
min(., .) function, g2(., .) and g3(., .) to the identity of the
first and second operands, respectively, and setting the simi-

larity function to
∑

A g1(fi,k,fj,k)√∑
A g2(fi,k,fj,k)×

∑
A g2(fi,k,fj,k)

for cosine,

and 2×
∑

A g1(fi,k,fj,k)∑
A g2(fi,k,fj,k)×

∑
A g2(fi,k,fj,k)

for Dice.

Given the above classification, in one pass over the dataset,
the unilateral partial results, Uni(Mi), can be accumulated
for each Mi, and an inverted index can also be built. The
inverted index can then be scanned to compute the conjunc-
tive partial results, Conj (Mi,Mj), for each candidate pair,
〈Mi,Mj〉, whose intersection is non-empty. The challenge
is to join the unilateral partial results to the conjunctive
partial results in order to compute the similarities.

4. THE V-SMART-JOIN FRAMEWORK
Instead of doing the join, the V-SMART-Join framework

works around this scalability limitation. The general idea
is to join Uni(Mi) to all the elements in U(Mi). Then, an
inverted index is built on the elements in A, such that each
entry of an element, ak, has all the multisets containing ak,
augmented with their Uni(.) partial results. For each pair of
multisets sharing an element, 〈Mi,Mj〉, this inverted index
contains Uni(Mi) and Uni(Mj). The inverted index can also
be used to compute the Conj (Mi,Mj). Hence, the inverted
index can be used to compute Sim(Mi,Mj) for all pairs.
The V-SMART-Join framework consist of two phases.

The first joining phase joins Uni(Mi) to all the elements
in U(Mi). The second similarity phase builds the inverted
index, and computes the similarity between all candidate
pairs. The algorithms of the joining phase are described in

5An inverted index groups all the multisets containing any
specific element together.

§ 5. In this section, the focus is on the similarity phase,
since it is shared by all the joining algorithms.

Each multiset, Mi, is represented in the dataset input to
the similarity phase using multiple tuples, a tuple for each
ak, where ak ∈ Mi. We call these input tuples on the form
〈Mi,Uni(Mi),mi,k〉 joined tuples. This representation of
the input data is purposeful. If each multiset is represented
as one tuple, multisets with vast underlying cardinalities
would cause scalability and load balancing problems.

The V-SMART-Join similarity phase is scalable, and com-
prises two MapReduce steps. The goal of the first step,
Similarity1, is to build the inverted index augmented with
the Uni(.) values, and scan the index to generate candidate
pairs. The map stage transforms each entry of mi,k to be
indexed by the element ak, and caries down Uni(Mi) and
fi,k to the output tuple. The shuffler groups together all the
tuples by their common elements. This implicitly builds an
inverted index on the elements, such that the list of each el-
ement, ak, is augmented with Uni(Mi) and fi,k for each set
Mi containing ak. For each element, ak, a reducer receives
a reduce value listak . For each pair of multisets, 〈Mi,Mj〉
in reduce value listak , the reducer outputs the identifiers,
〈Mi,Mj〉, along with Uni(Mi), Uni(Mj), fi,k and fj,k. The
map and reduce functions are formalized below.

mapSimilarity1 :

〈Mi,Uni(Mi),mi,k〉 −→ 〈ak, 〈Mi,Uni(Mi), fi,k〉〉

reduceSimilarity1 :

〈ak, (〈Mi,Uni(Mi), fi,k〉)∗〉 ∀Mi,Mj∈ reduce value list−−−−−−−−−−−−−−−−−−−−→
(〈〈Mi,Mj ,Uni(Mi),Uni(Mj)〉, 〈fi,k, fj,k〉〉)∗

The second step, Similarity2, computes the similarity from
the inverted index. It employs an identity map stage. A re-
ducer receives reduce value list〈Mi,Mj〉 containing 〈fi,k, fj,k〉
for each common element, ak of a pair 〈Mi,Mj〉. The key of
the list is augmented with Uni(Mi) and Uni(Mj). There-
fore, Similarity2 can compute Conj (Mi,Mj), and combine
it with Uni(Mi) and Uni(Mj) using F (). The result would
be Sim(Mi,Mj). Since computing the similarity of pairs
of multisets with large intersections entails aggregation over
long lists of 〈fi,k, fj,k〉 values, the lists are pre-aggregated
using combiners to better balance the reducers’ load. The
map and reduce functions are formalized below.

mapSimilarity2 :

〈〈Mi,Mj ,Uni(Mi),Uni(Mj)〉, 〈fi,k, fj,k〉〉 −→
〈〈Mi,Mj ,Uni(Mi),Uni(Mj)〉, 〈fi,k, fj,k〉〉

reduceSimilarity2 :

〈〈Mi,Mj ,Uni(Mi),Uni(Mj)〉, (〈fi,k, fj,k〉)∗〉 −→
〈Mi,Mj ,Sim(Mi,Mj)〉
Clearly, the performance of the similarity phase is little

affected by changing the similarity measure, as long as the
same gl(., .) functions are used. That is, the impact of indi-
vidual gl(., .) functions onto the final similarity values does
not affect the efficiency of the similarity phase.

The slowest Similarity1 machine is the reducer that han-
dles the longest reduce value listak . The I/O time of this
reducer is quadratic in max(Freq(ak)), the length of longest
reduce value listak . The longest reduce value listak also has



to fit in memory to output the pairwise tuples, which may
cause thrashing. The slowest Similarity2 machine is the re-
ducer that handles the longest intersection of all pairs of
multisets. This Similarity2 slowness is largely mitigated by
using combiners, while the Similarity1 slowness is not.
To speed up the slowest Similarity1 reducer and avoid

thrashing, elements whose frequency exceeds q, i.e., shared
by more than q multisets, for some relatively large q, can be
discarded. These are commonly known as “stop words”.
Discarding stop words achieves better load balancing, is
widely used in IR [5, 6, 13, 22, 29], and reduces the noise
in the similarities when the elements have skewed frequen-
cies, which is typical of Internet-traffic-scale applications.
This can be done in a preprocessing MapReduce step. The
preprocessing step maps input tuples from 〈Mi,mi,k〉 to
〈ak, 〈Mi, fi,k〉〉. The preprocessing reducer buffers the first
q multisets in the reduce value list of ak and checks if the
list was exhausted before outputting any 〈Mi,mi,k〉 tuples.
This way, the complexity of the slowest Similarity1 reducer
becomes quadratic in q instead of max(Freq(ak)) .
To avoid discarding stop words, avoid thrashing and still

achieve high load balancing, the quadratic processing can be
delegated from an overloaded Similarity1 reducer to several
Similarity2 mappers. Each overloaded reducer can dissect
its reduce value list into chunks of multisets, and output all
possible pairs of chunks. Each pair of these chunks is read
by a Similarity2 mapper that would output all the possible
pairs of the multisets in this pair of chunks.
To achieve this, the reducers have to make use of the ca-

pability of rewinding their reduce value lists. A Similarity1

reducer that receives an extremely long reduce value list can
dissect this list into T large chunks, such that each chunk
consumes less than B

2
Bytes, where B is the available mem-

ory per machine, for some T . Each chunk is on the form
〈ak, (〈Mi,Uni(Mi), fi,k〉)∗〉. The reducer outputs all the
possible T 2 pairs of chunks in a nested loop manner, which
entails rewinding the input T times. The output of such a
reducer will be different from the other normal Similarity1

reducers, and can be signaled using a special flag.
These T 2 pairs of chunks can fit in memory and can be

processed by up to T 2 different Similarity2 mappers. In-
stead of acting as identity mappers, the Similarity2 mappers
process their input in a way similar to the normal Similarity1

reducers when receiving pairs of chunks, 〈Chunkp, Chunkq〉,
where 1 ≤ p, q ≤ T . That is, when the input is on the form
〈〈ak, (〈Mi,Uni(Mi), fi,k〉)∗〉, 〈ak, (〈Mj ,Uni(Mj), fj,k〉)∗〉〉, it
outputs 〈〈Mi,Mj ,Uni(Mi),Uni(Mj)〉, 〈fi,k, fj,k〉〉 for each
Mi ∈ Chunkp, and each Mj ∈ Chunkq. This better bal-
ances the load among the Similarity1 reducers while not
skewing the load among the Similarity2 mappers, without
discarding stop words. In addition, the I/O cost of the
slowest Similarity1 reducer becomes proportional to T ×
max(Freq(ak)) instead of max(Freq(ak))

2.

5. THE JOINING PHASE ALGORITHMS
This section describes the joining algorithms that, for each

Mi, join Uni(Mi) to its elements. In other words, it trans-
forms the raw input tuples on the form 〈Mi,mi,k〉 to joined
tuples on the form 〈Mi,Uni(Mi),mi,k〉.
5.1 The Online-Aggregation Algorithm
For each input tuple, the mapper outputs the information

necessary to compute Uni(Mi) with secondary key 0, as well

as the same exact input tuple with secondary key 1. For each
multiset Mi, a reducer receives reduce value listMi with the
output of the mappers sorted by the secondary key. The
reducer scans reduce value listMi , and computes Uni(Mi),
since the information for this computation, secondary keyed
by 0, comes first in reduce value listMi . The reducer then
continues to scan the elements, secondary keyed by 1, and
outputs the multiset id, Mi with the computed partial result,
Uni(Mi), with each element mi,k. The map and reduce
functions are formalized below.

mapOnline−Aggregation1 :

〈Mi,mi,k〉 if fi,k>0−−−−−−→ 〈Mi, 0, fi,k〉, 〈Mi, 1,mi,k〉

reduceOnline−Aggregation1 :

〈Mi, (0, (fi,k)
∗), (1, (mi,k)

∗)〉 −→ (〈Mi,Uni(Mi),mi,k〉)∗

The Online-Aggregation is very scalable, straightforward,
and achieves excellent load balancing due to using combin-
ers. However, it assumes the shuffler sorts the reducer in-
put by the secondary keys for sorting. As discussed in § 2,
Hadoop provides no support for secondary keys, and the
workarounds are either unscalable, or entails writing parts
of the engine. Even more, we could not find any published
instructions on how to use the combiners with the secondary
keys workarounds in a scalable way. Next, we propose other
scalable algorithms that can be executed on Hadoop, and
compare the performance of all the algorithms in § 7.

5.2 The Lookup Algorithm
The Lookup algorithm consists of two steps. The first

Lookup1 step computes Uni(Mi) for each Mi. The mapper
outputs fi,k keyed by Mi for each input tuple Mi,mi,k. The
reducers scan a reduce value listMi , and compute Uni(Mi)
for each Mi. The output of the reducers are files mapping
each Mi to its Uni(Mi). Combiners are also used here to
improve the load balancing among reducers. The map and
reduce functions are formalized below.

mapLookup1 :

〈Mi,mi,k〉 if fi,k>0−−−−−−→ 〈Mi, fi,k〉

reduceLookup1 :

〈Mi, (fi,k)
∗〉 −→ 〈Mi, 〈Uni(Mi)〉〉

When a mapper of the second step, Lookup2, starts, it
loads the files produced by Lookup1 into a memory-resident
lookup hash table. As each Lookup2 mapper scans an input
tuple, 〈Mi,mi,k〉, it joins it to Uni(Mi) using the lookup ta-
ble. The output of the mappers of Lookup2 is the same as the
output of the mappers of Similarity1. Hence, the Similarity1

reducer can process the files output by the Lookup2 mappers
directly. The map function is formalized below.

mapLookup2 :

〈Mi,mi,k〉 lookup−−−−→ 〈ak, 〈Mi,Uni(Mi), fi,k〉〉
The Lookup algorithm suffers from limited scalability. The

second step assumes that the results of the first step can be
loaded in memory to be used for lookups. If the memory
cannot accommodate a lookup table with an entry for each
Mi, the reducers suffer from thrashing. We next propose the
Sharding algorithm that avoids this scalability limitation.



5.3 The Sharding Algorithm
The Sharding algorithm is a hybrid one between Online-

Aggregation and Lookup. It exploits the skew in the under-
lying cardinalities of the multisets to separate the multisets
into sharded and unsharded multisets. Sharded multisets
have vast underlying cardinalities, are few in numbers, and
are handled by multiple machines in a manner similar to
Lookup without sacrificing scalability. Any unsharded mul-
tiset can fit in memory, and is handled in a way similar to
the Online-Aggregation algorithm.
The Sharding algorithm consists of two steps. The first

Sharding1 step is the same as Lookup1, with one exception.
The reducer computes Uni(Mi), and outputs a mapping
from Mi to its Uni(Mi) only for each multisets, Mi, whose
|U(Mi)| > C, for some parameter C. The map and reduce
functions are formalized below.

mapSharding1 :

〈Mi,mi,k〉 if fi,k>0−−−−−−→ 〈Mi, fi,k〉

reduceSharding1 :

〈Mi, (fi,k)
∗〉 if |U(Mi)|>C−−−−−−−−−→ 〈Mi, 〈Uni(Mi)〉〉

At the beginning of Sharding2, each mapper loads the
output of the Sharding1 step to be used as a lookup table,
exactly like the case of Lookup2. As each Sharding2 map-
per scans an input tuple, 〈Mi,mi,k〉, it joins it to Uni(Mi)
using the lookup table. If the join succeeds, it is estab-
lished that |U(Mi)| > C, and Mi is a sharded multiset.
The mapper computes the fingerprint of ak, and outputs
the joined tuple keyed by 〈Mi, fingerprint(ak)〉. The goal
of adding fingerprint(ak) to the index is to distribute the
load randomly among all the reducers. If the join fails, it
is established that |U(Mi)| ≤ C, and hence, a list of all
the elements in U(Mi) can fit in memory. In that case, the
joined tuple keyed by 〈Mi,−1〉 is output. Since the second
entry in the tuple is always −1, all the elements from Mi

will be consumed by the same Sharding2 reducer. Since re-
duce value listMi fits in memory, the reducers can compute
Uni(Mi), and join it to the individual elements in U(Mi).
A Sharding2 reducer receives either a tuple with Uni(Mi)

joined in if Mi is sharded, or a tuple with no joined Uni(Mi)
if Mi is unsharded. If the tuple has the Uni(Mi) informa-
tion, the reducer strips off the fingerprint, and outputs a
joined tuple for each element. If the tuple does not contain
Uni(Mi), then Mi is unsharded, and reduce value listMi fits
in memory. The reducer loads reduce value listMi in mem-
ory and scans it twice. The first time to compute Uni(Mi),
and the second time to output a joined tuple on the form
〈Mi,Uni(Mi),mi,k〉 for each element ak in U(Mi). The map
and reduce functions are formalized below.

mapSharding2 :

〈Mi,mi,k〉 if fi,k>0−−−−−−→⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lookup−−−−→ 〈〈Mi, fingerprint(ak)〉, 〈Uni(Mi),mi,k〉〉
if Mi ∈ Lookup

lookup−−−−→ 〈〈Mi,−1〉, 〈NULL,mi,k〉〉
if Mi /∈ Lookup

reduceSharding2 :

〈〈Mi, fingerprint(ak)〉, (〈Uni(Mi),mi,k〉)∗〉 −→
〈Mi,Uni(Mi),mi,k〉

〈〈Mi,−1〉, (〈NULL,mi,k〉)∗〉 −→ 〈Mi,Uni(Mi),mi,k〉
The Sharding algorithm is scalable, and is largely insensi-

tive to the parameter C, as shown in § 7. The main goal of
the parameter C is to separate the very few multisets with
vast underlying cardinalities that cannot fit in memory from
the rest of the multisets. This separation of multiset is crit-
ical for the scalability of the algorithm. Therefore, the use
of C should not be nullified by setting C to trivially large or
small values. Setting C to a huge value stops this separation
of multisets into sharded and unsharded categories. In that
case, Sharding1 reducers processing multisets with vast un-
derlying cardinalities would be overly loaded, and would suf-
fer from thrashing. Conversely, setting C to a trivially small
value transforms the algorithm into a lookup algorithm, and
the Sharding2 mappers will have to fit in memory a lookup
table mapping almost each Mi to its Uni(Mi).

For the three proposed algorithms, the slowest machine is
the reducer that handles the multiset with the largest under-
lying cardinality. The I/O cost of these reducers is propor-
tional to max(|U(Mi)|). However, this slowness is greatly
reduced by using combiners. Dedicated combiners are used
in every aggregation to conserve the network bandwidth.

It is also worth noting that for any two measures that
use the same gl(., .) functions (e.g., Dice and cosine), the
performance of the joining algorithms is little affected by
using one over the other.

Next, the related work is discussed with a special focus
on the VCL algorithm [33]. VCL is used as a baseline to
evaluate the performance and scalability of the proposed
algorithms in § 7.

6. RELATEDWORK
Related problems have been tackled in different applica-

tions, programming paradigms, and using various similarity
measures for sets, multisets, and vectors. This section starts
by a general review, and then discusses VCL in details.

6.1 All-Pair Similarity Join Algorithms
Several approximate sequential algorithms employ Local-

ity Sensitive Hashing (LSH), whose key idea is to hash the
elements of the sets so that collisions are proportional to
their similarity [18]. An inverted index is built on the union
of hashed elements in all the sets. The goal is to avoid the
quadratic step of calculating the similarity between all sets
unless it is absolutely necessary.

Broder et al. proposed a sequential algorithm to estimate
the Jaccard similarity between pairs of documents [5, 6] us-
ing LSH. In [5, 6], each document is represented using a set,
Si, comprising all its shingles, where a shingle is a fixed-
length sequence of words in the document. A more scalable
version of the algorithm is given in [22] in the context of de-
tecting attacks from colluding attackers. The LSH process
was repeated using several independent hash functions to
establish probabilistic bounds on the errors in the similar-
ity estimates. While these algorithms considered sets only,
they can employ the set representation of multiset proposed
in [10] to estimate the generalized Ruzicka similarity.



Figure 2: The distribution of elements per multiset. Figure 3: The distribution of multisets per element.

LSH was also used in [9] to approximate other similar-
ity measures such as the Earth Mover Distance (EMD) be-
tween distributions6 [28], and the cosine similarity between
sets. However, the estimated similarities have a multiplica-
tive bias that grows linearly with log(|A|) log log(|A|), which
might be impractical for large alphabets, such as cookies7.
Using inverted indexes is proposed to solve the all-pair

similarity join problem exactly in [29]. Instead of scanning
the inverted index and generating all pairs of sets sharing an
element, the algorithm in [29] proceeds in two phases. The
first candidate generation phase scans the data, and for each
set, Si, selects the inverted index entries that correspond to
its elements. The algorithm then sorts the elements in this
partial index by their frequency in order to exploit the skew
in the frequencies of the elements. The algorithm dissects
these elements into two partial indexes. The first partial
index comprises the least frequent elements (i.e., elements
with short lists of sets), and is denoted Prefix (Si). The
second index comprises the most frequent elements (i.e., el-
ements with long lists of sets), and is denoted Suffix (Si).
The length of Suffix (Si) is determined based on |Si| and t,
such that the similarity between Si and any other set can-
not be established using only all the elements in the suffix.
The candidate generation phase merges all the lists in the
prefix and generates all the candidates that may be similar

6Given two piles of dirt in the shapes of the distributions, the
distance measure is proportional to the effort to transform
one pile into the other.
7[16] has reported the bias factor grows linearly with |A|. In
another analysis [17], Henzinger reported that the algorithm
in [9] is more accurate than the algorithm in [5, 6] on the ap-
plication of detecting near-duplicate web pages when using
the same fingerprint size. That is attributed to the ability of
[9] to respect the repeated shingles in the documents. The
number of independent hash functions used in [17] is 84. It
is notable that this is significantly less than the number of
hash functions proposed in [22] of 423 to guarantee an er-
ror bound of 4% with confidence 95%. Clearly, [17] did not
consider the set representation of multisets described in [10].

to Si. In the second verification phase, the candidates are
verified using the elements in the suffix. By dissecting the
partial index of Si into a prefix and a suffix, the threshold
t is exploited and the expensive step of generating all the
candidates sharing any element in their suffixes is avoided.

Several pruning techniques were proposed to further re-
duce the number of candidates generated. One such promi-
nent technique is prefix filtering [10, 4, 34]. The technique
builds an inverted index only for the union of the prefix ele-
ments of all the sets, which reduces the size of the inverted
indices by a approximately 1−t, according to [34]. Similarly,
[34] proposed suffix filtering. In fact, [34] bundled prefix fil-
tering and suffix filtering into a state of the art sequential
algorithm, PPJoin+, along with positional filtering (the po-
sitions of the elements in any pair of overlapping ordered
sets can be used to upper bound their similarity), and size
filtering [2] (similar sets have similar sizes from the pigeon-
hole concept). Integrating most of these pruning techniques
algorithmically was investigated in [19].

The MapReduce-based algorithm in [13] approximate the
multiset similarity using the vector cosine similarity. The
algorithm and the approximation is adopted in [3] with op-
timizations borrowed from [4] to reduce the communication
between the machines and distribute the load more evenly.
These techniques represent multisets as unit vectors, which
ignores their cardinalities. This approximation allows for de-
vising simple MapReduce algorithms. However, these tech-
niques are not applicable when multisets are skewed in size,
and the sizes of the multisets are relevant, which is typical
in Internet-traffic application. In addition, these techniques
provide approximate similarities, which obviates the use of
the MapReduce framework that can be used to crunch large
datasets to provide exact results.

The PPJoin+ algorithm is adopted in a MapReduce set-
ting in [33] for database joins. Since this is the only algo-
rithm that is exact, distributed, and versatile, it is used as
a benchmark and is explained in details next.



6.2 The VCL Algorithm
The VCL algorithm8 was devised for set similarity joins

where the sets come from two different sources. The algo-
rithm was also adapted to solve the all-pair similarity join
problem where the sets come from the same source, which
is the problem in hand. While the work in [33] targets sets,
it is applicable to multisets and vectors.
VCL is a MapReduce adaptation of PPJoin+ proposed in

[34] that reduces the number of candidate pairs by combin-
ing several optimizations. In fact, the main MapReduce step
of VCL relies on prefix filtering, explained in § 6.1. To ap-
ply the candidate pairs filtering technique [34], VCL makes a
preprocessing scan on the dataset to sort the elements of the
alphabet, A, by frequency. During the initialization of the
mappers of the main phase, all the elements, sorted by their
frequencies, are loaded into the memory of the mappers.
Each mapper processes a multiset at a time, and each

multiset is processed by one mapper. For each multiset, Mi,
the mapper computes the prefix elements ofMi, and outputs
the entire content of Mi with each element ak ∈ Prefix (Mi).
VCL uses the MapReduce shuffle stage to group together
multisets that share any prefix element. Hence, each re-
ducer receives a reduce key, element ak, along with the re-
duce value listak comprising all the multisets for which ak is
a prefix element. For each multiset in the reduce value listak ,
the reducer has the elements of the entire multiset, and
can compute the similarity between each pair of multisets.
This algorithm computes the similarity of any two multi-
sets on each reducer processing any of their common pre-
fix elements. These similarities are deduplicated in a post-
processing phase. The map and reduce functions of the ker-
nel, i.e., main, phase are formalized below.

mapVCL:

〈Mi, {mi,1, . . . ,mi,|A|}〉 ∀ak∈ Prefix (Mi)−−−−−−−−−−−−→
(〈ak, 〈Mi, {mi,1, . . . ,mi,|A|}〉〉)∗

reduceVCL:

〈ak, (〈Mi, {mi,1, . . . ,mi,|A|}〉)∗〉
∀Mi,Mj∈ reduce value list−−−−−−−−−−−−−−−−−−−−→

(〈Mi,Mj ,Sim(Mi,Mj)〉)∗

VCL suffers from major inefficiencies in the computation,
network bandwidth, and storage. For each multiset, Mi, the
map stage incurs a network bandwidth and storage cost that
is proportional to |Prefix (Mi)| × |U(Mi)|. Hence, the map
bottleneck is the mapper handling the largest multiset. This
constituted a major bottleneck in the reported experiments.
In addition, the reducers suffer from high redundancy. Each
pair of multisets, Mi andMj , have their similarity computed
|Prefix (Mi)∩Prefix (Mj)| times. This inefficiency cannot be
alleviated using combiners.
To reduce this inefficiency, grouping of elements into super-

elements was proposed in [33]. Representing multisets in
terms of super-elements shrinks the multisets, and hence
reduces the network, memory, and disk footprint. Group-
ing elements shrinks the alphabet, and hence a list of the
super-elements, sorted by their frequencies, can be more
easily accommodated in the memories of the VCL kernel

8The algorithm is referred to as VCL after the names of the
authors of [33].

mappers. In addition, grouping reduces the number of ker-
nel reducers calculating the similarity of pairs of multisets.
The kernel reducers produce a candidate pair of multisets
if their similarity of super-elements exceeds the threshold,
t. Grouping produces “superfluous” pair of multisets that
can share a prefix super-element, while not sharing a prefix
element. These superfluous pairs are weeded out in the post-
processing phase. In the experiments in [33], grouping was
shown to consistently introduce more overhead than savings
due to the superfluous pairs, and the authors suggested us-
ing one element per group. This renders the VCL algorithm
incapable of handling applications where the alphabet has
to fit completely in memory of the mappers.

The VCL algorithm suffers from another major scalabil-
ity bottleneck. In the map function of the kernel phase and
the post-processing phase, entire multisets are read, pro-
cessed, and output as whole indivisible capsules of data.
Hence, VCL can only handle multisets that can fit in mem-
ory. This renders the algorithm inapplicable of handling
Internet-traffic-scale applications, where the alphabet could
be the cookies visiting Google, and the multisets could be
the IPs visiting Google with these cookies.

7. EXPERIMENTAL RESULTS
To establish the scalability and efficiency of theV-SMART-

Join algorithms, experiments were carried out with datasets
of real IPs and cookies. Each IP was represented as a multi-
set of cookies, where the multiplicity is the number of times
the cookie appeared with an IP. The similarity measure used
was Ruzicka. The experiments were conducted using two
datasets from the search query logs. The first dataset is
of much smaller size and it had approximately 133 Million
unique elements (cookies) shared by approximately 82 Mil-
lion multisets (IPs). The first dataset was used so that all
the algorithms can finish processing it. This smaller dataset
was used as a litmus test to know which algorithms will be
compared on the second dataset.

The second dataset is of a more realistic size, and is used
to know which algorithms can solve the all-pair similarity
join problem in an Internet-traffic-scale setting, and com-
pare their efficiency. The second dataset had approximately
2.2 Billion unique elements (cookies) shared by approxi-
mately 454 Million multisets (IPs). The distributions of the
multisets and elements are plotted in Fig. 2 and Fig. 3.

Clearly, both the multisets, the IPs, and the alphabet, the
cookies, are in the order of hundreds of millions to billions.
In addition, the distributions are fairly skewed. However, no
stop words were discarded, and no multisets were sampled.

The algorithms analyzed in this experimental evaluation
are the proposed algorithms as well as the state of the art
algorithm, VCL. We did not include the LSH-based algo-
rithms since the existing algorithms are serial, and general-
izing them to a distributed setting is beyond the scope of
this work. In addition, LSH algorithms are approximate.
Using the computing power of multiple machines in a par-
allel setting obviates the need to approximation, especially
if the exact algorithms can finish within reasonable time.

All the algorithms were allowed 1GB of memory, and
10GB of disk space on each of the machines they ran on,
and they all ran on the same number of machines. All the
algorithms were started concurrently to factor out any mea-
surement biases caused by the data center loads. All the
reported run times represent a median-of-5 measurements.



Figure 4: Algorithms run time on the small dataset
with various similarity thresholds (500 machines).

Figure 5: Algorithms run time on the small dataset
with various numbers of machines (t = 0.5).

The results of comparing the algorithms on the small and
realistic datasets are reported in § 7.1 and § 7.2, respectively.
We also conduct a sensitivity analysis of the Sharding algo-
rithm with respect to the parameter C in § 7.3. Finally, we
briefly comment on discovering load balancers in § 7.4.

7.1 Algorithms Comparison on the
Small Dataset

The first step in comparing the algorithms on the small
dataset was to run each algorithm on the same number of
machines, 500, and to vary the similarity threshold, t, be-
tween 0.1 and 0.9 at an 0.1 interval. Understandably, all
the algorithms produced the same number of similar pairs
of IPs for each value of t. The results are plotted in Fig. 4.
Clearly, the performance of the VCL algorithm in terms of
run time was not close to any of the V-SMART-Join algo-
rithms. In addition, its performance was highly dependent
on the similarity threshold, t. It is also worth mentioning
that at least 86% of the run time of VCL was consumed
by the map phase of the kernel MapReduce step, where the
multisets get replicated for each prefix element. The V-
SMART-Join algorithms were fairly insensitive to t. Their
run time decreased very slightly as t increased, since less
pairs were output, which reduces the I/O time.
The Online-Aggregation algorithm was consistently the

most efficient. Online-Aggregation executed 30 times faster
than VCL when the similarity threshold was 0.1. When
the threshold was increased to 0.9, the performance of V CL
improved to be only 5 times worse than Online-Aggregation.
Online-Aggregation was followed by Lookup, and then Shard-
ing, with slight differences in performance. This was ex-
pected, since the Online-Aggregation joining needs only one
MapReduce step. The Lookup algorithm saves a MapReduce
step compared to the Sharding algorithm.
How the algorithms scale out relative to the number of

machines was also examined. All the algorithms were run
to find all pairs of similarity 0.5 or more, and the number

of machines were varied from 100 to 900 at an interval of
100 machines. Again, the VCL algorithm performed a lot
worse than the V-SMART-Join algorithms. In addition,
when the algorithm ran on over 500 machines, it did not
make much use of the machines. The reason is that the
bottleneck of the runs was outputting each large multiset
with each one of its prefix elements. This results in a huge
load unbalance. That is, some of the machines that handle
the large multisets become very slow, which is independent
of the number of machines used. When using 900 machines
instead of 100 machines, VCL run time dropped by 35%.

On the other hand, the V-SMART-Join algorithms con-
tinued to observe a relative reduction in the run time as
more machines were used. This speed up was hampered by
the fact that a large portion of the run times were spent
in starting and stopping the MapReduce runs. The algo-
rithm that exhibited the most reduction in run time was
Online-Aggregation, whose run time dropped by 53%, while
the Lookup showed the least reduction in run time with a
drop of 32%. This is because part of the run time of Lookup
was loading the lookup table mapping each Mi to Uni(Mi)
on each machine, which is a fixed overhead regardless of
the number of machines used. Again, Online-Aggregation
outperformed VCL by 11 to 15 times depending on the sim-
ilarity threshold.

7.2 Algorithms Comparison on the
Realistic Dataset

The algorithms were run on the more realistic dataset, and
the results are presented below. It is worth mentioning that
Lookup did not succeed because it was never able to load the
entire lookup table mapping each Mi to Uni(Mi). Hence,
Lookup was out of the competition. Similarly, the VCL al-
gorithm was not able to load all the cookies, sorted by their
frequency. To remedy this, the cookie elements were sorted
based on their hash signature instead of their frequencies.
However, even with this modification, VCL never finished



the runs within two days. The mappers of the kernel step
took more than 48 hours to finish, and were killed by the
MapReduce scheduler.
The remaining algorithms, Online-Aggregation and Shard-

ing, were compared. The similarity phase is common to both
algorithms. Hence, the time for running the joining phase
was measured separately from the time for running the sim-
ilarity phase. Since these algorithms do not get affected by
the similarity threshold, only their scaling out with the num-
ber of machines was compared. The algorithms were run to
find all pairs of similarity 0.5 or more, and the number of
machines were varied from 100 to 900 at an interval of 100
machines. The results are plotted in Fig. 6. From the fig-
ure, both algorithms, as well as the common similarity step
were able to scale out as the number of machines increased.
Online-Aggregation took roughly half the time of Sharding.

7.3 How Sensitive is Sharding to C?
The previous section shows that while the Sharding al-

gorithm is half as efficient as the Online-Aggregation algo-
rithm, it is still scalable. The main advantage of Sharding
is it does not use secondary keys, which are not supported
natively by Hadoop. On the other hand, Sharding takes
a parameter C. The function of parameter C is to sepa-
rate the multisets with vast underlying cardinalities, whose
Uni(.) functions are calculated and loaded in memory as
the Sharding2 mappers start, from the rest of the multisets,
whose Uni(.) are calculated on the fly by the Sharding2 re-
ducers. A sensitivity analysis was conducted on the perfor-
mance of the Sharding algorithm as the parameter C was
varied. The run time of the Sharding1 and Sharding2 steps,
as well as their sum, are plotted in Fig. 7 as the parameter
C is varied between 25 and 215 using exponential steps.
The run time of the Sharding1 step decreased since less

pairs were output as C increased, which reduced the I/O
time. On the other hand, the run time of the Sharding2

step increased since more on the fly aggregation is done as
C increased. The total run time of the Sharding algorithm
stayed stable throughout entire range of C. More precisely,
the total run time had a slight downward trend until the
value of C was roughly 1000 and then increased again. No-
tice however that larger values of C reduce the memory foot-
print of the algorithm, and are then more recommended.

7.4 A Comment on Identifying Proxies
We conclude the experimental section by briefly discussing

the discovered IP communities. For each similarity thresh-
old, a manual analysis was done on a random sample of the
similar IPs. Each threshold was judged based on its cover-
age, i.e., the number of discovered similar IPs, and the false
positives of the sample. False positives are defined as IPs in
the results that cannot be proxies. Similar IPs are judged
as not proxies based on evidences independent of this study.
An example is the case when two IPs that were judged by
this approach to be similar belong in fact to two different
organizations. Clearly, setting t to 0.1 yields the highest
coverage, but also the highest false positives.
To reduce the false positives, instead of reducing the simi-

larity threshold, IPs that observed less than 50 cookies were
filtered out. This almost eliminated the false positives for all
the thresholds, since it eliminated all the IPs that have very
low chance of acting as proxies. After eliminating these IPs,
the number of cookies were around two orders of magnitude

larger than the number of IPs. It is expected to find a lot
more cookies than IPs in proxy settings.

Notice that this filtering of small IPs would not improve
the reported performance of VCL, though it would improve
the reported performance of Lookup. The reason is the main
bottleneck of VCL are multisets with vast underlying cardi-
nalities. These bottleneck multisets are the most important
to identify in order to discover load balancer, and should not
be filtered out. On the other hand, by reducing the num-
ber of multisets, the Lookup algorithm reduces the I/O time
of reduceLookup1 responsible for producing the data for the
lookup table mapping each Mi to Uni(Mi). It is also worth
noting that this filtering allowed the Lookup algorithm to
accommodate the lookup table of the realistic dataset, and
was able to finish the run in time very comparable to the
Online-Aggregation algorithm.

The overwhelming majority of the discovered load bal-
ancers were in European countries. The seven largest strongly
connected sets of IPs spanned several subnetworks, and com-
prised thousands of IPs. The load balancers in Saudi Arabia
and North Korea were few, but were the most active.

8. DISCUSSION
TheV-SMART-Join MapReduce-based framework for dis-

covering all pairs of similar entities is proposed. This work
presents a classification of the partial results necessary for
calculating Nominal Similarity Measures (NSMs) that are
typically used with sets, multisets, and vectors. This clas-
sification enables splitting the V-SMART-Join algorithms
into two stages. The first stage computes and joins the par-
tial results, and the second stage computes the similarity for
all candidate pairs. The V-SMART-Join algorithms were
up to 30 times as efficient as the state of the art algorithm,
VCL, when compared on real small datasets. We also estab-
lished the scalability of the V-SMART-Join algorithms by
running them on a dataset of a realistic size, on which the
VCL mapper never succeeded to finish, not even when VCL
was modified to improve scalability.

We touch on the reason why we did not incorporate prefix
filtering into the proposed algorithms. While prefix filtering
reduces the generated candidates from any pair of multisets
sharing an element to only those that share a prefix ele-
ment, employing it in a MapReduce algorithm introduces
a scalability bottleneck, which defeats the purpose of using
MapReduce. First, loading a list of all the alphabet ele-
ments, sorted by their frequencies, in memory to identify
the prefix elements of each entity renders prefix filtering in-
appropriate for handling extremely large alphabets. This
was a bottleneck for the algorithms in [3, 33]. Extremely
large alphabets and entities are common in Internet-traffic-
scale applications. While [33] proposed grouping elements
to reduce the memory footprint of prefix filtering, their ex-
periments showed the inefficiencies introduced by grouping.
Second, the approach of generating candidates and then ver-
ifying them entails machines loading complete multisets as
indivisible capsules. This limits the algorithms in [3, 33] to
datasets where pairs of multisets can fit in memory. Finally,
as clear from the experiments, prefix filtering is only effec-
tive when the similarity threshold is extremely high. Prefix
filtering becomes less effective when the similarity thresh-
old drops. As was clear from our application, the threshold
was set to a small value (0.1) to find all similar IPs, which
minimizes the benefits of prefix filtering.



Figure 6: Algorithms run time on the large dataset
with various numbers of machines (t = 0.5).

Figure 7: The run time of Sharding on the large
dataset with various values of the parameter C.

The main lesson learned from this work is that devising
new algorithms for the MapReduce setting may yield algo-
rithms that are more efficient and scalable than those de-
vised by adopting sequential algorithms for this distributed
setting. Adopting sequential algorithms to the distributed
settings may overlook capabilities and functionalities offered
by the MapReduce framework. It is also crucial to devise
algorithms that are compatible with the publicly available
version of MapReduce, Hadoop, for wider adoption.
Finally, it is constructive to identify the limitations of

this work. The proposed algorithms, as well as others in the
literature, handles only NSMs whose partial results can be
computed either by scanning the two entities, or by scanning
the intersection of the two entities. That is, the algorithms
do not handle NSMs if any of its partial results entail scan-
ning the elements in the union of the two entities. This
still makes this work applicable to a large array of similarity
measures, such as Jaccard, Ruzicka, Dice, and cosine.
In addition, this work assumes large scale datasets with

numerous entities, numerous elements, and a skew in the
sizes of the entities. The skew in the sizes of the entities
enabled the sharding algorithm to categorize entities into
sharded and unsharded entities. This work is not applicable
to datasets with numerous entities and very few elements.
For instance, if the entities represent distribution histograms
of a moderate number bins, and the elements represent the
bins, almost each bin would be shared by almost all the
entities. In that case, the algorithm would have to do an
exhaustive pairwise similarity join, which is very unscalable.
Our future work focuses on devising a MapReduce-based
algorithm for all-pair similarity joins of histograms.
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