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ABSTRACT
We present an analysis of music modeling and recognition
techniques in the context of mobile music matching, substan-
tially improving on the techniques presented in [1]. We ac-
complish this by adapting the features specifically to this task,
and by introducing new modeling techniques that enable us-
ing a corpus of noisy and channel-distorted data to improve
mobile music recognition quality. We report the results of
an extensive empirical investigation of the system’s robust-
ness under realistic channel effects and distortions. We show
an improvement of recognition accuracy by explicit duration
modeling of music phonemes and by integrating the expected
noise environment into the training process. Finally, we pro-
pose the use of frame-to-phoneme alignment for high-level
structure analysis of polyphonic music.

Index Terms— Music, modeling, music information re-
trieval, signal analysis.

1. INTRODUCTION

We explore the problem of identifying musical snippets cap-
tured from the surrounding environment using a statistical
modeling approach based on automatic speech recognition
(ASR). However, unlike natural language, which can be de-
composed into a priori determined words and phonemes, mu-
sic in general does not have a universal symbolic transcription
that can be similarly used to train a recognition system with
annotated corpora.

A variant of the problem was first explored in [2] wherein
the snippet is a CD-quality excerpt of the song. In contrast to
the ASR approach, most existing music recognition applica-
tions make use of Locality Sensitive Hashing [3], creating a
fingerprint table of known songs that is queried at run-time for
a sequence of feature vectors extracted from the snippet [4, 5].
The acoustic features used are usually designed to be sparse
and rely on points of interest such as peaks in spectrograms.
This approach has shown robustness to various types of dis-
tortions [4], but the rate of false positives can still be high at
low SNR necessitating post-processing heuristics. A model-
ing approach, however, enables noise and channel robustness
by allowing these distortions to be modeled, both through the
statistical properties of Gaussian Mixture Models (GMM) and
by explicitly training on noisy data in addition to or instead of
clean data. It also makes it possible to represent the song au-
dio in terms of a low-dimensional alphabet of symbolic units,
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which provides novel opportunities for music structure anal-
ysis.

We extend on the techniques of [2] to allow recognition of
snippets captured through a mobile phone’s microphone, and
we report on the results of an initial study of music analysis
using music phoneme acoustic models. In the next section
we describe changes to the front end (Section 2.1), acoustic
modeling improvements (Section 2.2), and the introduction
of duration modeling (Section 2.3). Section 3 presents the use
of frame-to-phoneme alignment for high-level audio structure
analysis. We present our experimental results in Section 4,
and we conclude in Section 5.

2. MODELING

The use of weighted finite-state transducers (WFSTs) for mu-
sic recognition was introduced in [2, 1]. In this approach, the
acoustic model is initialized by unsupervised clustering of the
features to form a set of music phonemes. At each iteration of
the model training that follows, the acoustic model is refined
by alternatively estimating the parameters of the GMMs for
each music phoneme and re-transcribing the training data
with the model just learned. Unlike in speech recognition,
there is no ground truth transcription for the audio. In this
process, the transcription used in the acoustic model train-
ing is estimated at the same time as the parameters of the
GMM. The final WFST for recognition maps subsequences
of the final transcription for each song to the song identifiers.
The algorithm for constructing this WFST uses weighted
determinization and minimization, which preserves the total
weight of a path corresponding to a given song. We refer the
reader to [1] for details.

The above system achieved 99.9% identification accuracy
over test snippets cut from clean recordings, and in [6, 1]
we showed that the system was robust to synthetic distor-
tions. Nevertheless, we observed a significant degradation in
accuracy when the test recordings were recorded with mo-
bile phones. These recordings are marked with substantial
quality degradation of the test audio, a significant spectral
tilt introduced by the mobile phone microphone, as well as
noise and channel characteristics introduced by recording
in a real-world environment. In all the work presented on
speech model-based music recognition thus far, clean refer-
ence song audio is used to train the acoustic models. How-
ever, a model-based approach has the significant advantage
of allowing noisy data to be used during training. In addition,
the mismatch between the training and test conditions can



be mitigated by using sound features that are less sensitive
to changes in the transmission channel. In this section, we
describe our use of these improvements to produce a mobile
music recognition system of drastically improved accuracy.

2.1. Acoustic Front-end

Mel-frequency cepstral coefficients (MFCCs) have been
broadly used successfully in music processing, e.g., [7].
Typically, the features used are a verbatim copy of those
employed in speech recognition. However, it is possible to
improve feature quality by making adjustments to the acous-
tic front-end motivated by the differences between music and
speech audio.

As a baseline, we have used a standard speech recogni-
tion front end computing perceptual linear predictive (PLP)
features [8]. Thirteen cepstral coefficients are computed ev-
ery 10 ms over 25 ms windows, and the energy coefficient
C0 is discarded, which decreases the sensitivity to changes in
volume. Even though the training examples were sampled at
16 kHz, we restrict the feature extraction to a range of 125
to 3800 Hz, since we expect this range to be sufficient for
song identification. The resulting 36-dimensional feature vec-
tor consists of 12 coefficients along with their first and second
temporal derivatives.

A speech sound may be accurately identified with a fairly
coarse representation of the signal. In contrast, polyphonic
music recordings are marked with the presence of more fine-
scale acoustic phenomena which necessitate a higher spectral
resolution. To accomplish this, we increased the window size
from 25 ms to 500 ms and reduced the frequency range to 200
to 2000 Hz. The disadvantage of such a change is that the
resulting blurring along the time axis will potentially reduce
the capacity of the features to properly represent information
about very short sounds. However, overall we have found that
this has improved recognition accuracy.

While PLP features are motivated by human perception
of speech [9], music has vastly different spectral and tempo-
ral characteristics. Thus, conventional MFCC features can
be expected to be a more suitable descriptor of the underly-
ing short-time spectrum, since they require fewer assumptions
about perception. One of the main assumptions specific to
MFCC is the use of the mel-scale, which exploits the fact that
the spectral resolution of human hearing decreases exponen-
tially in frequency.

For representing music sounds, we propose a natural
modification of the mel-scale that maintains this exponential
nature but allows the filterbank channels to be centered at
the frequencies of the notes of the equal-tempered chromatic
scale. We modify the original frequency scaling function
defined in Equation 1 in two alternative ways that differ only
in the choice of constants, as shown in Equations 2 and 3:

f̃mel = 1127 · ln(1 + f/700) (1)
= ln(2) · 1127 · log2(1 + f/700)

f̃notes = 12 · log2(f/440) (2)

f̃log2 = log2(1 + f). (3)

With f̃notes, setting the number of filter bank channels to
40 and adjusting the lowest and the highest frequency centers
to 196 Hz and 2093 Hz (which are only slightly different from
the frequency range of the baseline front-end) results in a filter
bank where the filter center frequencies are aligned with “note

frequencies”, i.e., {440 · 2n/12 Hz | − 13 ≤ n ≤ 26}, thus
covering roughly three octaves.

2.2. Acoustic Model Improvements

In addition to improving the quality of the features used by
our system, we have also explored a number of modeling
improvements. In all of our experiments, we use 512 mu-
sic phonemes, a setting that has been empirically observed to
attain an acceptable tradeoff between the granularity of sound
clustered into a given phoneme and computational efficiency.

On average, each music phoneme has a duration of 6
frames; the duration follows approximately the Poisson dis-
tribution (with λ = 6). Each song from our collection is
described by a sequence of approx. 22,000 phonemes on
average, and each song’s transcription uses almost every
phoneme from the repository. The training starts with a sin-
gle Gaussian acoustic model and proceeds to train a mixture
model by splitting clusters of observations along the direc-
tion of maximal variance. Thus the phonemes represent
short homogeneous sequences of feature vectors, a concept
analogous to the meaning of “phoneme” in an ASR context.
Figure 1 shows an example of an alignment plotted over the
spectrogram of the corresponding audio segment.
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Fig. 1. Example of an alignment

Training the acoustic models solely on reference record-
ings results in an inherent mismatch between the models and
test recordings produced with mobile phones in noisy set-
tings. As described in Section 4, we have recorded our en-
tire training data set with multiple mobile phone microphones
with the goal of reducing this mismatch. However, pooling
multiple recordings of the same song naı̈vely in the training
stage allows for a clean and distorted recording of the same
song to receive different transcriptions. In order to ensure that
the transcriptions are the same amongst the different versions
of a given song, training is initially performed from scratch
on the clean corpus. Next, a second training pass performs
a forced alignment of mobile recordings for each song to the
same song’s transcriptions obtained on clean audio. This type
of multi-conditional training is beneficial not only because
the acoustic models are prevented from overfitting the clean
data, but also because this discourages the creation of dis-
parate phoneme clusters for different recording conditions.

While using distorted training data in addition to clean
recordings during training substantially improves mobile mu-
sic recognition quality, this type of training can be vulnerable
to overfitting the specific distortions observed in the training
data. In order to improve the robustness of the acoustic mod-
els to previously unseen distortions, we add a small level of
white Gaussian noise to the training data.



2.3. Duration modeling

In the baseline system, the recognition FST is compiled from
transcriptions by introducing a single hidden Markov model
(HMM) state per music phoneme, disregarding its actual
length. This is a suitable approach for speech recognition,
where variations in speaking rate are captured by HMM
topology. In contrast, in music recognition, we do not expect
changes of playback speed from one music phoneme to the
next, and hence it is reasonable to model the duration of each
phoneme explicitly. This can be accomplished by replicating
a given HMM state once for each frame spanned by a given
music phoneme at each point in the indexed song. We also
disallow self-loops in the HMM, thus requiring the decoder
to transition to a new HMM state on each acoustic frame.
This has the effect of enforcing the constraint that for a given
song, the number of frames seen for each particular music
phone is exactly the same as that in the reference recording.

While this increases the size of the recognition FST
approximately by a factor of 6 (in terms of number of
arcs/states), it allows for much greater constraint during the
decoding process, and thus, improved accuracy.

3. STRUCTURAL ANALYSIS

One advantage of model-based music recognition is that
it provides a labeling of music audio in terms of elemen-
tary sound units. The approach presented here provides a
symbolic representation that naturally enables a structural
analysis of song audio. Such a representation has many appli-
cations, including automatic segmentation of a recording into
high-level sections for tasks such as chorus detection, as well
as automated identification of common melodic elements
across songs to detect plagiarism or song covers. In addi-
tion, the representation of audio as a low-dimensional music
phoneme sequence allows the use of statistical methods such
as language modeling, bag-of-words analysis, approximate
repeated substring matching, and many others. A compre-
hensive study of these techniques is beyond the scope of this
paper; nevertheless, to motivate future work we present an
initial analysis of song audio using music phoneme acoustic
models.

Structural analysis of song audio has been previously
studied in several works, where the predominant technique
has been, as suggested by Foote [10], to compute a sim-
ilarity measure between all pairs of feature vectors corre-
sponding to the song audio. Several researchers have devel-
oped techniques comparing feature vectors [11, 12, 13]. Let
xi, i ∈ [1, n] be the feature vectors computed for a song. Then
the self-similarity matrix A is defined as Ai,j = sim(xi, xj)
for some similarity score sim(·, ·). With such a representation
of self-similarity, off-diagonal rectangles (p, q, r, s) where
Ai,j , i ∈ [p, q], j ∈ [r, s] are large represent repeated sounds
within the song. Analogously, block diagonal submatrices
off the main diagonal correspond to a repeated sequence of
sounds, such as chorus.

One drawback of such a metric stems from the fact that
even if for some values of {i, j}, xi and xj represent a re-
peated segment of music, natural variations in polyphonic
music performance are expected to make the similarity inside
the rectangle Ai,j , i ∈ [p, q], j ∈ [r, s] quite noisy, rather than
of a consistently high value. Our model-based representation
of music audio allows the self-similarity to be computed on
the level of the phonemes aligned to the feature vectors. Let

Name Phone (distance) # songs # snippets Dur. [h]
D1 Motorola Droid (close) 458 5799 24.1
D2 Motorola Droid (far) 457 5765 24.0
N1 Nexus One (far) 457 5765 24.0
N2 Nexus One (close) 93 1176 4.9

Table 1. Data sets

the audio segments s1, s2 be the feature vector ranges x1 ∈ s1
and x2 ∈ s2 labeled with music phonemes p1 and p2, re-
spectively. Then their similarity can be captured by a sym-
metrized approximation of the Kullback-Leibler divergence
(KL) as sim(s1, s2) = KL(G1||G2), where G1 and G2 are
the GMMs corresponding to p1, and p2, respectively. Various
approximations of KL divergence of GMMs are reviewed in
[14]. This representation is advantageous firstly because the
unification of same-phoneme segments in the audio greatly
reduces the noise in the similarity signal, and also because it
is no longer necessary to compute pairwise similarity between
all frames in the song audio – rather, the similarity between
all pairs of GMMs can be precomputed. Figure 2 shows a
self-similarity matrix and the spectrogram of the correspond-
ing audio segment of 3 seconds.
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Fig. 2. Self-similarity matrix A (left) with aligned spectro-
gram S (right). The encircled block implies that the frames in
[p, q] have a high similarity to those in [r, s], also seen in S.

4. EXPERIMENTAL RESULTS

Our training set consists of 5000 clean CD-quality song
recordings (set CLEAN) of which we use 500 songs (set
INDEX) to build our recognition WFST. For our modeling ex-
periments, we augment the CLEAN training set with roughly
4500 songs (from CLEAN - INDEX) that are captured in full
on two Motorola Droid phones (set RECORD). The test set
was created by capturing the remaining songs (i.e. those in
INDEX; call this set RECORDINDEX) on four phones in dif-
ferent locations relative to the signal source and splitting each
song into 15 second non-overlapping snippets. After remov-
ing the first and last snippets from each song, which contain
mostly silence, we obtain the four sets presented in Table 1.
The total duration of the test snippets is 77 hours. These sets
enable evaluating our recognition system’s robustness to var-
ious non-linear distortions that are not sufficiently modeled
by artificially adding noise to clean recordings. Note that our
system is currently outputting a single-best hypothesis only,
and hence we report 1-best accuracies rather than precision
and recall. However, it would be possible also to modify our
decoding setup to output an n-best list or a lattice of results.



Experiment D1 D2 N1 N2 Avg.
20 filters, 125-3800 Hz (baseline) 25.7 83.1 78.9 63.4 62.6
24 filters, 200-2000 Hz, win. 0.5 s 73.9 80.2 89.7 63.6 80.1
scaling with f̃log2 81.9 81.3 89.5 67.8 83.2
scaling with f̃log2, no PLP 82.3 81.1 89.1 68.3 83.2
scaling with f̃Notes, 40 filters,
196-2093 Hz, 15 cepstral coeff. 82.3 81.4 89.3 70.2 83.4
(as above) + white noise in training 84.4 84.2 92.2 71.3 85.9

Table 2. Accuracy for front-end adaptation experiments

Experiment N1 N2 Avg.
1st pass (baseline) 92.2 71.3 88.7
2nd pass: unconstrained 92.9 75.4 89.9
2nd pass: clean transcriptions 93.2 76.4 90.4

Table 3. Accuracy for multi-conditional training

Front-end. We test the modifications we propose in Sec-
tion 2.1 to our baseline speech recognition front-end (simi-
lar to that reported in [1]) by training an acoustic model on
CLEAN, building the FST from the songs in INDEX, and test-
ing the modifications on the four sets of snippets. As shown in
Table 2 adapting the front-end to the task of music recognition
consistently improved identification accuracy across the dif-
ferent test sets. Note that even though slightly higher accuracy
can be obtained by increasing the GMM training iterations,
we chose to stop at three iterations in all our experiments to
avoid overfitting.
Acoustic Modeling. For the modeling experiments, we start
with the best front-end from Table 2 and an acoustic model
trained on CLEAN. We initiate a second training pass that
force aligns the songs in RECORD and RECORDINDEX to the
clean transcriptions as described in Section 2.2. Since the
recorded sets are captured on Droid phones, we exclude sets
D1 and D2 from the evaluation. It is noteworthy, however,
that as expected the system achieves 100% accuracy on these
sets. The results of our multi-conditional training are shown
in Table 3, which also includes the accuracy of a system that
does not constrain the transcriptions to be identical to those
obtained in the first pass. Although the reported gain in ac-
curacy is not big, the constrained system consistently outper-
formed the unconstrained one across all experiments.
Duration Modeling. We applied duration modeling to sys-
tems with various front-end configurations following the mo-
tivation in Section 2.3. The results in Table 4 show that dura-
tion modeling helps compensate for less robust front-ends.

5. CONCLUSION

We have described approaches to improve the robustness of
music recognition and presented an evaluation on real cell
phone recordings. We modified a speech recognition front-
end to fit the needs of music recognition, and we introduced
a technique for producing song transcriptions that accounts

Front-end no DM DM rel. ∆ [%]
baseline, window 0.5 s 75.3 80.5 6.9
scaling with f̃log2 81.9 83.9 2.4
scaling with f̃Notes, no PLP 84.2 84.5 0.4

Table 4. Accuracy for duration modeling (DM) on set D1

for the fact that the same song can be recorded under variable
conditions. Our method of music phoneme duration model-
ing improved the recognition results consistently in all exper-
iments. Finally, we adapted the technique of self-similarity
for recognition of repeated patterns to our ASR-based system
and obtained nicely interpretable results. We anticipate fur-
ther quantitative analysis of this method in future work. We
also plan to explore the possibility of using a true duration
model - that is, one that represents the duration of a music
phone with a probability distribution, to improve robustness
to global playback rate changes.
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