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ABSTRACT 
Personal user-defined gesture shortcuts have shown great 
potential for accessing the ever-growing amount of data and 
computing power on touchscreen mobile devices. However, 
their lack of scalability is a major challenge for their wide 
adoption. In this paper, we present Gesture Marks, a novel 
approach to touch-gesture interaction that allows a user to 
access applications and websites using gestures without 
having to define them first. It offers two distinctive 
solutions to address the problem of scalability. First, it 
leverages the “wisdom of the crowd”, a continually 
evolving library of gesture shortcuts that are collected from 
the user population, to infer the meaning of gestures that a 
user never defined himself. Second, it combines an 
extensible template-based gesture recognizer with a 
specialized handwriting recognizer to even better address 
handwriting-based gestures, which are a common form of 
gesture shortcut. These approaches effectively bootstrap a 
user’s personal gesture library, alleviating the need to 
define most gestures manually. Our work was motivated 
and validated via a series of user studies, and the findings 
from these studies add to the body of knowledge on 
gesture-based interaction. 
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INTRODUCTION 
With the ever-growing complexity of mobile devices like 
the Android [1] and iPhone [11], there is a pressing need for 
faster and more natural ways to access all of the diverse 
functions that are available to mobile users today. Gesture 
shortcuts on the touchscreen represent one promising new 
modality for confronting this problem. Imagine being able 

to draw a quick star to launch Google Sky Maps (an 
application for exploring stars, planets, and constellations) 
or a fast cursive “NY” to open your browser to The New 
York Times (as illustrated in Figure 1). These gestures can 
be quick to draw, easy to remember, and require very little 
cognitive load on the user.  

A system that supports user-defined gesture shortcuts often 
employs a template-based approach [19], in which a new 
gesture is matched against a set of known gestures defined 
by the user. Compared to prior work that uses built-in, 
system-defined shortcuts, e.g., those based on letters 
[14,21], this approach enables a richer unconstrained 
gesture vocabulary and allows users to easily create their 
own personal shortcuts. A new gesture can be added to the 
library in an on-line manner without expensive retraining, 
and it can immediately contribute to future recognition. 
Furthermore, because such a system can continually learn 
from the user’s gestures over time, it allows the gesture 
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Figure 1: When a user draws a gesture in Gesture Marks, 
the system shows a list of matches based on: 1) a library of 

learned gestures from the user, 2) gestures from other 
users—the crowd, and 3) a built-in handwriting recognizer. 



 

language to adapt to the particular drawing or handwriting 
style of the user instead of the other way around.  

However, despite the appeal and promise of user-defined 
gesture shortcuts, the main challenge is their scalability. It 
is not practical for a user to define custom gesture shortcuts 
for every target they might visit, e.g., accessing a large 
corpus such as the web. To address this challenge, our goal 
is to find ways to alleviate users from the burden of having 
to define gesture shortcuts manually.  

To this end, we first conducted an exploratory study to find 
out whether there are any intrinsic properties or 
commonalities in gesture shortcuts, both within one 
individual as well as across individuals. The study revealed 
two important findings. First, we found a major portion of 
gesture shortcuts that users defined were character-based 
and mnemonically associated with the target, e.g., “NY” for 
The New York Times website. Second, there was a 
significant overlap in the gestures defined by different users 
for the same target, e.g., many users drew a plus symbol for 
Google+. These findings motivated us to develop Gesture 
Marks, a novel system that allows users to access 
applications and websites on their phone using natural 
unconstrained gesture shortcuts without necessarily having 
to define them beforehand.  

Our major contribution is a novel approach for 
bootstrapping personal gesture shortcuts, using a 
combination of crowdsourcing and handwriting recognition. 
It alleviates the effort of defining gesture shortcuts and 
makes gesture-based interaction more scalable. The novelty 
of the system is two-fold. First, Gesture Marks leverages 
the “wisdom of the crowd”. It infers what a user intends to 
access with a gesture by looking at how the gesture is 
commonly used by others. Second, it combines this 
template-based gesture recognizer with a robust cursive 
handwriting recognizer that can infer the user’s target even 
when there is no matching target in the gesture library. The 
handwriting recognizer effectively captures the long tail of 
gesture shortcuts, ones that are rare or specific to an 
individual user. Since each gesture usage is recorded by 
Gesture Marks, the results of these gesture-based 
interactions all contribute to the user’s personal library of 
gesture shortcuts. A validation study that we conducted 
showed that crowd-defined gestures and handwriting 
recognition effectively bootstrapped the gesture shortcut 
library of each individual user.  

This paper focuses on applications and websites because 
these are two classes of targets that are likely to be shared 
between users, thus allowing us to better study the 
commonality in gesture shortcuts across the user 
population. However, we believe that many of the ideas 
presented here can be extended to other types of targets 
such as music and phone settings. 

In the remainder of the paper, we first describe an 
exploratory study where we analyze the types of gestures 

people draw, and develop a set of guidelines based on our 
findings. We next present Gesture Marks, a novel gesture 
interface we designed and implemented based on those 
guidelines. We then present a set of evaluations on our 
system, and finally conclude with discussions of future and 
related work. 

EXPLORING USER-DEFINED GESTURE SHORTCUTS 
We conducted an exploratory study to investigate the types 
of gestures people tend to draw. In particular, we analyzed 
whether there were any visual or semantic patterns in 
gesture shortcuts defined by the same individual, and 
whether these patterns hold across individuals. We then 
used the findings to inform the design of a user-defined 
gesture shortcut system. 

Data Collection Procedures 
We collected gesture shortcut samples from 26 Android 
phone users for their personalized applications and 
websites. We asked these users to install a data collection 
tool that we developed on their Android phone. The tool 
automatically extracted a set of targets for which 
participants were asked to define gesture shortcuts. These 
targets consisted of 20 applications randomly selected from 
their device and the top 20 websites sampled from their 
browsing history based on visit count. The selection of 
these targets approximates the actual usage model of 
applications and websites for each user. 

Participants were prompted with one target at a time, and 
they could not see any previous gestures they had already 
drawn. To make sure our gestures were representative of 
actual usage, participants were allowed to skip targets they 
did not recognize and would have no intention of using in 
real life. Each participant was prompted with the list of 
targets twice. For each round, we randomized the order of 
the occurrence of these targets. The procedure allowed a 
total of two gesture samples per user per target. Since the 
targets were personalized, different participant could have 
different sets of targets. 

Results & Analyses 
We collected a total of 1,970 gestures spanning 407 
different targets from 26 users. Our analysis of this data 
revealed three important findings. 

Frequency of Handwriting versus Drawing Gestures 
First we analyzed what types of gestures people tended to 
draw for different types of targets. We labeled all of the 
gestures we collected as either handwriting or arbitrary 
drawings and calculated the frequency for each (see Figure 
2).  As we can see, a majority (72%) of the gestures people 
drew consisted of alphanumeric characters, i.e., letters and 
numbers. The rest (28%) were arbitrary drawings, e.g., 
boxes, stars, and birds. There was a larger percentage of 
non-handwriting gestures for applications (40%) than for 
websites (14%). One possible reason for this is that 
application icons, which users are constantly exposed to, 
inspired them to use drawing-based gestures. 



 

Consistency of Gesture Shortcuts Within Each User 
Next we analyzed the consistency of gesture shortcuts 
created by the same user. The consistency here measures 
how well the visual similarity between two gestures 
predicts the likelihood that they both map to the same 
target. 

To this end, we first split the gestures from each user into 
two halves, with each half containing one of the two 
examples for each target (assigned randomly). We then 
trained a template-based gesture recognizer on the first half 
and measured how well it can predict the intended targets 
for the gestures in the second half. The recognizer employs 
an appearance-based distance metric [17], so the result is an 
estimate for how often visually similar gestures map to the 
same target. We then repeated the experiment in reverse: 
training on the second half and testing on the first. 

The accuracy results for this within-user cross validation 
analysis are shown in Figure 3 (left). We found that for a 
large majority of the shortcuts (68%), it is possible to 
predict the destination of a gesture by looking only at the 
most similar gesture (the nearest neighbor) drawn by the 
same user. One important reason that the accuracy was 
lower than that reported on previous gesture datasets 
[15,19,20] is the mapping ambiguity from gestures to 
targets. We frequently observed instances where the same 
user drew similar gestures for different targets (e.g., an “M” 
gesture for both Maps and Music), in which case it is 
impossible to determine the exact meaning of the gesture. 
In contrast, no such ambiguity needed to be addressed in 
previous experiments. 

If we look at the top 12 nearest matches, the maximum 
number of targets that can be shown on the lower portion of 
our prototype interface (see Figure 1), the accuracy 
increases to 92%. With more gesture repetitions per target 
we may expect to see even higher accuracy. 

Consistency of Gesture Shortcuts Across Users 
Finally we analyzed whether there was any similarity in 
gesture shortcuts created by different users. We performed 
a similar analysis as in the within-user case before, except 
here there was no overlap between the users in the training 
and test sets. We are now measuring how well we can 
predict the target for a given gesture using only data from 
the other users.  

We performed a total of 26 cross validation tests, one for 
each user, and the final accuracy results are shown in 
Figure 3 (right). The recognizer was able to predict the 
correct destination 21% of the time if we only look at the 
top match, and 42% of the time if we look at the top 12 
matches. Notice that both the accuracy of the recognizer 
and the consistency of gesture shortcuts across users 
contributed to this result. 

As expected, the accuracy was lower than in the within-user 
case, due in part to the following reasons. First, a large 
majority of the targets had gestures from only one user (see 
Figure 4). In such cases, it was impossible to predict what 
the user intended since there was no training data matching 
the target from any of the other users. Second, there was 
more mapping ambiguity because with multiple users, it 
was even more likely that some of them would assign 
different meanings to the same gesture.  

However, the result is still encouraging given that our data 
was from only 26 users. As the system accumulates more 
and more gestures from the user population, this sparsity 
issue should become less of a problem. For example, if we 
repeat the same test but limit our dataset to only those 
shortcuts with gestures from 4 or more users (a total of 45 
targets with 1146 gestures), the accuracy increases to 36% 
for the top 1 match and 77% for the top 12 matches. The 
mapping ambiguity issue can be addressed by taking into 
account of the popularity of gestures, e.g., the number of 
users who used the gesture, and the personal preferences 
and usage history of each user. 

Figure 4: The number of users who defined gestures for 
each target obeys a power law 
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Discussions for Creating a Gesture Shortcut System 
Based on these findings, we developed the following 
guidelines for creating a gesture shortcut system. 

1. It should be able to predict the target for a gesture based 
on the targets of similar gestures from the same user.  
The results in Figure 3 (left) show that visual similarity to 
the user’s own gestures is a remarkably informative metric 
for predicting the target of a new gesture. This confirms 
previous work [20] that uses a template-based approach to 
recognize user-defined gesture shortcuts. A template-based 
gesture recognizer is also essential for non-handwriting 
input, where the number of gesture classes is unbounded 
and the number of training examples per class can be very 
low.  

However, it will be impractical to expect users to define a 
gesture for every target they want to visit beforehand. In 
fact, the overhead for specifying user-defined gesture 
shortcuts has been the main challenge for its adoption in the 
real world. Thus, based on the findings from the study, we 
add two important bootstrapping and refinement 
mechanisms. 

2. It should be able to take advantage of gestures drawn by 
other users. 
The results in Figure 3 (right) show that there was 
significant predictive power from gestures drawn by other 
users, even in this study where the number of users is small 
and gestures per target were extremely sparse. In a real 
world setting where the number of users is continually 
expanding, we would expect the predictiveness of cross-
user gestures to be even higher. This implies that even 
before a user defines any gesture shortcuts, there is the 
possibility to interpret the user gesture by looking at what 
other users drew. 

3. It should be able to recognize handwriting gestures even 
when there are no matching templates. 
Since handwriting gestures are used so frequently (see 
Figure 2), incorporating handwriting recognition into the 
system allows it to effectively recognize these gestures even 
when they have never been defined before by any user. This 
is especially useful for rare targets or targets that are 
specific to a given user.  

GESTURE MARKS 
Based on the findings and guidelines derived from the 
exploratory study, we designed and implemented Gesture 
Marks, a system that allows the user to use unconstrained 
gesture shortcuts to access applications and websites. Here 
we describe how users interact with the system. 

Querying Based on Multiple Sources 
Gesture Marks is implemented as an alternative Android 
home screen. When the user draws a gesture query on the 
screen, Gesture Marks interprets it based on three sources: 
1) a library of learned gestures from the user; 2) gestures 
from other users; and 3) a built-in handwriting recognizer. 
The system then displays the best matches in a list view 
below (see Figure 1). The user chooses the correct target 

from the list, which launches the website or application. 
Meanwhile, the system learns the new association between 
the user drawn gesture and the target for future queries.  

Defining Gestures As a By-Product of Finding Targets 
The intended target might not always be in the list of 
matches when the user draws a gesture query (see Figure 5 
left). If this happens the user can manually define the 
gesture by clicking on the Manual Selection button. This 
opens a list of all apps and visited websites, as well as a 
search box for text queries (see Figure 5 right). The gesture 
just drawn by the user is shown in a miniaturized version on 
the upper left. When the user chooses the intended target, 
Gesture Marks asks her whether she would like the system 
to learn the definition for future queries before launching it.  

Exploring Gestures from Others 
The user can also perform a long finger press on any target 
to bring up a screen that shows all of the gestures assigned 
to that target (see Figure 6). Here she can explicitly define a 
new gesture shortcut by drawing it in the gesture panel on 
the bottom. She can also see what popular gestures other 
people have used for the target. Each crowd gesture is 
shown with its popularity metrics including the number of 
gesture examples and the number of unique users. If the 
user dislikes any of the gestures, she can remove it by 

Figure 5: Defining a new gesture shortcut 
drawn from the home screen. 

Figure 6: Defining a new gesture shortcut from 
the gesture explorer view 
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clicking on the X next to it, which informs the system not to 
use this gesture for the target in the future.  

THE SYSTEM ARCHITECTURE 
This section presents the Gesture Marks architecture, shown 
in Figure 7. When the user draws a gesture, it is processed 
by both an extensible template-based gesture recognizer 
and a built-in handwriting recognizer. The resulting 
matches are presented to the user, who can either select one 
if the correct target is in the list or define the target 
manually. In either case, the new gesture is learned by the 
system. In addition, each gesture is recorded in the crowd-
based gesture library, which clusters, analyzes, and shares 
the gesture shortcuts among the user population. 

Inferring Shortcuts with Gesture Matching 
Gesture Marks employs a template-based recognizer that 
infers the target of a user gesture by matching it against a 
library of collected gesture shortcuts. Every time the user 
draws a gesture and selects a match, the system stores the 
new gesture shortcut in the user’s library that is both 
maintained on a server in the cloud and cached locally on 
the device. The recognition performance thus improves 
over time as the system accumulates more examples from 
the user for each target. Furthermore, since the gestures are 
cached, matches can be shown instantly for favorite 
shortcuts even if the connection to the Gesture Marks server 
is slow or inaccessible.  

In addition, the system leverages the “wisdom of the 
crowd” by harvesting gesture shortcuts from the entire user 
population. It then recommends relevant gestures to 
individual users based on their installed applications and 
browsing history.  

Gesture Matching 
An important component of the recognizer is how it 
matches an input gesture against a set of learned gesture 

shortcuts. We adapted an appearance-based matching 
algorithm that had been applied successfully to the domain 
of sketch recognition on pen-based tablets [17] and tailored 
it to our domain - mobile touchscreen devices. Since this 
recognizer focuses on vision-based features instead of 
temporal stroke patterns, it naturally overcomes many 
common gesture recognition challenges such as stroke 
order differences and over-tracing (drawing over a 
previously drawn region). The performance of the 
recognizer is competitive with prior approaches [14,19,20] 
on recognizing single-stroke gestures. Furthermore, our 
recognizer also naturally handles multi-stroke gestures at no 
additional cost. A more detailed discussion on the 
implementation and evaluation of this recognition approach 
is available in [17]. 

Gesture Clustering 
In order to facilitate fast retrieval and shortcut analysis, the 
server first clusters together similar gestures for each target. 
This is done using an agglomerative clustering algorithm 
[7] that produces a hierarchy of progressively larger 
clusters. Each cluster can then be described by 1) its center: 
the gesture that has the minimum average distance to each 
of the other members of the cluster; and 2) its diameter: the 
maximum distance between any two gestures in the cluster. 
We stop growing clusters when the diameter reaches a 
predetermined threshold, chosen empirically based on 
analysis of the similarity scores from the previous 
exploratory study. 

Online Clustering 
As new gestures are added to the server, they need to be 
incorporated into the cluster hierarchy to be used 
effectively.  To accomplish this task Gesture Marks 
employs a scalable distributed agglomerative clustering 
algorithm that first splits the data into partitions, and then 

Figure 7: The Gesture Marks System Architecture. 
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clusters each partition independently. It then merges the 
clusters generated across multiple partitions by keeping 
only their respective cluster centers. 

Gesture Cluster Analyses 
The server records a set of statistics for each gesture cluster 
such as the number of gestures in the cluster and the 
number of unique users who provided gestures for the 
cluster. These statistics allow the system to more effectively 
evaluate the popularity of each cluster. Currently our simple 
model is to rank the clusters based on the number of users, 
and to use the number of gestures only when there is a tie. 
As the system collects more usage statistics, one area for 
future work is exploring more sophisticated models for 
predicting the popularity of a gesture cluster.  

Combining Crowd and User’s Own Gestures 
Gesture Marks uses the same representation and matching 
algorithm for both gestures drawn by the user as well as 
gestures drawn by the crowd. However, since the user’s 
own gestures are more likely to be relevant than those from 
others, we add a bias to the system so that it slightly favors 
these user gestures. This bias was determined empirically 
based on analysis of the similarity scores from the 
exploratory study. 

Inferring Shortcuts with Handwriting Recognition 
As we discussed earlier, a significant portion of gesture 
shortcuts were based on characters. We employ a 
handwriting recognizer in Gesture Marks so that these types 
of gestures can be recognized even if they have never been 
seen before by the system. While handwriting recognition is 
not our main contribution, it is an important component in 
our gesture bootstrapping approach and we discuss it in 
detail here for readers to better understand how our system 
can be implemented.  

Touch-screen handwriting gestures have many special 
properties, such as finger-based input, limited drawing area, 
limited computational resources, and a language model 
consisting of quick mnemonic shortcuts instead of complete 
dictionary words. To address these challenges, we 
developed a specialized handwriting recognizer for Gesture 
Marks that has the following important properties: 

• It is tailored to finger-based input and trained on letters 
and words collected on touch screen smartphones. 

• It uses a language model that is specially designed for 
mobile shortcut navigation. 

• It supports natural multi-stroke letters as well as mixed 
cursive handwriting. 

• It does not require character level labels for training. 
• It is fast enough to run in real time on a smartphone.  

In order to support natural cursive handwriting, our 
recognizer needs to accomplish two tasks: character 
segmentation (i.e., determining where one character ends 
and the next begins) and recognition (i.e., inferring the 
identity of each segmented character). We will discuss both 
of these in turn. 

Character Segmentation 
In the case of cursive handwriting a single character may be 
drawn with multiple strokes and a single stroke may contain 
multiple characters (we define each stroke as the sequence 
of points drawn by the user between a touch-down and 
touch-up event). Our approach to segmentation starts by 
splitting all of the strokes in the gesture at points that 
correspond to local minima and maxima in the y-axis. The 
result of this splitting process is a sequence of stroke 
fragments as shown in Figure 8.  

The next task for the recognizer is to determine how the 
individual stroke fragments combine to form the characters 
in the word. We accomplish this task by applying our 
character recognizer (described in the next section) on all 
possible groups of up to k temporally contiguous stroke 
fragments (in our implementation we empirically set k = 5). 
Next we determine which of these groups most likely 
correspond to intended characters. Let G be a sequence of n 
groups {!!,!!,… ,!!} and L be a sequence of character 
labels {!!, !!,… , !!} representing one possible labeling for 
the groups in G. Then the word score for the sequence is 
defined as:  

!(!, !)   = log(!(!! ,
!

!!!

!!))  !!(!!) 

where !(!! , !!) is the character score for assigning group !! 
the label !! and !!(!!) is the number of fragments in group 
!! (this is needed to prevent the system from biasing 
interpretations that contain fewer groups). We use beam 
search to find the n-best sequences that maximize W. 

Recognition 
We build a letter recognition model that employs the same 
visual feature images that we use for similarity based 
gesture matching. We also incorporate a set of additional 
features that capture the temporal pattern of the candidate 
group. These consist of the position, direction, and 
curvature of the gesture at n equally spaced touch points 

Figure 8: (top) An illustration of the segmentation and 
recognition approach in our handwriting recognizer. 

(bottom) Examples of handwriting gestures our system 
recognized correctly as well as their inferred character 

segmentations. 
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sampled along the path of the gesture. Finally, we add a set 
of geometric features such as the number of fragments, the 
number of strokes, the aspect ratio, and relative size of the 
candidate group compared to the complete gesture. 

We use a support vector machine (SVM) [4] with a linear 
kernel to classify each group, based on the set of features 
listed above. We chose the linear kernel because it allows 
for efficient constant time classification, and only requires 
that we store a weight vector for each class rather than the 
full set of support vectors.  

The training data for the SVM consists of both positive 
examples (correctly segmented characters) as well as 
negative examples (mis-segmented fragments). Training is 
done via an efficient linear SVM algorithm based on 
gradient descent in the dual space [9]. In order to produce 
probability estimates we fit a sigmoid function over the 
SVM decision values. 

Training using Forced Alignment 
One important feature of our handwriting recognition 
approach is that it does not require character level labels for 
the words in the training set. This means that the developer 
does not need to manually label the beginnings and endings 
of all the characters in the word (e.g., that fragments 1-2 in 
Figure 8 form an “s”, etc.). She only needs to provide the 
whole word label (e.g., “skype”).  

To extract and learn character models from these partially 
labeled words we employ an EM based approach [6] that is 
similar to the forced alignment process in natural language 
transcription. During training the recognizer first builds a 
letter model using only the isolated character examples in 
the training set. Next, it applies this character model to the 
whole words in the training set, inferring the correct 
segmentation as the one that maximizes the word sequence 
score W. This process relies on the fact that since we know 
the whole word label, we can force the system to only 
consider those character sequences where the labeling L 
matches the ground truth. 

Once we have the approximate character boundaries, we 
can re-train our letter model with these inferred cursive 
characters in addition to the isolated characters from before. 
We can then use this updated character model to refine the 
approximate character boundaries even further, repeating 
the process across multiple iterations until performance on a 
validation set ceases to improve. 

The Language Model 
To improve accuracy and speed we limit the space of 
possible word interpretations to the set of partial words and 
initials found in the targets on the user’s device. For 
example, these would include “a”, “an”, “b”, “bi”, “ab”, 
etc., for the target Angry Birds. The result of the 
handwriting recognition process is a ranked list of word 
predictions, each of which is mapped to one or more targets 
(e.g., “ma” to both Maps and Market).  

Combining Predictions 
Our system generates predictions using a combination of 
two distinct methods: template-based gesture matching and 
handwriting recognition. We need to merge the two sets of 
predictions to build the final list of targets presented to the 
user. Unfortunately, this is not a trivial task because we 
cannot compare the results of the two recognizers directly. 
The former is a similarity distance and the latter is a word 
sequence score.  

In this initial implementation of our system, we employed a 
simple but robust approach to combining these two sets of 
predictions. This method relies only on the rank of a given 
target in either prediction list. We assign a rank score to 
each target as !"   = 1/!!   +   1/!ℎ, where !! is the rank of 
the target given by the gesture similarity recognizer and !ℎ 
is the rank given by the handwriting recognizer. This 
ensures that the system presents the user with high-ranking 
matches from both gesture similarity matching and 
handwriting recognition, and favors most those that are 
ranked highly by both.  

EVALUATIONS 
We conducted a user study to understand how users interact 
with our system. The goals of the study were to learn: 

• How often the system is able to correctly predict the 
destination for a gesture. 

• The sources contributing to the correct prediction: 
crowd gestures, user’s own gestures, or handwriting 
recognition. 

• How the prediction accuracy and the role of each 
source evolve as users use the system.  

Experimental Procedures 
For this study we asked 22 participants (4 female) to use 
our system to launch a series of targets (websites and 
applications) using gestures. Their ages ranged from 19 to 
35 (mean = 29) and their occupations included engineers, 
students, researchers, and business analysts. First, users 
were asked to pick out a set of 40 targets that they use most 
frequently from a list of 80 popular applications and 
websites. The list contained the most common targets from 
the previous exploratory study.  

Next, the system prompted the users with each of the 
selected targets in random order, asking them to draw a 
gesture to launch the target in question. The system then 
tried to predict the intended target of the gesture using its 
combined template and handwriting recognizer, displaying 
a set of 8 best matches to the user. If the correct target was 
in this list, the participant was asked to click on it, and the 
system moved on to the next target.  

The goal of the evaluation was not to test how well users 
could guess the most popular gesture for a given target, so 
we asked users to draw whatever gesture made sense to 
them. If the system did not predict the correct target among 
its list of top 8 matches, the participant was told to select 
the target manually from the full list of applications and 



 

websites. The series of targets was repeated 4 times, to 
simulate users revisiting the same target.  

To guarantee that the conditions across users remained 
constant, we fixed the crowd-based gesture library to 
contain only the gestures collected before the start of the 
study. We also fixed the list of applications and websites 
for this study to match the 80 most popular targets found in 
the first exploratory study (a total of 50 apps and 30 
websites). The resulting crowd-based library contained a 
total of 414 gesture clusters covering the set of 80 targets in 
the study. Of course, in the real world users will have a 
much wider range of targets they may wish to visit, 
including less popular links for which there are fewer 
crowd-based gestures. However, in a real world deployment 
the crowd-based gesture library will also be much larger 
than the one used during the study, and will be continually 
expanding over time. Note that while users were prompted 
to draw gestures for their 40 selected targets, the system 
predictions spanned the whole 80 targets. 

Experimental Results 
In this section we present the results of our evaluation, 
looking at prediction accuracy, the contribution of each 
source to the correct prediction, and user impressions while 
using our interface.  

Prediction Accuracy 
We first wanted to analyze how often our system was able 
to predict the correct target for the user’s gesture in the list 
of top 8 matches. In Figure 9, the “Manually Defined” line 
shows the number of gestures that the subject had to define 
manually because the system did not display it in the list, 
over each of the 4 repetitions. It shows that the users needed 
to manually define only 23% percent of the targets in the 
initial round. This means that the system was able to predict 
the correct target based on the user’s gesture 77% of the 
time, even before it had seen any of the user’s own gestures 
for the targets. By the final repetition, users manually 
defined less than 1% of their gestures, while the system 
correctly predicted the target over 99% of the time.  

Contribution of Each Source to the Correct Prediction 
For the cases where the system did predict the correct target 
to a gesture query, we also recorded the rank given by both 
the template-based recognizer and the handwriting 
recognizer. Furthermore, in the template-based case we 
recorded whether the correct match came from the user’s 
own gesture library or the crowd’s. Figure 9 plots how 
frequently each of the 3 sources (user gesture, crowd 
gesture, or handwriting) ranked the correct target the lowest 
(i.e., was the most informative). This was done for each of 
the 4 repetitions. In the event of a tie we applied partial 
counts, e.g., 1/2 to the handwriting recognizer and 1/2 to the 
user gestures. 

At the beginning (during the initial round), because users 
had not drawn any gestures, the contribution of the user’s 
own gestures (the red plot in Figure 9) was zero. 

Handwriting recognition and crowd gestures were the major 
contributors. Handwriting recognition gave the correct 
target with the lowest rank 44% of the time, while crowd 
gesture matching did so 33% of the time.  

In the second repetition, the most useful source was already 
the user’s own gestures, as all the gestures drawn in the 
initial round were recorded as templates. This source 
ranked the correct target the lowest 48% of the time. By the 
last repetition, this frequency increased to 67%. This 
suggests that users rapidly converged to a small set of 
possible gestures for a majority of the targets, and that our 
system was capable of quickly and effectively learning 
these gesture patterns.  
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Figure 9: Frequency that each source was the most 
informative for the correct prediction. 

 Figure 10: The average rank of the correct target using 
only gesture similarity, only handwriting, and the 

average final combined rank (lower means the correct 
target is closer to the top choice and more accurate). 
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 Figure 11: The prediction accuracy when considering 
the top 1, 4, and 8 matches. 
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Gesture Rank 
In addition to looking at which source was the most 
informative, we also examined the average rank given to 
the correct target using only the template-based recognizer, 
only the handwriting recognizer, and using the combination 
of the two. Figure 10 plots these average ranks across the 4 
rounds of the study. We can see that especially in the earlier 
rounds, the combined rank is noticeably lower than the rank 
from either gesture similarity or handwriting recognition 
alone. This demonstrates that there is significant benefit in 
combining the two sources. Furthermore, we found that the 
gesture rank and combined rank both converged to about 
1.7 by the last repetition, meaning that the system was no 
longer relying on the handwriting recognizer at this stage 
and that the correct match was frequently ranked first or 
second in the list.  

Interestingly, we also discovered that the average rank 
provided by the handwriting recognizer actually got slightly 
worse with each repetition. We suspect that one reason for 
this is due to the fact that users became faster and messier 
as they revisited the same targets, and became more 
confident as they noticed that the system could accurately 
recognize their particular handwriting or drawing style. As 
we can see from Figure 9, this accuracy was mostly due to 
the visual similarity to the user’s own previously provided 
gesture examples.  

Prediction Ranking 
Finally, we also analyzed how often the system predicted 
the correct target in the top 1, 4, and 8 matches. This helps 
us understand how the system would perform in a different 
interface that provides a smaller list of predictions. The 
results in Figure 11 show that in the initial round our 
system was able to predict the correct target as the first 
choice 20% of the time and include it in the top-8 list 77% 
of the time. These numbers increase to 61% and 99% 
respectively by the last repetition. Note that one reason why 
the top-4 and top-8 accuracies are significantly higher than 
top-1 is likely due to mapping ambiguity, where a user 
draws the same gesture for multiple targets. By displaying 
multiple predictions, the system can retrieve all of the 
targets that map to a given gesture. 

User Feedback 
We asked all of the participants in the study to answer a 
survey afterwards about their experience using Gesture 
Marks. We asked users to rate whether they thought the 
system would be useful for them, whether it was accurate in 
predicting the intended target for a gesture, and whether it 
became more accurate with use. All of the ratings were on a 
5-point Likert scale with 1 for “strongly disagree” and 5 for 
“strongly agree”. A majority of users agreed that Gesture 
Marks would be useful (median=4) and was accurate 
(median=4), and strongly agreed that the accuracy 
improved with use (median=5).  

Users mentioned in their comments that they liked the 
speed and accuracy of the system, and it’s ability to handle 

arbitrary gestures: “I liked that it learned quickly about 
what I wanted it to display, even if I picked something 
wacky”, “liked -- got pretty accurate as time progressed. 
intuitive, simple to use.”, and “I really like the simplicity in 
this program that allows you to access applications and 
websites that on a regular task may take you some time to 
find amongst all your apps.” 

Several users also mentioned that they might have trouble 
remembering custom gesture for a large number of targets. 
One user came up with a solution to the recallibility 
problem by using the gestures to specify categories of 
targets: “i tend to use the gesture for a category of things, 
like m (as in mail) for gmail and other mail apps.” Another 
user liked that fact that he could filter the list of targets 
quickly using a single letter. 

One common criticism for Gesture Marks was that 
handwriting gestures did not work for some abbreviations 
such as “kyk” for Kayak or “m” for Gmail, since the 
language model employed by the handwriting recognizer 
only matched partial words or initials.  

RELATED WORK 
There is a long history of gesture and sketched based 
interfaces in the HCI community. Touch gestures have been 
used for searching mobile devices [14] and for creating 
custom shortcuts to invoke commands [2,8,12,13], 
bypassing the standard hierarchical menu structure with a 
quick and natural gesture.  

Search with alphabet-based gesture shortcuts leverages the 
mnemonic relationship between gestures and targets (e.g., 
[14]), alleviating the effort for both defining and recalling 
gestures. However, they are limited because they are 
constrained to only character-based gestures, do not 
adequately adapt to a particular user’s drawing style, and 
can be less efficient for accessing a large corpus such as the 
web. Other systems allow users to associate an alphabet 
gesture with a specific task (e.g., [12,21]), but the process 
of manually defining gesture mappings or learning larges 
sets of predefined ones can be tedious.  

In contrast, Gesture Marks addresses these problems with 
gesture shortcuts using the following features. 1) It allows 
arbitrary drawing gestures in addition to handwritten 
characters. 2) It supports mixed cursive handwriting that is 
based on a language model tailored for shortcuts. 3) It 
contains a crowd-based gesture library that records, 
analyzes, and shares popular gestures among the user 
population. 4) It adapts to the user over time by learning his 
or her particular drawing or handwriting style. 

Although substantial work [14,15,19,20] has been 
conducted on gesture recognition, little effort has been 
devoted to the situation when little or no data is available, 
or on how to continuously improve recognition over time. 
In our work we explored both of these challenges and 
contributed two bootstrapping approaches based on the 
“wisdom of the crowd” and handwriting recognition.  



 

Morris et al. [16] elicited a set of gestures for interactive 
surfaces and revealed that participants preferred gestures 
authored by larger groups of people. Similarly, our 
crowdsourcing component is built on the assumption that 
popular gestures tend to be preferred by users. In contrast to 
their work, Gesture Marks automatically learns and 
dynamically evolves these gestures as users interact with 
the system instead of relying on researchers to manually 
distill a favorable gesture set from the users. 

Handwriting recognition is a well-studied area of research 
that has been used in many mobile platforms such as the 
Palm Pilot, Apple Newton, and Microsoft Windows 
Mobile. Previous work on handwriting recognition has 
focused mainly on isolated characters [3,5] or complete 
lines of text consisting of dictionary words [10,18]. In 
contrast, Gesture Marks employs its own specialized 
handwriting recognizer that is tailored to the types of 
gestures people draw on touch screen devices. It also uses a 
dynamic language model that is customized for the set of 
targets available on each individual’s device.  

CONCLUSIONS AND FUTURE WORK 
This paper presented Gesture Marks, a novel approach to 
touch-gesture interaction that allows a user to access 
applications and websites using natural gestures without 
having to define them beforehand. Our initial study 
contributed new knowledge on user-defined gesture 
shortcuts. It investigated the types of gestures people tend 
to draw and analyzed the visual and semantic consistency 
of gesture shortcuts, both from the same user and across 
users. We presented two approaches for bootstrapping user-
defined gesture shortcuts, leveraging gestures drawn by the 
crowd and employing a specialized handwriting recognizer. 
An evaluation showed that our system was able to achieve a 
high level of accuracy even before a user had defined any 
of his or her own gestures, and was able to quickly learn a 
user’s drawing patterns over time. 

This paper focused on navigating applications and websites 
because these are two types of targets that are very likely to 
be shared across users. For more personal information like 
contacts, crowd-based gestures may become less useful. In 
that case the system will need to rely more on user-defined 
gestures and handwriting recognition. In the future we 
intend to support these and other types of targets such as 
phone settings and music tracks. We will also start to 
deploy Gesture Marks extensively to more participants for 
longitudinal studies, to find out how the system and user 
behaviors evolve over a longer period of time. 
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