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Abstract

Despite much research on patch-based descriptors, SIFT re-
mains the gold standard for finding correspondences across
images and recent descriptors focus primarily on improv-
ing speed rather than accuracy. In this paper we pro-
pose Descriptor-Nets (D-Nets), a computationally efficient
method that significantly improves the accuracy of image
matching by going beyond patch-based approaches. D-Nets
constructs a network in which nodes correspond to tradi-
tional sparsely or densely sampled keypoints, and where im-
age content is sampled from selected edges in this net. Not
only is our proposed representation invariant to cropping,
translation, scale, reflection and rotation, but it is also sig-
nificantly more robust to severe perspective and non-linear
distortions. We present several variants of our algorithm,
including one that tunes itself to the image complexity and
an efficient parallelized variant that employs a fixed grid.
Comprehensive direct comparisons against SIFT and ORB
on standard datasets demonstrate that D-Nets dominates
existing approaches in terms of precision and recall while
retaining computational efficiency.

1. Introduction

Image matching is a fundamental building block for a va-
riety of computer vision tasks, including multi-view 3D re-
construction, tracking, object recognition and content-based
image retrieval. In the last decade, keypoint-based meth-
ods employing patch-based descriptors, exemplified by the
SIFT algorithm [9], have emerged as the standard approach
to the problem. Extensive quantitative experiments using a
variety of detectors [11] and descriptors [10] suggest that
consistently outperforming SIFT in terms of precision and
recall is extremely difficult. Consequently, the focus of re-
search on descriptors has largely shifted to matching SIFT’s
accuracy under much stricter computational constraints.
Examples of this trend include SURF [2], FERNS [14], and

Figure 1. Illustrative example: D-Nets are graphs formed by pair-
wise connections over nodes. In practice, a D-Net may contain
thousands of nodes, of which only a few are shown. The two
directed connections between each pair of nodes are shown as a
single line. Correct connection matches are marked with colored
terminal nodes. The quantized “d-tokens” describing the image
content along each strip are denoted with capital letters. One di-
rected connection is highlighted for further discussion in the text.

most recently, BRIEF [3], ORB [15] and BRISK [8]. No-
tably, ORB, which combines a FAST [17] corner detector
on an image pyramid with a rotation-invariant version of
BRIEF achieves a 100 x speed-up over SIFT while approx-
imating the accuracy of the original algorithm.

In our work, we explore alternatives to patch-based de-
scriptors for image matching and aim to show significant
improvements in terms of precision and recall in direct com-
parisons against SIFT-like algorithms. Rather than repre-
senting an image using descriptors computed over a set of
disconnected patches, we advocate an approach that ex-
tracts low-level information over the edges in a network of
connected nodes (Figure 1). This enables our features not
only to capture local properties such as image gradients and
texture information, but also to place these measurements in
a relative spatial context defined by pairwise node connec-
tivity. Our approach, termed Descriptor-Nets (D-Nets) dif-
fers from existing work in two fundamental respects. First,
we abandon patches entirely in favor of “strips” (paths con-
necting nodes). Second, we express spatial information in
a topological rather than geometric manner, which enables
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our approach to be highly robust to nonlinear image distor-
tions. We summarize our paper’s contributions as follows:
¢ A novel image representation that exhibits significant
improvements over patch-based descriptors, such as
SIFT and ORB, in both precision and recall, on stan-
dard datasets.

e A method for image matching that dynamically adapts
to the difficulty of each case, such that simpler match-
ing tasks can be solved with less computational effort
than difficult cases.

e A keypoint-free (i.e. dense feature) representation that,
unlike existing approaches [18], maintains invariance
to reflection, scale and rotation. It is also notewor-
thy in that our dense network can be precomputed and
is particularly amenable to fast and massively-parallel
implementation.

2. Descriptor-Nets (D-Nets)

We present three variants of the Descriptor-Nets ap-
proach: In the first, the net is a fully connected graph over
nodes generated using an interest-point operator (cliqgue D-
Nets); in the second, we show that full connectivity is not
always required, leading to an iterative version (iterative D-
Nets) that dynamically constructs links only as necessary;
and in the third, we show that key-points are not required,
so that nodes can simply be densely sampled over a regu-
lar grid that is independent of image content (densely sam-
pled D-Nets). Due to space considerations, we detail only
the first variant in this section and summarize the other two
variants along with their respective experiments.

2.1. Fully Connected (Clique) Descriptor-Nets

We begin by introducing the most straightforward D-
Nets variant, where nodes corresond to interest points and
links connect each pair of nodes. Figure 1 presents a sim-
ple example (where only an illustrative subset of nodes and
links are shown).

Consider evaluating a match between two images, I and
I, whose D-Nets consist of the directed graphs G = (V, £)
and G' = (V', £’), respectively. Let V = {a;,...,a,} and
V' = {by,..., b, } denote nodes in the respective images,
and &, &’ the edges of those graphs. To avoid confusion with
image edges, we refer to these edges as “connections”. In
the simplest D-Nets variant, the nodes are fully connected,
with € = {(a;,a;)|i # j} and & = {(b;, b;)|i # j}.

We refer to the image region (consisting of raw pixels)
under such a connection as a “strip”. The simplest formula-
tion for a strip is the directed straight line segment between
two interest points in the image. In the D-Nets approach,
image matching is built up by matching connections (rather
than nodes) across images. Two connections are defined to
be a correct match, if and only if their start and end nodes
correspond to the same physical points in the two images.

In Figure 1, the connections (az, a4) and (by, bs) are cor-
rect matches because nodes as<>b; and ay<>bs match.

A traditional patch-based approach would independently
infer matches between corresponding keypoints and option-
ally perform geometric verification on sets of keypoints. In
D-Nets, we determine matches using image content in their
corresponding strips and directly aggregate this information
at the image level using hashing and voting, as described
later.

2.2. Image pyramids

We employ image pyramids to construct a multi-scale
representation of the image content, which not only reduces
computational complexity for longer strips but enables them
to have a broader swath. A pyramid consists of L levels,
where the first level is simply the original image smoothed
with a Gaussian kernel with o=1.0. Subsequent levels are
scaled versions of the first level, with a scaling factor of
f= (1/L)ﬁ. Thus, the final level of the pyramid is 1/L
the size of the original image.'

We also define a level index for each strip according to
its length [ in the original image as: i(l) = (log;(8s/1)),
where (.) discretizes its argument into the valid range of in-
dicesi(l) € {0, ..., L—1} and s is a parameter described in
the next subsection. Thus, long strips map to coarse levels
of the pyramid and are thus also correspondingly broader
than their short counterparts.

2.3. Describing image content in a strip

We define a discrete descriptor (termed a “d-token”) for
each e € £ based on its strip in the image. The pixel inten-
sities at the strip’s level index are used to generate a d-token
deD.

We have experimented with a variety of descriptors, in-
cluding binary comparisons among pixels in the strip (sim-
ilar to those in Ferns and ORB), quantization using binary
frequency comparisons on a 1D Fourier transform of strip
pixels and wavelet-based approaches. Given space limita-
tions, we detail only our best descriptor, which (like SIFT)
is manually engineered. It is important to note that the D-
Nets approach does not require this particular descriptor and
that employing more straightforward descriptors is almost
as good.

Consider the (directed) connection from node a; — a,
whose length in the original image is given by | = ||a; —
a;||2. As shown above, we determine the appropriate pyra-
mid level (l), whose associated scale factor is given by
i@, At that pyramid level, the strip corresponding to
this connection has length I = [ f*() and goes between the
scaled points a; and a;. The d-token is constructed as fol-
lows:

! Our implementation uses L=8 and interpolates during downsizing.



1. Sample pixel intensities from I equally spaced points
along the 10% to 80% portion of the strip at this pyra-
mid level, i.e., from &, +0.1(a; —a;) toa; +0.8(a; —
a;). Briefly, the reasoning behind this unusual oper-
ation is that we seek to make the representation less
sensitive to the positions of start- and end-nodes. Our
experiments showed that omitting the ends of the strip
is beneficial, particularly when keypoint localization is
noisy, and that asymmetry is also desirable.

2. Group this sequence of values into a smaller set of s
uniform chunks, averaging the pixel intensities in each
chunk to reduce noise and generate an s-dimensional
vector.

3. Normalize this vector using scaling and translation s.t.
min; s; = 0 and max; s; = 1. In the improbable event
that V; ;(s; = s;), we set V;s;, = 0.5.

4. Uniformly discretize each value in the normalized s
vector using b bits.

5. Concatenate the s sections, each with b bits to obtain a
discrete d-token.

Three subtle points in the steps above merit further discus-
sion: 1) unlike patch-based methods, the d-tokens descrip-
tor samples intensities from image regions both near and
far from the interest point and encodes this information in a
form that is independent of scale and robust to lighting; 2)
the asymmetry beween the two d-tokens for the same pair
of nodes is intentional and enables each to capture different
parts of the image (with some overlap); 3) d-tokens are very
fast to compare and amenable to efficient hashing. Summa-
rizing, each directed connection is expressed by a d-token,
which (in the presented case) is a simply a s - b bit string
that can be represented as an integer.

Although the proposed d-token descriptor is not local-
ized to a small patch in the scene, it possesses all of the
desirable invariance properties. Translation invariance is
achieved because the strip is anchored to interest points
rather than absolute coordinates. Rotational invariance is
automatically ensured because the descriptor extracts infor-
mation over a 1D strip rather than a 2D patch. This is a
subtle but important advantage over patch-based schemes,
where patches require explicit derotation so as to align dom-
inant orientations to a canonical direction (and where in-
correct derotations are harmful). Additionally, and in con-
trast to patch-based descriptors, d-tokens are automatically
invariant to reflections since they operate on 1-D strips of
pixels. Scale and affine invariance is ensured because every
connection is represented using s segments and robustness
to illumination through the use of a normalized b bit quan-
tization for the average intensity of a segment. While the
method is not intrinsically invariant to perspective, the fact
that we do not explicitly enforce geometric consistency be-
tween connections enables very high robustness to globally
nonlinear transformations. Indeed, as seen in our experi-

mental results, D-Nets is particularly robust to image pairs
with significant perspective distortions.

To better explain the preceding concepts, we continue
discussing the scaled-down illustrative example shown in
Figure 1. To keep numbers low, let us employ a small d-
token generation scheme with s=3 sections per connection,
each quantized to just a single b=1 bit. This gives us a vo-
cabulary of 25°=8 possible d-tokens, which we denote as
D={AB,C,...,H}.

Each connection in Figure 1 is shown as annotated with
its d-token from this set; since the D-Nets connections are
directed and the descriptor is asymmetric, we show two d-
tokens (one for each directed connection). The next section
details how D-Nets uses these d-tokens for efficient image
matching.

2.4. Efficient Matching using Hashing and Voting

Continuing the example in Figure 1, we now show how
the d-token descriptors (described above) enable efficient
image matching. Given the nodes V = {aj,...,a,} in
image I and the nodes V' = {by,...,b,/} in image I’,
we seek to identify node correspondences. This is done by
matching the directed connections between nodes in an im-
age, each described by a discrete d-token, using a voting
procedure in conjunction with a specialized hash table.

Our hash table has |D| bins — i.e., one for each dis-
tinct d-token d € D, which serves as the discrete index for
the table. Conceptually, the table hashes a given D-Nets
connection (based on its image content) to its appropriate
bin. However, unlike a standard hash table, each bin d in
our table contains two separate lists, one for each image to
be matched. These lists simply enumerate the connections
from each image that hash to the given bin (i.e., those con-
nections with d-token=d). We limit the lengths of each lists
to nz,=20, discarding any connections that hash to a full list.
This design has two benefits: 1) it bounds the memory us-
age of our table, even when an image contains millions of
connections; 2) analogous to the use of stop-word lists in
information retrieval, it limits the impact of frequently re-
peating but uninformative content.

Continuing the example, Figure 2 shows our hash table
(with 8 bins) after all connections from Figure | have been
inserted.

,,,,, connectionsin| _  d-token ~ connectionsinl’
/((aa,az) (al,a4)/: A {(b3.b)H(bsbg)Hb40)HbSsby));
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Figure 2. Hash table containing D-Nets connections from I and I”.

Using this hashtable, our voting algorithm casts votes



into a two-dimensional hypothesis correspondence grid,
Gli, j] € R, where the cell G[i, j] accumulates votes sup-
porting the hypothesis that node a; in image I corresponds
to b, in image I’. That is, G has |V| x |V'| cells.

In our example, we iterate over the d-tokens d €
{4, ..., H} considering each bin in Figure 2, one at a time.
In the first iteration (d=A), the bin contains 3 connections
from image I and 4 connections from image I’. Any con-
nection from the first list could correspond to any connec-
tion from the second list, resulting in the following set B 4
of 12 hypotheses for correspondences across connections:

Ba= {((a3va2)7 (b37b1))7 ((337 32)7 (b37 b4)),
CEE ((a17a4)a (b47 b2)7 ((alﬂ a4)7 (b57b1))}

Since our connections are directed, each correspondence
hypothesis over connections implies a correspondence be-
tween nodes. For instance, the first element of B4, states
as<>bs and az<+b;. We represent this as votes in favor of
G|[3,3] and G[2,1]. The strength of each vote is inversely
proportional to the number of hypotheses in the given bin
(|IBA|=12). This normalization mutes the effect of popular
strips and rewards rarer but more discriminative matches. It
is also consistent with our design choice to limit the size of
hash table lists (nz). Votes for hypotheses involving large
lists are low and thus limiting such lists enables efficient
computation without substantially impacting matching ac-
curacy. The procedure is formalized in Algorithm 1.

Algorithm 1 D-Nets Voter(G, L;, L))
clear G
foralld € D do
By :={(e,€')le € Ly, e’ € L}
v < 1/|B4]
for all ((a;,a;), (bg,b;)) € By do
Gli, k] + G[i, k] +v
Glj, 1] + G5, +v
end for
end for

In practice, |D| can be quite large and many bins in
the hashtable contain at least one empty list. Since such
bins contain no valid hypotheses, they are skipped without
casting any votes. The same occurs if the two images are
very different, such that few d-tokens occur in both images.
Thus, the running time of Algorithm 1 is highly dependent
on the difficulty of the matching task. Image pairs that are
unlikely to match (the vast majority) are quickly eliminated
while computation time is focused on the harder cases.

2.5. Quality measure for ranking matches

In order to evaluate D-Nets in terms of precision-recall,
we must associate a quality metric for each match, by which

matches can be sorted. Denoting the values in row ¢* of the
correspondence grid as g(j) := G[i*, j], we select j* :=
arg;(g* := max g(j)) as the best match for i*. We define
a quality measure ¢ for a chosen correspondence i">7" as

its entropy-normalized vote: q := — = pg, oes 5 where
Vi P J
() N '
Pi= S ey

3. Experimental Results

This section summarizes results from three sets of ex-
periments. All of these experiments employed the eight
standard datasets” that have also been used in recent pa-
pers [10, 15] to enable direct comparisons with current ap-
proaches. Each data set consists of 6 images of the same
scene under different ground-truthed conditions, such as
translation, rotation and scale (boats and bark), viewpoint
changes with perspective distortions (graffiti and wall),
blurring (bikes and trees), lighting variation (leuven) and
JPEG compression artifacts (ubc).

In each set the first image is matched against the 5 oth-
ers, with increasing matching difficulty. In our discussion,
specific cases are denoted as “barkI-6", meaning that image
1 is matched against image 6 in the bark dataset. We have
made the source code of our basic D-Nets implementation
publicly available® to enable others to replicate our results.

3.1. Evaluation Criteria: Strict/Loose Overlap

Following standard practice, we evaluate using 1-
precision vs. recall graphs. Correspondences are sorted ac-
cording to their feature-space distance (SIFT, ORB) or qual-
ity measure (D-Nets) and the fraction of correct correspon-
dences* is plotted against the fraction of incorrect ones,’
while iterating through this list. To determine whether a
correspondence a<+b is correct, we define two matching
criteria based on the overlap error [11]. In loose matching,
the correspondence a<+b is deemed correct as long as the
overlap error falls under the threshold ¢, regardless of other
matches a’<+b. Strict matching enforces a one-to-one con-
straint so that a match is correct if b is geometrically the
closest point with sufficient overlap, and (if ties exist) the
one closest in feature space/quality measure. Both schemes
are detailed below; in all cases, we use an overlap threshold
of €,=0.4.

Let ac-xb € M := {a; > bjler(ai, b;) < ¢}, where
en(aj, bj) denotes the overlap error using the ground-truth
homography H relating images I and I’. Note that M can
contain several pairs a;<>b that map to the same point b,

2 http://www.robots.ox.ac.uk/~vgg/research/affine/

3 https://sites.google.com/site/descriptornets/

4 The fraction is computed in relation to the maximum number of pos-
sible correct correspondences, determined using the ground truth.

5 The fraction is computed against the number of matches returned by
the matching procedure, including both correct and incorrect ones.
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even though SIFT/ORB/D-Nets are restricted to returning
only the single best match for a point a; in image I.

Under loose matching, if several keypoints are geomet-
rically very close to the ideal correspondence in terms of
overlap, a match is counted as correct if it fulfills the over-
lap criterion, even if it is not geometrically the closest.

In contrast, for the strict evaluation scheme, we only con-
sider the correspondence with the best overlap to be a pos-
sible match, i.e., we verify that: a<>b € Mie, Where

Mtricr == {ak < be M|k =arg ml_in(eH(ai,b))} .

In cases where multiple points a; all map to the same point
b, strict matching specifies that we accept only the a; with
smallest feature distance (SIFT, ORB) or highest quality
(D-Nets). For computing the 1-precision vs. recall graphs,
the number of returned correct matches needs to be related
to the total number of possible correct matches, which is
[{a€V|Fb eV :a <+ b e M} for loose matching and
| Mtriet| for strict matching.

We generalize the overlap error [11] to non-patch-based
descriptors as follows. Consider a; in I and b; in I’ (re-
lated via ground-truth homography H). First, we map b; to
I using H~!. Next, we take circular® regions (30 pixel ra-
dius) around each of the two points in I and map them to I’
using H; this is done as a finely sampled polygon since H
may not be affine. Finally, the overlap error (1 - ratio of ar-
eas of intersection to the union) between the corresponding
polygons in I’ is computed and compared against ¢,.

3.2. Experiment 1: Comparison vs. SIFT and ORB

We directly compare D-Nets against SIFT [9] and the
very recent ORB [15] algorithms. To ensure that we fairly
compare descriptors, we use the same interest points, ex-
tracted using SIFT, for all three methods. For D-Nets, we
discard the scale and orientation information and simply use
the keypoint location as our nodes. In this set of exper-
iments, we employ the d-tokens representation described
earlier on a fully connected D-Nets graph.

Results Figures 3 (a) and (b) show results for strict and
loose matching, respectively. D-Nets (blue) significantly
outperforms both SIFT (red) and ORB (black) in recall and
precision for the strict matching. The difference under the
loose matching criterion (Fig. 3b), is even more dramatic.
We attribute D-Nets’ success under such conditions to its
ability to exploit image information from a larger portion of
the image. Unlike patch-based descriptors, which are my-
opic and very sensitive to the patch location, the strip over
which D-Nets extracts image content is resilient to changes
in endpoint location, generating d-tokens that continue to

6 The motivation for using isotropic regions in I is because the first
image in the datasets is typically a frontal view of a quasi-planar scene.

match. The fact that D-Nets’ more “global” features can
thrive under conditions where patches fail may seem sur-
prising, given that aggregates of local features have long
been lauded for their resilience to drastic image changes.
The explanation is that D-Nets features are also local, but
the region over which they extract information (long 1-
D strips between keypoints) enables us to overcome patch
myopia. Robustness to spatial imprecision is highly desir-
able and this experiment shows the substantial benefits of
switching from patch-based descriptors to the D-Nets rep-
resentation.

Implementation Details To enable replication of our re-
sults, we provide the full details of our experimental setup.
For ORB and SIFT we use the OpenCV 2.3.1 implementa-
tion with the following parameter settings.

SIFT-keypoints SIFT descriptors ORB descriptors D-Nets
nOctaves=4 magnification=3 firstLevel=0 o=1
nOctaveLayers=3 isNormalized=true n_levels=8 L=8
firstOctave=-1 recalculateAngles=true  scale_factor=1.346 s=13
angleMode=0 b=2
threshold=0.04 qo=0.1
edgeThreshold=10 q1=0.8

To enable the ORB descriptors to work with the SIFT
keypoints, some care had to be taken, because the
OpenCV 2.3.1 code discards keypoints at the stage of ORB-
descriptor extraction. Hence, we made sure to also exclude
such keypoints from the other approaches. We also had to
discard SIFT keypoints within a 15 pixel distance of the im-
age border (scaled respectively for the other scale levels of
the pyramid) to allow the ORB-descriptors work on SIFT-
keypoints and we computed the pyramid index for ORB
from the size of the respective SIFT patch in the non-scaled
image. Although D-Nets can employ nodes at the border
of the image (unlike patch-based descriptors), we choose
to enforce consistency over maximizing the performance of
our method and restrict ourselves to exactly the same key-
points as SIFT and ORB.

3.3. Experiment 2: Iterative D-Nets

The nodes of the D-Nets in the first experiment were
fully connected. But is this degree of connectivity required?
Motivated by this question we propose an iterative version
of D-Nets that dynamically increases its connection density.
One of the important contributions of this paper is that we
can provide a stopping criterion that automatically deter-
mines the optimal connection density for any given match-
ing task, such that simple cases are matched with less effort.

Our iterative implementation of D-Nets starts with the
edges of a triangulation over the nodes as its initial set of
connections. In each iteration, we expand each node’s con-
nections by one hop transitions (i.e. k-hops in k iterations).
The hash table and voting grid are incrementally updated
through the iterations.



Figure 3. Experiment 1. 1-precision vs. recall for SIFT (red), ORB (black) and D-Nets (blue) using strict (a) and loose (b) matching on
standard datasets. Image I shown on left and I’ under respective graph. D-Nets clearly dominates patch-based methods. (View in color.)

Each of the two lists for a bin in the hash table, L, and

!, is divided into two portions: the first part holding entries

from all previous iterations (P, and P, ,), and the second

part holding only those new entries from the current itera-

tion (IVg,; and NN, ¢/1,t)' Figure 4 illustrates how those portions
can be tracked using the two indices % and ;.

! !
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Figure 4. Illustration of the modified list structure for the iterative
version corresponding to a single bin in the hash table. New con-
nections added in the current iteration are drawn gray. Cells from
previous iterations ¢=0 are drawn black. White cells are empty.

For voting in iteration ¢, a set B4 ; of hypotheses is defined,
analogous to B in Algorithm 1:

Bai= (Nas x Pjy 1)U (Nas x Nj,)U(Pai—1 % Ng,)

Similar to the original algorithm, votes are cast for B4 ; with
a strength of v = 1/|B4.|. To prepare the next iteration,
the indices 4o, i1, %(, and 41 are updated such that the recent
lists are integrated into the old ones and emptied. That is
Py41 := Py U Ngy and Ng 41 := (. The same applies
for lists Pj,,, and Nj, . ,. Then, a new iteration starts,
increasing the network density to include new connections
reachable from the old nodes by an additional hop.

Stopping criterion We propose a stopping criterion that
does not involve geometric verification, considering how

correspondences change at each step. We terminate if
a fraction ggop Of max(n,n’) correspondences does not
change within mgp=10 consecutive iterations, or if the
maximum density of the network is reached. Here, n and
n' are the number of nodes in the respective two images, I
and I'.

Results Figure 5 shows the results for ggop and mygop us-
ing loose matching. Importantly, the iterative D-Nets algo-
rithm automatically determines the required number of iter-
ations and the resulting network density for a given match-
ing case. Comparing the resulting last iteration index g, as
labeled in Figure 5 with the respective two images of each
matching case, it can be seen that ¢g, reflects the matching
difficulty very well. For instance, walll-6 is well known
to be the most difficult matching case, because it involves
a strong perspective distortion and has many repeating im-
age structures, due to the bricks of the wall. Accordingly,
it has the highest ¢5,. The important contribution is, that
the stopping criterion does not require a geometric veri-
fication step, which would involve the use of background
knowledge about the application-domain and further com-
putations in each iteration. Note, that of course the recall
is smaller than e.g., in Figure 3, because the iterations stop
intentionally before a maximum density is reached. This
has no drawback for applications that only need a few pre-
cise matches to seed a RANSAC-based verification [6]. As
expected, recall increases as gyop i increased.
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Figure 5. Experiment 2.

Iterative D-Nets (gsop=0.2 and
Msop=10): 1-precision vs. recall as connection density is dy-
namically increased. Our stopping criterion automatically deter-
mines the optimal connection density for the given matching task.
Matching quality is comparable to that of clique D-Nets, but at
much lower computational cost.

3.4. Experiment 3: Is keypoint extraction required?

Experiment 1 shows that D-Nets generate better matches
than patch-based methods and are also much more robust to
misregistered keypoints. The latter observation motivates
a D-Nets variant that eschews keypoints entirely in favor
of a dense grid of nodes with average spacing of 10-pixels.
Since a completely regular grid can exhibit sampling pathol-
ogy, we add Gaussian noise (0=3) to the position of each
node. In all other respects, the variant is identical to that in
Experiment 1.

Results and Implications The above sampling procedure
produces 5780 nodes, which is comparable to the number of
nodes found by the SIFT-keypoint detector generated in Ex-
periment 1. Figure 6 compares D-Nets on densely sampled
poins (dashed blue) against the original D-Nets on sparse
keypoints from Experiment 1 (i.e., solid blue, from Fig-
ure 3b). We see strong matching performance on all cases.
Due to space limits, we restrict ourselves to three key ob-
servations:

e Unlike patch-based descriptors, which derive their
scale and rotation invariance from the interest point
detector (and lose these under dense sampling [13]),
the dense variant of D-Nets retains all of its original
invariance properties. This is because the D-Nets de-
scriptor is defined according to pairwise connections,
which specify rotation and scale regardless of how the
(dimensionless) nodes are generated.

e Dense sampled patch-based descriptors are poor at es-
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Figure 6. Comparison of D-Nets using sparse keypoints (solid
blue) vs. densely sampled D-Nets (dashed blue), under loose
matching. Both strongly outperform SIFT, ORB (cf. Figure 3b).

tablishing point-to-point correspondences [18]. In-
stead, dense SIFT is primarily used to characterize and
aggregate local texture (e.g., for Bag-of-Words in ob-
ject recognition). By contrast, dense sampling with
D-Nets provides high-quality correspondences in ad-
dition to characterizing image content.

e Dense SIFT is computationally much more expensive
than sparse SIFT. In contrast, dense D-Nets is faster
than the original version; additional acceleration based
upon precomputation using a fixed grid is possible.

3.5. Memory and Computational Complexity

The memory requirements for D-Nets are 2np|D| -
log, (|D]) bits for the hashtable and n-n’ floats for the voting
grid, where n,n’ are the number of nodes in images I and
I’, respectively. A precise computational analysis must con-
sider image content, because images with many ambiguous
patterns are slower to match than those with many unique
patterns. An upper bound for the worst-case running time is
O(|€]+|&'|+n2 -|D|+n-n'), since every strip is accessed
once, and in the worst case, the lists L and L’ are full for all
d-tokens. The last term n - n’ accounts for initializing and
extracting candidates from the voting grid.

4. Related Work

The idea of exploiting pairwise relationships is in itself
not new. For instance, the pairwise representation inherent
in D-Nets resembles that of pairwise matching approaches
to object recognition [7]. However, this similarity is superfi-
cial: unlike in pairwise matching, where the representation
focuses on the geometric relationships between nodes, pair-
wise relationships in D-Nets only specify the regions of pix-



els (strips) from which the descriptor is computed. D-Nets
eschews encoding pairwise geometric relationships, since
those are not invariant to image transformations.

D-Nets is also distinct from pairwise representations
such as compact correlation coding [12], which advocates
quantization of pairs of keypoints in a joint feature space
or pairwise shape representations [4, 20], which aggregate
statistics from pairs of points in an image.

In general, the use of shape structures for matching is
related to our work, because these go beyond matching local
features. For instance, using line segments [1] for wide-
baseline stereo or more complex shape features, such as k-
adjacent contours [5].

Our dense sampling experiment suggests a similarity to
DAISY [16]. But, aside from DAISY s different application
domain (computing dense depth maps for wide-baseline
stereo), DAISY needs to know the relative pose of the cam-
eras, while D-Nets does not.

At first glance our voting and hashing scheme resem-
bles geometric hashing [19], which also starts from pairs
of points. However, in contrast to geometric hashing, the
D-Nets voting space is always a 2-D space of node-indices.
Furthermore, no knowledge about the space of possible ge-
ometric transformations is required for D-Nets.

5. Conclusions

This paper proposes D-Nets, a novel image represen-
tation and matching scheme that is based upon a net-
work of interconnected nodes. Image content is extracted
along strips connecting nodes rather than on patches cen-
tered at nodes and quantized in the form of descriptive
tokens. Node-to-node correspondences between images
are determined by a combined hashing and voting scheme
that exploits spatial and topological relationships. Exten-
sive experiments using standard datasets show that D-Nets
achieves significantly higher precision and recall than state-
of-the-art patch-based methods, such as SIFT and ORB. We
also describe two extensions of D-NETS that offer addi-
tional computational benefits. The first dynamically adapts
to the complexity of the matching task. The second eschews
interest points entirely and demonstrates that comparable
accuracy can be achieved using a fixed, dense sampling of
nodes; we plan to explore massively parallelized implemen-
tations of this idea in future work. Because the connections
in the dense variant are fixed, all image accesses can be pre-
computed and stored in lookup-tables to determine to which
lines they contribute, making D-Nets attractive for efficient
GPU- and hardware-based implementations.

We consider D-Nets to be an initial exploration in a
broad class of net-based image representations that goes
beyond patch-based approaches. This paper has focused
on straight-line strips connecting nodes, but we have also
observed promising results using strips that follow image

edges. The robustness of our voting procedure, in combi-
nation with the distinctiveness of each d-token means that
our net-based representations are very resilient to cropping
and occlusion since confident matches can be achieved with
only a small fraction of available tokens.
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