
Efficient Spatial Sampling of Large Geographical Tables

Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, Alon Halevy
Google Research

Mountain View, CA, USA
{anish,hrlee,hagonzal,jayant,halevy}@google.com

ABSTRACT
Large-scale map visualization systems play an increasingly
important role in presenting geographic datasets to end users.
Since these datasets can be extremely large, a map rendering
system often needs to select a small fraction of the data to
visualize them in a limited space. This paper addresses the
fundamental challenge of thinning: determining appropriate
samples of data to be shown on specific geographical regions
and zoom levels. Other than the sheer scale of the data,
the thinning problem is challenging because of a number of
other reasons: (1) data can consist of complex geograph-
ical shapes, (2) rendering of data needs to satisfy certain
constraints, such as data being preserved across zoom levels
and adjacent regions, and (3) after satisfying the constraints,
an optimal solution needs to be chosen based on objectives
such as maximality, fairness, and importance of data.

This paper formally defines and presents a complete solu-
tion to the thinning problem. First, we express the problem
as an integer programming formulation that efficiently solves
thinning for desired objectives. Second, we present more ef-
ficient solutions for maximality, based on DFS traversal of a
spatial tree. Third, we consider the common special case of
point datasets, and present an even more efficient random-
ized algorithm. Finally, we have implemented all techniques
from this paper in Google Maps [6] visualizations of Fu-
sion Tables [14], and we describe a set of experiments that
demonstrate the tradeoffs among the algorithms.

Categories and Subject Descriptors
H.0 [Information Systems]: General—storage, retrieval ;
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Management, Performance

Keywords
geographical databases, spatial sampling, maps, data visu-
alization, indexing, query processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. INTRODUCTION
Several recent cloud-based systems try to broaden the au-

dience of database users and data consumers by emphasizing
ease of use, data sharing, and creation of map and other vi-
sualizations [2, 3, 5, 8, 14]. These applications have been
particularly useful for journalists embedding data in their
articles, for crisis response where timely data is critical for
people in need, and are becoming useful for enterprises with
collections of data grounded in locations on maps [11].

Map visualizations typically show data by rendering tiles
or cells (rectangular regions on a map). One of the key chal-
lenges in serving data in these systems is that the datasets
can be huge, but only a small number of records per cell
can be sent to the browser at any given time. For example,
the dataset including all the house parcels in the United
States has more than 60 million rows, but the client browser
can typically handle only far fewer (around 500) rows per
cell at once. This paper considers the problem of thinning
geographical datasets: given a geographical region at a par-
ticular zoom level, return a small number of records to be
shown on the map.

In addition to the sheer size of the data and the strin-
gent latency requirements on serving the data, the thinning
problem is challenging for the following reasons:

• In addition to representing points on the map, the data
can also consist of complex polygons (e.g., a national
park), and hence span multiple adjacent map cells.

• The experience of zooming and panning across the map
needs to be seamless, which raises two constraints:

• Zoom Consistency: If a record r appears on a map,
further zooming into the region containing r should
not cause r to disappear. In other words, if a record
appears at any coarse zoom granularity, it must con-
tinue to appear in all finer granularities of that region.

• Adjacency: If a polygon spans multiple cells, it must
either appear in all cells it spans or none; i.e., we must
maintain the geographical shape of every record.

Figure 1 demonstrates an example of zoom consistency
violation. In Figure 1(a), suppose the user wants to zoom
in to see more details on the location with a ballon icon. It
would not be natural if further zoom-in makes the location
disappear as in Figure 1(b). Figure 2 shows an example of
adjacency consistency violation for polygons. The map looks
broken because the display of polygons that span multiple
cells is not consistent.

Even with the above constraints, there may still be mul-
tiple different sets of records that can be shown in any part

(a) Original viewpoint. (b) Violation of zoom consistency (c) Correct zoom in

Figure 1: Violation of Zoom Consistency

Figure 2: Violation of Adjacency Constraint

of the region. The determination of which set of points to
show is made by application-specific objective functions. The
most natural objective is“maximality”, i.e., showing as many
records as possible while respecting the constraints above.
Alternatively, we may choose to show records based on some
notion of “importance” (e.g., rating of businesses), or based
on maximizing “fairness”, treating all records equally.

This paper makes the following contributions. First, we
present an integer programming formulation of size linear
in the input that encodes constraints of the thinning prob-
lem and enables us to capture a wide variety of objective
functions. We show how to construct this program, cap-
turing various objective criteria, solve it, and translate the
program’s solution to a solution of the thinning problem.

Second, we study in more detail the specific objective of
maximality: we present notions of strong and weak maxi-
mality, and show that obtaining an optimal solution based
on strong maximality is NP-hard. We present an efficient
DFS traversal-based algorithm that guarantees weak maxi-
mality for any dataset, and strong maximality for datasets
with only point records.

Third, we consider the commonly occurring special case of
datasets that only consist of points. We present a random-
ized algorithm that ensures strong maximality for points,
and is much more efficient than the DFS algorithm.

Finally, we describe a detailed experimental evaluation
of our techniques over large-scale real datasets in Google
Fusion Tables [14]. The experiments show that the proposed
solutions efficiently select records respecting aforementioned
constraints.

Section 7 discusses the related area of cartographic gener-
alization, and presents other related work. The rest of the
paper is organized as follows. Section 2 defines the thinning
problem formally. Section 3 describes the integer program-
ming solution to the thinning problem. Section 4 studies in
detail maximality for arbitrary regions, and Section 5 looks
at the special case of datasets with point regions. Experi-
ments are presented in Section 6, and we conclude in Sec-
tion 8. Due to space constraints, proofs for technical results
are omitted.

2. DEFINITIONS
We begin by formally defining our problem setting, start-

ing with the spatial organization of the world, defining re-
gions and geographical datasets (Section 2.1), and then for-
mally defining the thinning problem (Section 2.2).

2.1 Geographical data

Spatial Organization
To model geographical data, the world is spatially divided
into multiple cells, where each cell corresponds to a region of
the world. Any region of the world may be seen at a specific
zoom level z ∈ [1,Z], where 1 corresponds to the coarsest
zoom level and Z is the finest granularity. At zoom level
1, the entire world fits in a single cell c11. At zoom level 2,
c11 is divided into four disjoint regions represented by cells
{c21, . . . , c24}; zoom 3 consists of each cell c2i further divided
into four cells, giving a set of 16 disjoint cells c31, . . . , c

3
16, and

so on. Figure 1(a) is a cell at z = 13, and Figures 1(b) and
(c) are cells at z = 14. In general, the entire spatial region
is hierarchically divided into multiple regions as defined by
the tree structure below.

Definition 2.1 (Spatial Tree). A spatial tree T (Z,N)
with a maximum zoom level Z ≥ 1 is a balanced 4-ary rooted
tree with Z levels and nodes N , with 4Z−1 nodes at level-Z
denoted NZ = {cZ1 , . . . , cZ4Z−1}.

The nodes at each level of the tree correspond to a complete
and disjoint cell decomposition of an entire region, repre-
sented as one cell at the root. Values of Z in most commer-
cial mapping systems range between 10 and 20 (it is 20 for
Google Maps [6]).

Figure 3: Running Example: (a) Spatial tree with
Z = 3; (b) Regions shown at z = 3 for c21.

Example 2.1. Figure 3(a) shows a spatial organization
of a tree with Z = 3. At zoom-level z = 1 the entire space is
a single cell, which are divided into 4 cells at z = 2, and 16
at the finest zoom level of z = 3. (The figure only shows the
z = 3 cells for the cell c21 at z = 2.)

Note that such a hierarchical division of a region into sub-
regions corresponds to a space-filling curve [26]. Thus, the
nodes at a particular level in the spatial tree can be used for
index range scans for a subregion, when ordered based on
the space-filling curve.

Regions and Span
A region corresponds to a part of the world. Since the finest
granularity of data corresponds to cells at zoom level Z, any
region can be defined by a subset of cells at zoom level Z.

Definition 2.2 (Region and point region). A region
R(S) over a spatial tree T (Z,N) is defined by a subset S ⊆
NZ , |S| ≥ 1. A region R(S) is said to be a point region iff
|S| = 1.

We often refer to regions that span cells at different levels:

Definition 2.3 (Region Span). A region R(S) over
spatial tree T (Z,N) is said to span a cell czi ∈ N iff ∃cZj ∈
NZ such that cZj ∈ S and czi is an ancestor of cZj in T . We
use span(R) to denote the set of all cells R spans.

Note that a region defined by a set of finest-granularity cells
in the maximum zoom level spans every ancestor cell of these
finest-granularity cells.

Example 2.2. Figure 3(b) shows 5 regions for the cell c21,
showing their spans at z = 3 over cells c31, . . . , c

3
4. Regions

R1, R2, and R3 are point regions spanning only a single
cell at z = 3 (and three cells each across the three zoom
levels), and R4 and R5 span two cells at z = 3 (and 4 cells
in aggregate: two each at z = 3 and one each at z = 1, 2).

Geographical Dataset
A geographical dataset (geoset, for short) consists of a set
of records, each describing either a point or a polygon on a
map. For the purposes of our discussion it suffices to con-
sider the regions occupied by the records. Specifically, (1)
a record describing a point can be represented by a point

region, and (2) a record describing a polygon p can be rep-
resented by the region defined by set of finest-granularity
regions in NZ that p occupies. In practice, we represent the
actual points and polygons in addition to other structured
data associated with the location (e.g., restaurant name,
phone number).

Definition 2.4 (GeoSet). A geoset G = {R1, . . . , Rn}
over spatial tree T (Z,N) is a set of n regions over T cor-
responding to n distinct records. Ri represents the region of
the record with identifier i.

2.2 The thinning problem
We are now ready to formally introduce the thinning prob-

lem. We start by describing the constraints that a solu-
tion to thinning must satisfy (Section 2.2.1), and then moti-
vate some of the objectives that go into picking one among
multiple thinning solutions that satisfy the constraints (Sec-
tion 2.2.2).

2.2.1 Constraints
To provide a seamless zooming and panning experience on

the map, a solution to the thinning problem needs to satisfy
the following constraints:

1. Visibility: The number of visible regions at any cell czi
is bounded by a fixed constant K.

2. Zoom Consistency: If a region R is visible at a cell

czi , it must also be visible at each descendant cell cz
′

i′ of
czi that is spanned by R. The reason for this constraint
is that as a user zooms into the map she should not lose
points that are already visible.

3. Adjacency: If a region R is visible at a cell czi , it must
also be visible at each cell czi′ spanned by R. This con-
straint ensures that each region is visible in its entirety
when moving a map around (at the same zoom level),
and is not “cut out” from some cells and only partially
visible. Note that adjacency is trivial for points but not
for polygons.

Example 2.3. Going back to the data from Figure 3, sup-
pose we have a visibility bound of K = 1, then at most one
of R1−R5 can be visible in c11, one of R1, R4 can be visible
at c31, and at most one of R2− R5 can be visible in cell c33.
Based on the zoom consistency constraint, if R4 is visible in
c11, then it must be visible in c21, c31, and c33. The adjacency
constraint imposes that R5 is visible in neither or both of c33
and c34.

A consequence of the zoom consistency and adjacency con-
straints is that every region must be visible at all spanned
cells starting at some particular zoom level. We can there-
fore define thinning as the problem of finding the initial
zoom level at which each record becomes visible.

Problem 2.1 (Thinning). Given a geoset G =
{R1, . . . , Rn} over a spatial tree T (Z,N), and a maxi-
mum bound K ∈ N on the number of visible records in
any cell, compute a function min-level M : {1, . . . , n} →
{1, . . . ,Z,Z + 1} such that the following holds:

Visibility Bound: ∀czj ∈ N , z ≤ Z, we must have
|V isM (G,T, czj)| ≤ K, where V isM (G,T, czj) denotes
the set of all visible records at cell czj whose min-level
is set to at most z:

V isM (G,T, czj) = {Ri|(czj ∈ span(Ri))&(M(j) ≤ z)}

Intuitively, the min-level function assigns for each record
the coarsest-granularity zoom level at which the record will
start being visible and continue to be visible in all finer gran-
ularities. (A min-level of Z + 1 means that record is never
visible.) By definition, assigning a single min-level for each
record satisfies the Zoom Consistency property. Further,
the fact that we are assigning a single zoom level for each
record imposes the condition that if a record is visible at one
spanned cell at a particular level, it will also be visible at all
other spanned cells at the same level. Thus, the Adjacency
property is also satisfied. The first condition in the problem
above ensures that at any specific cell in the spatial tree T ,
at most a pre-specified number K of records are visible.

Example 2.4. Considering the data from Figure 3, with
K = 1, we have several possible solutions to the thinning
solution. A trivial function M1(Ri) = 4 is a solution that
doesn’t show any region on any of the cells. A more inter-
esting solution is M2(R1) = 1, M2(R2) = 3, and M2(·) = 4
for all other regions. This solution shows R1 in its cell from
z = 1 itself, and R2 from z = 3. Another solution M3 is
obtained by setting M3(R1) = 2 above and M3(·) being iden-
tical to M2(·) for other regions; M3 shows R1 only starting
at z = 2. Arguably, M2 is “better” than M3 since R1 is
shown in more cells without compromising the visibility of
any other region; next we discuss this point further.

2.2.2 Objectives
There may be a large number of solutions to the thinning

problem that satisfy the constraints described above, includ-
ing the trivial and useless one setting the min-level of every
region to Z+1. Below we define informally certain desirable
objective functions, which can be used to guide the selection
of a specific solution. In the next section we describe a thin-
ning algorithm that enables applying these objectives.

1. Maximality: Show as many records as possible in any
particular cell, assuming the zoom consistency and adja-
cency properties are satisfied.

2. Fairness: Ensure that every record has some chance of
being visible in a particular cell, if showing that record
doesn’t make it impossible to satisfy the constraints.

3. Region Importance: Select records such that more
“important” records have a higher likelihood of being vis-
ible than less important ones. For instance, importance
of restaurants may be determined by their star rating,
and if there are two restaurants in the same location, the
one with the higher rating should have a greater chance
of being sampled.

Not surprisingly, these objectives may conflict with one an-
other, as shown by our next example. We can define sev-
eral other intuitive objectives not considered above (e.g., re-
specting “spatial density”); a comprehensive study of more
objectives is left as future work.

Example 2.5. Continuing with our data from Figure 3
and thinning solutions from Example 2.4, clearly M1 is not
maximal. We shall formally define maximality later, but
it is also evident that M3 is not maximal, as M2 shows a
strictly larger number of records. Fairness would intuitively
mean that if possible every record should have a chance of
being visible; furthermore, regions that have identical spans
(e.g., R2 and R3) should have equal chance of being visible.

Finally, if we consider some notion of importance, and sup-
pose R2 is much more important than R3, then R2 should
have a correspondingly higher likelihood of being visible.

2.3 Outline of our solutions
In Section 3 we show how to formulate the thinning prob-

lem as an integer programming problem in a way that ex-
presses the different objectives we described above. In Sec-
tion 4, we consider the maximality objective in more detail
and show that while one notion of maximality renders the
thinning problem NP-hard, there is a weaker form of max-
imality that enables an efficient solution. Finally, in Sec-
tion 5, we study the special case of a geoset consisting of
point records only.

We note that this paper considers a query-independent
notion of thinning, which we can compute off-line. We
leave query-dependent thinning to future work, but note
that zooming and panning an entire dataset is a very com-
mon scenario in practice. We also note that a system for
browsing large geographical datasets also needs to address
challenges that are not considered here such as simplification
of arbitrary polygons in coarser zoom levels and dynamic
styling of regions based on attribute values (e.g., deciding
the color or shape of an icon).

3. THINNING AS INTEGER PROGRAMMING
In this section we describe an integer program that com-

bines various objectives from Section 2.2 into the thinning
problem. Section 3.1 describes the construction of the inte-
ger program and Section 3.2 discusses solving it.

3.1 Constructing the integer program

3.1.1 Modeling constraints
Given an instance of the thinning problem, i.e., a geoset

G = {R1, . . . , Rn} over a spatial tree T (Z,N), and a maxi-
mum bound K ∈ N on the number of visible records in any
cell, we construct an integer program P as follows (we refer
to the construction algorithm by CPAlgo):

Partition the records based on spans: We partition
G into equivalence classes P(G) = {P1, . . . , Pl} such that:
(a) ∪n

q=1Pq = G; and (b) ∀q,∀Ri, Rj ∈ Pq : span(Ri) =
span(Rj). For ease of notation, we use span(Pq) to denote
the span of a record in Pq. These partitions are created
easily in a single pass of the dataset by hashing the set of
cells spanned by each record.

Variables of the integer program: the set of variables
V in the program P are obtained from the partitions gen-
erated above: For each partition Pq, we construct Z vari-
ables v1q , v

2
q , . . . , v

Z
q . Intuitively, vzq represents the number of

records from partition Pq whose min-level are set to z.

Constraints: The set C of constraints are:

1. Sampling constraints:

|Pq| ≥
Z∑

z=1

vzq (1)

∀q∀z : vzq ≥ 0 (2)

∀q∀z : vzq ∈ Z i.e., vzq is an integer (3)

Equation (1) ensures that the number of records picked
for being visible at each zoom level does not exceed
the total number of records in the partition. Further,
(|Pq| −

∑Z
z=1 v

z
q) gives the number of records from Pq

that are not visible at any zoom level. Equations (2)
and (3) simply ensure that only a positive integral
number of records are picked from each partition from
each zoom level. (Later we shall discuss the removal
of the integer constraint in Equation (3) for efficiency.)
Note that given a solution to the integer program we
may sample any set of records from each partition Pq

respecting the solution.

2. Zoom consistency and visibility constraint: We
have a visibility constraint for each cell that is spanned
by at least one record:

∀czj ∈ N :
∑

q:czj∈span(Pq)

∑
z∗≤z

vz
∗

q ≤ K (4)

The constraint above ensures that at cell czj , at most
K records are visible. The expression on the left com-
putes the number of records visible at czj : for each

partition Pq spanning czj , only and all variables vz
∗

q

correspond to visible regions. Note that all vz
∗

q with
z∗ strictly less than z are also visible at czj due to the
zoom consistency condition.

3. Adjacency constraint: we do not need to add an-
other constraint because the adjacency constraint is
satisfied by the construction of the variable vzq itself:
each region from Pq visible at zoom level z is visible
at all cells spanned at level z.

Producing the thinning solution: Given a solution to
the integer program, we produce a solution to the thinning
problem by sampling without replacement for partition Pq

as follows. First we sample v1q records from Pq uniformly at
random and set their M value to 1, then sample v2q records
from the rest of Pq and set their M value to 2, and so on.
The following theorem formally states the equivalence rela-
tionship of the constraints above to the thinning problem.

Theorem 3.1. Given a geoset G = {R1, . . . , Rn} over
a spatial tree T (Z,N), and a maximum bound K ∈ N on
the number of visible records in any cell, the integer pro-
gram P(P,V, C) constructed using Algorithm CPAlgo above
is an equivalent formulation of the thinning problem (Prob-
lem 2.1): P captures all and only solutions to the thin-
ning problem. Furthermore, the size of the program satisfies
|V| = Z|P| = O(nZ) and |C| = O(4Z).

3.1.2 Minimizing program size
The integer program created naively is exponential in the

size of the input. We now present optimizations that re-
duce the number of variables and constraints using three
key ideas: (1) Several partitions may be combined when
the number of regions in a partition are small; (2) We only
need to write the zoom consistency and visibility constraints
(Equation (4) above) for critical nodes, which are typically
far fewer than 4Z ; (3) Regions are typically described by a
span of bounded size of say M cells instead of any possible
subset of the ∼ 4Z cells, therefore the total size of the input
is bounded. All put together, we obtain an integer program
that is linear in the size of the geoset (in terms of number
of variables as well as the number of constraints).

Algorithm 1 An algorithm for the construction of a merged
partition Pm (inducing a smaller but equivalent integer pro-
gramming solution) from the output of Algorithm CPAlgo.

1: Input: (1) Geoset G = {R1, . . . , Rn} over spatial tree T (Z,N),
visibility bound K ∈ N; (2) Output P, Cover(c), Touch(c) ob-
tained from Algorithm CPAlgo.

2: Output: Merged partitioning Pm.
3: Initialize Pm = P, Stack S = root(T) (i.e., the root node).
4: while S 6= ∅ do
5: Let node c = pop(S).
6: // Check if c can be a valid merged partition root.
7: if K ≥

∑
P∈Touch(c) |P | then

8: Construct merged partition Pc = ∪P∈Cover(c)P .

9: Set Pm = ({Pc} ∪ Pm) \ Cover(c).
10: else
11: if c is not leaf then
12: Push each child of c into S.

Merging Partitions
We show how the partitions P generated in Section 3.1.1
can be transformed to a merged partitioning Pm with fewer
partitions while preserving all solutions of the original pro-
gram. The integer program can be constructed with Pm as
in Algorithm CPAlgo. We denote the program induced by
a partitioning P by P|P . The following lemma specifies the
required conditions from the merged partitioning.

Lemma 3.1 (Partition Merging). Given a geoset G =
{R1, . . . , Rn} over a spatial tree T (Z,N), and a maximum
bound K ∈ N on the number of visible records in any cell, the
integer program P(P,V, C) over partitioning P = {P1, . . . , Pl},
P|P , is equivalent to the program P|Pm over a merged par-
titioning Pm = {Pm

1 , . . . , Pm
lm} where the following hold:

1. Union: Each Pm ∈ Pm is a union of partitions in P,
i.e., ∀Pm ∈ Pm∃S(Pm) ⊆ P : Pm =

⋃
P∈S P

2. Disjoint Covering: For Pm, Pn ∈ Pm, m 6= n ⇒
(Pm ∩ Pn = ∅); and G =

⋃
P∈Pm P

3. Size: Define span(Pm) = ∪Ri∈Pmspan(S). Let the
span of any partition of region restricted to nodes in
zoom level Z be denoted spanZ ; i.e., spanZ(P) =
span(P)∩NZ . Then the total number of records over-
lapping with spanZ of any merged partition is at most
K: ∀Pm ∈ Pm : |{Ri ∈ G|spanZ(Ri) ∩ spanZ(Pm) 6=
∅}| ≤ K.

The intuition underlying Lemma 3.1 is that if multiple
partitions in the original program cover at most K records,
then they can be merged into one partition without sacrific-
ing important solutions to the integer program.

Algorithm 1 describes how to create the merged partitions.
The algorithm uses two data structures that are easily con-
structed along with Algorithm CPAlgo: (1) Cover(c), c ∈
N returning all original partitions from P whose spanned
leaf nodes are a subset of the leaf nodes descendant from c;
(2) Touch(c), c ∈ N returning all partitions from P that
span some node in the subtree rooted at c. The algorithm
constructs in a top-down fashion subtree-partitions, where
each merged partition is responsible for all original parti-
tions that completely fall under the subtree.

Lemma 3.2. Given geoset G = {R1, . . . , Rn} over spa-
tial tree T (Z,N), visibility bound K ∈ N, and the output of
Algorithm CPAlgo, Algorithm 1 generates a merged parti-
tioning Pm that satisfies the conditions in Lemma 3.1 and
runs in one pass of the spatial tree.

Constraints Only on Critical Nodes
We now show how to reduce the number of constraints in
the integer program by identifying critical nodes and writing
constraints only for those nodes.

Definition 3.1 (Critical Nodes). Given a geoset G =
{R1, . . . , Rn} over a spatial tree T (Z,N), and a maximum
bound K ∈ N on the number of visible records in any cell,
and a set of (merged) partitions P = {P1, . . . , Pl} with corre-
sponding spans of spanZ (as defined in Lemma 3.1), a node
c ∈ N is said to be a critical node if and only if there exists a
pair of nodes cq1 ∈ spanZ(Pq1) and cq2 ∈ spanZ(Pq2) such
that c is a least-common ancestor of cq1 , cq2 in T .

Intuitively, a node c is a critical node if it is a least-common
ancestor for at least two distinct partitions’ corresponding
cells. In other words, there are at least two partitions that
meet at c, and no child of c has exactly the same set of
partition’s nodes in their subtree. Clearly we can compute
the set of critical nodes in a bottom up pass of the spatial
tree starting with the set of (merged) partitions. Therefore,
based on the assignment of values to variables in the integer
program, the total number of regions visible at c may dif-
fer from the number of nodes visible at parent/child nodes,
requiring us to impose a visibility constraint on c. For any
node c′ that is not a critical node, the total number of vis-
ible regions at c′ is identical to the first descendant critical
node of c′, and therefore we don’t need to separately write a
visibility constraint at c′. Therefore, we have the following
result.

Lemma 3.3 (Critical Nodes). Given an integer pro-
gram P(P,V, C) over a (merged) set of partitions P as con-
structed using Algorithm CPAlgo and Algorithm 1, con-
sider the program P′(P,V, C′), where C′ is obtained from C
by removing all zoom consistency and visibility constraints
(Equation 4) that are not on critical nodes. We then have
that P ≡ P′, i.e., every solution to P (P′, resp.) is also a
solution to P′ (P, resp.).

Bounded Cover of Regions
While Definition 2.2 defines a region by any subset S ⊆ NZ ,
we can typically define regions by a bounded cover, i.e., by a
set of cover nodes C ⊆ N , where C is a set of (possibly inter-
nal) nodes of the tree and |C| ≤M for some fixed constant
M . Intuitively, the set S corresponding to all level-Z nodes
is the set of all descendants of C. While using a bounded
cover may require approximation of a very complex region
and thereby compromise optimality, it improves efficiency.
In our implementation we use M = 8, which is what is also
used in our commercial offering of Fusion Tables [14]. The
bounded cover of size M for every region imposes a bound
on the number of critical nodes.

Lemma 3.4. Given a geoset G = {R1, . . . , Rn} with bounded
covers of size M over a spatial tree T (Z,N), the number of
critical nodes in our integer programming formulation P is
at most nMZ.

Summary
The optimizations we described above yield the main result
of this section: an integer program of size linear in the input.

Theorem 3.2. Given a geoset G = {R1, . . . , Rn} with a
bounded cover of size M over a spatial tree T (Z,N), and a
maximum bound K ∈ N on the number of visible records in
any cell, there exists an equivalent integer program P(P,V, C)
constructed from Algorithms 1 and CPAlgo with constraints
on critical nodes such that |V| = Z|P| = O(nZ) and |C| =
O(nMZ).

3.1.3 Modeling objectives in the integer program
We now describe how objective functions are specified.

The objective is described by a function over the set of vari-
ables V.

To maximize the number of records visible across all cells,
the following objective Fmax represents the aggregate num-
ber of records (counting each record x times if it is visible
in x cells):

Fmax =
∑

czj∈N

∑
q:czj∈span(Pq)

∑
z∗≤z

vz
∗

q (5)

Instead, if we wish to maximize the number of distinct records
visible at any cell, we may use the following objective:

Fdistinct =
∑
vz
q∈V

vzq

The following objective captures fairness of records: it makes
the total number of records sampled from each partition as
balanced as possible.

Ffair = −

 ∑
Pq∈P

V (Pq)2

 1
2

where V (Pq) =
∑

czj

∑
z∗≤z v

z∗
q , i.e., the total number of

records visible (at some zoom level) from the partition Pq,
aggregated over all cells. The objective above gives the L2

norm of the vector with V values for each partition. The
fairness objective is typically best used along with another
objective, e.g., Fmax + Ffair. Further, in order to capture
fairness within a partition, we simply treat each record in a
partition uniformly, as we describe shortly.

To capture importance of records, we can create the op-
timization problem by subdividing each partition Pq into
equivalence classes based on importance of records. After
this, we obtain a revised program P(P ′,V, C) and let I(Pq)
denote the importance of each record in partition Pq ∈ P ′.
We may then incorporate the importance into our objective
as follows:

Fimp =
∑

czj∈N

∑
q:czj∈span(Pq)

∑
z∗≤z

I(Pq)vz
∗

q (6)

Other objective functions, such as combining importance
and fairness can be incorporated in a similar fashion.

Example 3.1. Continuing with the solutions in Exam-
ple 2.4 using data in Figure 3, let us also add another solu-
tion M4(·) with M4(R5) = 3, M4(R1) = 1 and M4(Ri) = 4
for all other records. Further, suppose we incorporate im-
portance into the records and set the importance of R2, R3
to 10, and the importance of every other record to 1.

Table 1 compares each of the objective functions listed
above on all these solutions. Since M1 doesn’t show any
records, its objective value is always 0. M2 shows two dis-
tinct records R1 and R2, R1 shown in 3 cells, and R2 shown

Fmax Fdistinct Ffair Fimp

M1 0 0 0 0

M2 4 2 -3.16 13

M3 3 2 -2.24 12

M4 5 2 -3.61 5

Table 1: Table comparing the objective measures for
various solutions in Example 3.1.

in one cell giving Fmax and Fdistinct values as 4 and 2. Since
M2 shows records in 3, 1, 0, and 0 cells from the partitions
{R1}, {R2, R3}, {R4}, {R5} respectively, Ffair(M2) = 20,
and using the importance of R2, we get Fimp = 13. Sim-
ilarly, we compute the objective values for other solutions.
Note that M4 is the best based on maximality, and M2 is the
best based on importance. Note that our objective of combin-
ing fairness, i.e., using Fmax + Ffair, gives M4 as the best
solution. Finally, these solutions aren’t distinguished based
on the distinct measure.

3.2 Relaxing the integer constraints
In addition to the integer program described above, we

also consider a relaxed program Pr that is obtained by elim-
inating the integer constraints (Equation (3)) on vzq ’s. The
relaxed program Pr is typically much more efficient to solve
since integer programs often require exponential-time, and
can be converted to an approximate solution. We then per-
form sampling just as above, except, we sample bvzqc re-
gions. The resulting solution still satisfies all constraints,
but may be sub-optimal. Also, from the solution to Pr, we
may compute the objective values Fub(Pr), and the true
objective value obtained after rounding down as above, de-
noted F(Pr). It can be seen easily that:

F(Pr) ≤ F(P) ≤ Fub(Pr)

In other words, the solution to Pr after rounding down gives
the obtained value of the objective, and without rounding
down gives us an upper bound on what the integer program-
ming formulation can achieve. This allows us to accurately
compute potential loss in the objective value due to the re-
laxation. Using this upper bound, in our experiments in
Section 6, we show that in practice Pr gives the optimal
solution in all real datasets.

4. MAXIMALITY
We now consider the thinning problem for a geoset G =
{R1, . . . , Rn}, with the specific objective of maximizing the
number of records shown, which is the objective pursued by
Fusion Tables [14].1

4.1 Strong and weak maximality
Maximally can be defined as follows.

Definition 4.1 (Strong Maximality). A solution M :
{1, . . . , n} → {1, . . . ,Z,Z + 1} to thinning for a geoset G =
{R1, . . . , Rn} over a spatial tree T (Z,N), and a maximum
bound K ∈ N on the number of visible records in any cell is
said to be strongly maximal if there does not exist a different
solution M ′ to the same thinning problem such that

1Our algorithms will satisfy restricted fairness, but maxi-
mality is the primary subject of this section.

• ∀c ∈ N : |V isM (G,T, c)| ≤ |V isM′(G,T, c)|
• ∃c ∈ N : |V isM (G,T, c)| < |V isM′(G,T, c)|

The strong maximality condition above ensures that as
many records as possible are visible at any cell. We note
that the objective function Fmax from Section 2.2.2 ensures
strong maximality (but strong maximality doesn’t ensure
optimality in terms of Fmax).

Example 4.1. Recall the data from Figure 3, and con-
sider solutions M1,M2,M3 and M4 from Example 2.4 and 3.1.
It can be seen that M4 is a strongly maximal solution: All
non-empty cells show exactly one region, and since K = 1,
this is a strongly maximal solution. Note that M2 (and hence
M1 and M3) from Example 2.4 are not strongly maximal,
since c33 does not show any record and M4 above shows same
number of records as M2 in all other cells, in addition to c33.

Unfortunately, as the following theorem states, finding a
strongly maximal solution to the thinning problem is in-
tractable in general. (The proof is by a reduction from the
NP-hard Exact Set Cover problem [13].)

Theorem 4.1 (Intractability of Strong Maximality).
Given a geoset G = {R1, . . . , Rn} over a spatial tree T (Z,N),
and a maximum bound K ∈ N, finding a strongly maximal
solution to the thinning problem is NP-hard in n.

Fortunately, there is a weaker notion of maximality that
does admit efficient solutions. Weak maximality, defined
below, ensures that no individual record can be made visible
at a coarser zoom level:

Definition 4.2 (Weak Maximality). A solution M :
{1, . . . , n} → {1, . . . ,Z,Z + 1} to thinning for a geoset G =
{R1, . . . , Rn} over a spatial tree T (Z,N), and a maximum
bound K ∈ N on the number of visible records in any cell
is said to be weakly maximal if for any M ′ : {1, . . . , n} →
{1, . . . ,Z,Z + 1} obtained by modifying M for a single i ∈
{1, . . . , n} and setting M ′(i) < M(i), M ′ is not a thinning
solution.

Example 4.2. Continuing with Example 4.1, we can see
that M2 (defined in Example 2.4) and M4 are weakly maxi-
mal solutions: we can see that reducing the M2 value for any
region violates the visibility bound of K = 1. For instance,
setting M2(R5) = 3 shows two records in c34. Further, M3

from Example 2.4 is not weakly maximal, since M2 is a so-
lution obtained by reducing the min-level of R1 in M3.

The following lemma expresses the connection between
strong, weak maximality, and optimality under Fmax from
Section 2.2.2.

Lemma 4.1. Consider a thinning solution M : {1, . . . , n} →
{1, . . . ,Z,Z + 1} to for a geoset G = {R1, . . . , Rn} over a
spatial tree T (Z,N), and a maximum bound K ∈ N on the
number of visible records in any cell.

• If M is optimal under Fmax, then M is strongly-maximal.

• If M is strongly-maximal, then M is weakly-maximal.

• If M is weakly-maximal and G only consists of point
records, then M is strongly-maximal.

Algorithm 2 DFS algorithm for thinning.

1: Input: Geoset G = {R1, . . . , Rn} over spatial tree T (Z,N), vis-
ibility bound K ∈ N.

2: Output: Min-level function M : {1, . . . , n} → {1, . . . ,Z + 1}.
3: Initialize ∀i ∈ {1, . . . , n} : M(i) = Z + 1.
4: Initialize Stack S with entry (c01, G).
5: // Iterate over all stack entries (DFS traversal of T)
6: while S 6= ∅ do
7: Obtain top entry (czj , g ⊆ G) from S.

8: Compute V isM (g, T, czj) = {Ri ∈ g|(czj ∈
span(Ri))&&(M(i) ≤ z)}; let V Count = |V isM (g, T, czj)|.

9: // Sample more records if this cell is not filled up
10: if V Count < K then
11: Let InV is = g \ V isM (g, T, czj).

12: // Sample up to SCount = min{(K − V Count), |InV is|}
records from InV is.

13: for Ri ∈ InV is (// in random order) do
14: // Sampling Ri shouldn’t violate any visibility
15: Initialize sample← true
16: for cz ∈ span(Ri) do
17: if V isM (G, T, cz) ≥ K then
18: sample = false
19: if sample then
20: Set M(Ri) = z.
21: if z < Z then
22: // Create entries to add to the stack
23: for Ri ∈ g do
24: Add Ri to each child cell set gj corresponding cz+1

j for

the children cells Ri spans.
25: Add all created (cz+1

j , gj) entries to S.

26: Return M .

4.2 DFS thinning algorithm
The most natural baseline solution to the thinning prob-

lem would be to traverse the spatial tree level-by-level, in
breadth-first order, and assign as many records as allowed.
Instead, we describe a depth-first search algorithm (Algo-
rithm 2) that is exponentially more efficient, due to signif-
icantly reduced memory requirements. The main idea of
the algorithm is to note that to compute the set of visible
records at a particular node czj in the spatial tree, we only
need to know the set of all visible records in all ancestor
cells of czj ; i.e., we need to know the set of all records from
{Ri|czj ∈ span(Ri)} whose min-level have already been set
to a value at most z. Consequently, we only need to main-
tain at most 4Z cells in the DFS stack.

Algorithm 2 proceeds by assigning every record to the
root cell of the spatial tree, and adding this cell to the DFS
stack. While the stack is not empty, the algorithm picks the
topmost cell c from the stack and all records that span c.
The required number of records are sampled from c so as to
obtain up to K visible records; then all the records in c are
assigned to c’s 4 children (unless c is at level Z), and these
are added into the stack. While sampling up to K visible
records, we ensure that no sampled record R increases the
visibility count of a different cell at the same zoom level to
more than K; to ensure this, we maintain a map from cells
in the tree (spanned by some region) to their visibility count
(we use V is to denote this count).

The theorem below summarizes properties of Algorithm 2.

Theorem 4.2. Given a geoset G = {R1, . . . , Rn} over
spatial tree T (Z,N), and visibility bound K ∈ N, Algo-
rithm 2 returns:

1. A weakly maximal thinning solution.

2. A strongly maximal thinning solution if G only consists
of records with point records.

Algorithm 3 A randomized thinning algorithm for geosets
of point records.

1: Input: Geoset G = {R1, . . . , Rn} of point records over spatial
tree T (Z,N), spatial index I visibility bound K ∈ N.

2: Output: Min-level function M : {1, . . . , n} → {1, . . . ,Z + 1}.
3: Initialize ∀i ∈ {1, . . . , n} : M(i) = Z + 1.
4: for i = 1 . . . n do
5: Set priority(Ri) = Rand().
6: for Non-empty cells czj ∈ I do

7: K′ = min{|I(czj)|, K}
8: for Ri ∈ top-K′(I(czj)) do

9: if M(i) > z then
10: Set M(i) = z
11: Return M .

The worst-case time complexity of the algorithm is O(nZ)
and its memory utilization is O(4Z).

The following simple example illustrates a scenario where
Algorithm 2 does not return a strongly maximal solution.

Example 4.3. Continuing with the data from Figure 3,
suppose at z = 1 we randomly pick R1, and then at z = 3,
we sample R2 from c34. We would then end up in the solution
M2, which is weakly maximal but not strongly maximal (as
already described in Example 4.2).

5. POINT ONLY DATASETS
We present a randomized thinning algorithm for a geoset

G = {R1, . . . , Rn} consisting of only point records over spa-
tial tree T (Z,N).

The main idea used in the algorithm is to exploit the fact
that no point spans multiple cells at the same zoom level:
i.e., for any point record R over spatial tree T (Z,N), if
czj1 , c

z
j2 ∈ span(R) then j1 = j2. Therefore, we can obtain

a global total ordering of all points in the geoset G, and
for any cell simply pick the top K points from this global
ordering and make them visible.

The algorithm (see Algorithm 5) first assigns a real num-
ber for every point independently and uniformly at random
(we assume a function Rand that generates a random real
number in [0, 1]; this random number determines the total
ordering among all points). Then for every record we as-
sign the coarsest zoom level at which it is among the top K
points based on the total order.

To perform this assignment, we pre-construct a spatial
index I : N → 2G, which returns the set of all records
spanning a particular cell in the spatial tree T . That is,
I(c) = {Ri|c ∈ span(Ri)}, and the set of records are re-
turned in order of their random number. This spatial in-
dex can be built in standard fashion (such as [19, 16]) in
O(n logn) with one scan of the entire dataset. Assignment
of the zoom level then requires one index scan.

Theorem 5.1 (Randomized Algorithms for Points).
Given a geoset G = {R1, . . . , Rn} of point records over spa-
tial tree T (Z,N), spatial index I, and visibility bound K ∈
N, Algorithm 5 returns a strongly maximal solution to the
thinning problem with an offline computation time O(nZ),
and constant (independent of the number of points) memory
requirement.

Furthermore, Algorithm 5 also has several other proper-
ties that make it especially attractive in practice.

1. The second step of assigning M(i) for each i = 1..n
doesn’t necessarily need to be performed offline. When-
ever an application is rendering the set of points on a
map, it can retrieve the set of points in sorted order
based on the random number, and simply display the
first K points it obtains.

2. If we have pre-existing importance among records, the
algorithm can use them to dictate the priority assigned,
instead of using a random number. For example, in a
restaurants dataset, if we want to show more popular
restaurants, we can assign the priority based on the star-
ratings of each restaurant (breaking ties randomly).

3. The algorithm can be extended easily to large geosets
that don’t necessarily fit in memory and are partitioned
across multiple machines. The assignment of a random
number on each point happens independently and uni-
formly at random. Thereafter, each partition picks the
top-K points for any cell based on the priority, and the
overall top-K are obtained by merging the top-K results
from each individual partition.

6. EXPERIMENTS
This section presents a detailed experimental evaluation

of our algorithms. After presenting our datasets and exper-
imental setup in Section 6.1, we present the following main
experimental findings:

1. In Section 6.2, we show that the optimization program
minimization techniques from Section 3.1.2 usually re-
duces the size of the problem by more than two orders
of magnitude.

2. In Section 6.3, we show that in all seven of our datasets,
the integer relaxation (Section 3.2) doesn’t affect opti-
mality as compared to the integer formulation.

3. Section 6.4 looks at scalability. The optimization pro-
gram without minimizing program size scales only un-
til around thousands of records, while after program-
size minimization it scales to hundreds of thousands of
records. A baseline tree-traversal algorithm scales to
around ten million records, while our DFS traversal al-
gorithm scales to around 20 million records, after which
they get bottlenecked by memory.

4. In Section 6.5, we study objectives other than maximal-
ity, i.e., fairness and importance. First we show that
for the importance-based objective of Fimp, the opti-
mization program gives the best solution (as expected),
but DFS also gives a close solution. Further, we show
that as skew in the importance increases, the value of in-
corporating importance into the objective also increases.
Then we present a qualitative study of how fairness en-
sured by the optimization program’s objective improves
the thinning solution by sampling records from regions
in a roughly uniform fashion.

5. Finally, Section 6.6 gives a breakup of the optimization
solution, showing that most of the time is spent in build-
ing and solving the problem, while sampling after that
is negligible.

The main takeaways from the experiments are: (1) When
we care about maximality only, then the DFS algorithm
presents a high-quality and efficient solution; (2) For all
other objectives, the optimization program along with the
problem minimization techniques from this paper present a
practical solution.

6.1 Experimental setup
We used the following real-world datasets containing points,

lines and polygons, and their sizes varying from a few thou-
sand records to more than 60 million. All the following
datasets are real data uploaded to our commercially-used
Fusion Tables system [14].

Name Type # records # points

Theft point 2,526 2,526
Flu point 6,776 6,776

U.S. county polygon 3,241 32,046
Hiking Trails line 5,211 399,387

Ecoregion polygon 14,458 3,933,974
Trajectory point 716,133 716,133
U.S. Parcel point 61,924,397 61,924,397

These datasets describe: (1) the locations of motor vehicle
thefts in Colier County, (2) the pharmacies and clinic loca-
tions in U.S. offering Flu vaccines, (3) the polygons of all
counties in the U.S., (4) popular hiking and biking trails in
the world, (5) the set of eco-regions in the world [22], (6) tra-
jectories of individuals of a location-based social networking
service, (7) the set of all housing parcels in the U.S.

We implemented and evaluated the following algorithms.
The first three are based on the integer programming solu-
tion, the next three are DFS and its variations, and the final
one is the randomized algorithm for points.

• Optnaive is the integer program but without our pro-
posed optimizations from Section 3.1.2. Each record
forms a single partition.

• Optmax is the algorithm described in Section 3 with ob-
jective Fmax in Equation (5).

• Optimp is the algorithm described in Section 3 with ob-
jective Fimp in Equation (6). Importance of a record is
a number between 0 and 1; we experimented with im-
portance chosen uniformly at random for each record, as
well as using a zipfian distribution. We discretize the
range and create equivalence classes by subdividing it
into 10 buckets: (0, 0.1], (0.1, 0.2], ... (0.9, 1).

• DFS implements Algorithm 2, i.e., a depth-first search.

• BFS is a baseline algorithm that is similar to Algo-
rithm 2, but instead traverses the spatial tree in a level-
by-level fashion, starting from the root, then sampling
for every node in the root’s children, and so on.

• DFSimp is the same as DFS, but performs weighted
sampling based on the record importance.

• Rand is Algorithm 5, which works for point datasets.

We use Optnaive only to demonstrate how well the optimiza-
tion framework can scale without the minimization tech-
nique. Since Rand only needs to assign random numbers
to records and does not involve any runtime thinning over-
head, we do not include figures from Rand. Rand consumes
only a constant memory and scales well to arbitrarily large
datasets.

All algorithms were implemented in Java 1.6. We used
Apache Simplex Solver[1] for our linear optimization. The
solver is a linear programming (LP) solver. We relaxed the
integer constraints as proposed in Section 3.2 and rounded
down solutions from the solver. We ran all experiments on a
desktop PC running Linux kernel 2.6.32 on a 2.67 GHz Intel
quad core processor with 12 GB of main memory. All exper-

iments were performed in-memory with a default memory of
1GB except the one for scalability where we used 4GB. The
visibility bound K was set to 500. For most figures, we
only show four datasets, since the values (e.g., Fimp) are at
a different scale and don’t fit in the plot; however, for our
scalability experiments we present results on the largest U.S.
parcel dataset.

6.2 Benefit of minimizing program size

Figure 4: Impact of Merging Partitions

We show effectiveness of the program size minimization
techniques in Section 3.1.2. Figure 4 shows the number of
variables input to the solver. The first bar of each dataset
is the number of variables before applying the optimization
techniques in Section 3.1.2. The second bar is the reduced
number of variables after merging partitions and considering
critical nodes. In general there is more than a two order of
magnitude reduction in the number of variables. For Flu,
there were originally 138,726 variables, but after minimizing
the program size, the number was reduced to 229. The re-
duction in the number of constraints was similar. The num-
ber of variables increases in Optimp because of its subparti-
tioning based on equivalence classes on importance. With-
out the proposed techniques for program size minimization,
it is virtually impossible to efficiently solve an optimization
problem of this scale.

6.3 Integer relaxation
We compared our integer program solution with the re-

laxed solution (Section 3.2). Although the relaxed solution
can theoretically be sub-optimal, in all 7 datasets we ob-
served identical solutions (i.e., relaxed solutions had integral
variable values), due to largely non-conflicting spatial distri-
butions of records. This shows that employing the relaxed
solution does not affect optimality (significantly).

6.4 Scalability
We study scalability using the US Parcel dataset, which

is our largest dataset. Figure 5 plots runtime versus the
number of records. To properly show the scale, Figure 5(a)
plots a small data size range (up to 100,000 records), and
Figure 5(b) plots a larger data size range (up to 20 million
records) showing BFS and DFS. We stop plotting an algo-
rithm if it takes more than 10 minutes or needed more than
4G of memory. It is obvious that Optnaive is not scalable at
all. It shows very sharp increase in runtime from the begin-
ning and cannot even handle thousands of records. Optmax

performs well until hundreds of thousands of records, but
after that the problem solving time becomes the bottleneck.

(a) All algorithms

(b) BFS & DFS

Figure 5: Scalability

Optimp generates more number of variables and constraints,
and thus is slower than Optmax.

BFS and DFS outperform the optimization-based tech-
niques by a large margin. The performance of BFS starts
to degrade at around ten million records. This is largely
due to the cost of memory management. At each stage, the
algorithm holds records corresponding to all nodes under
processing, which can consume a large amount of memory.
However, in DFS, there are at most Z nodes at any given
time, so it is much more efficient. We observe that DFS
scales fairly well up to 20 million records.

However, even DFS does not scale up above tens of mil-
lions of records due to its memory requirement. For point
datasets, Rand only consumes a constant amount memory
and can handle arbitrarily large datasets, including the Par-
cel dataset. To handle large polygon datasets, we are explor-
ing algorithms that are distributed over multiple machines.
The details are left for future work.

6.5 Importance and fairness objectives

Figure 6: Objective Based on Uniform Importance

First we consider optimality in datasets with importance.
Figure 6 shows Fimp values of various algorithms. By op-
timizing for Fimp, we can see Optimp achieves the highest
objective value for all data sets. We note that the objective
values of DFS and DFSimp are very close to that of Optmax,
with DFSimp being better than DFS. Further, as shown

Figure 7: Objective Based on Zipfian Importance

in Figure 7, using a zipfian distribution for importance en-
hances the gap between importance-based algorithms ver-
sus the importance-agnostic ones; in general, the more skew
there is in data, the more important it is to consider im-
portance in the objective. And we shall show shortly that
the DFS solutions are very efficient; hence, we infer that for
maximality, the DFS solutions is most appropriate.

We next present the impact of considering fairness. We
qualitatively compare the results of two different objective
functions: Fmax and Fimp. Figure 8(a) shows the result
from maximizing Fmax. Notice that the artifact of par-
titions are visible (as rectangular holes). This is because
Fmax only tries to maximize the sum, and may assign a
large value to one variable as long as the assignment does
not hurt the goal. In the example, the solver assigned 0 to
variables corresponding to empty holes assigning high val-
ues to others. While Fmax only cares about maximality,
Fimp considers importance. As we assign importance uni-
formly at random and subdivide each partition according to
the importance, the solver is not likely to choose everything
from one partition and nothing from the other. Figure 8(b)
depicts the result from Fimp with random importance. We
can see points are much more naturally distributed without
seeing artifacts of partitioning.

We note that using Fimp is one of many possible ways
to consider fairness. The L2 norm or adding a term for
minimizing deviation from the mean are other examples,
some of which would require a more powerful solver such as
CPLEX [4].

6.6 Optimization runtime

Figure 9: Breakup of Runtime

Figure 9 presents the break-down of runtime of each of
the optimization programs. For Optmax and Optimp, we
see a large fraction of the runtime is spent in building and

solving the optimization program. Optimp is the slowest due
to increased number of variables from subpartitioning. For
larger datasets, the problem solving is the dominating part.
A more powerful solver, such as CPLEX, will reduce the
runtime greatly.

7. RELATED WORK
While map visualizations of geographical data are used in

multiple commercial systems such as Google Maps [6] and
MapQuest [7], we believe that ours is the first paper to for-
mally introduce and study the thinning problem, which is
a critical component in some of these systems. The closest
body of related research work is that of cartographic gener-
alization [12, 25].

Cartographic generalization deals with selection and trans-
formation of geographic features on a map so that certain
visual characteristics are preserved at different map scales
[12, 28, 29]. This work generally involves domain exper-
tise in performing transformations while minimizing loss of
detail (e.g., merging nearby roads, aggregating houses into
blocks, and blocks into neighborhoods), and is a notoriously
difficult problem [12]. Our work can be used to complement
cartographic generalization in two ways. First, it can filter
out a subset of features to input into the generalization pro-
cess, and second, it can select a subset of the transformed
features to render on a map. For example, you could as-
sign importance to road segments in a road network, use
our method to select the most important segments in each
region, and then generalize those roads through an expen-
sive cartographic generalization process. A process related
to thinning is spatial clustering [18], which can be used to
summarize a map by merging spatially close records into
clusters. A major difference in our work is imposing spatial
constraints in the actual sampling of records.

Multiple studies have shown that clutter in visual repre-
sentation of data can have negative impact in user expe-
rience [24, 30]. The principle of equal information density
from the cartographic literature states that the number of
objects per display unit should be constant [12]. The pro-
posed framework can be thought of as an automated way
to achieve similar goals with constraints. DataSplash is a
system that helps users construct interactive visualizations
with constant information density by giving users feedback
about the density of visualizations [30]. However, the system
does not automatically select objects or force constraints.

The vast literature on top-K query answering in databases
(refer to [21] for a survey) is conceptually similar since even
in thinning we effectively want to show a small set of fea-
tures, as in top-K. However, work on top-K generally as-
sumes that the ranking of tuples is based on a pre-defined (or
at least independently assigned) score. However, the main
challenge in thinning is that of picking the right set of fea-
tures in a holistic fashion (thereby, assigning a “score” per
region per zoom level, based on the objective function and
spatial constraints). Therefore, the techniques from top-K
are not applicable in our setting.

Spatial data has been studied extensively in the database
community as well. However, the main focus has been on
data structures, e.g. [16, 27], query processing, e.g. [15, 20],
spatial data mining, e.g. [17] and scalability, e.g. [23]; these
are all largely orthogonal to our contributions. The spatial
index in Section 2 can be implemented with various data
structures studied, e.g. [16, 19].

(a) Flu with Fmax (b) Flu with Fimp

Figure 8: Results with Different Objective Functions

Sampling is a widely studied technique that is used in
many areas [10]. We note that our primary goal is to decide
the number of records to sample, while the actual sampling
is performed in a simple uniformly random process.

Finally, a large body of work has addressed the problem of
efficiently solving optimization problems. We used Apache
Simplex Solver [1] for ease of integration with our system.
Other powerful packages, such as CPLEX [4] also may be
used. The idea of converting an integer program into a re-
laxed (non-integer) formulation in Section 3.2 is a standard
trick applied in optimization theory in order to improve ef-
ficiency (by potentially compromising on optimality) [9].

8. CONCLUSIONS
We introduced and studied the thinning problem of effi-

ciently sampling regions from a geographical dataset for vi-
sualization on a map. The main challenges in the thinning
problem are effectively balancing spatial constraints imposed
by commercial maps systems (such as zoom consistency, vis-
ibility bound, and adjacency) with objective criteria (such
as maximality, fairness, and record importance), while scal-
ing to tens of millions of records. We introduced an opti-
mization framework that captures all constraints, and any
general objective function, and showed how to perform sev-
eral improvements to the base model to reduce the problem
to linear size. As our next contribution, we considered the
objective of maximality and showed intractability results,
and more efficient algorithms. We then considered the com-
mon case of points and showed an effective randomized al-
gorithm. Finally, we presented detailed experimental results
on real datasets in our commercial Fusion Tables system [14],
demonstrating the effectiveness of our techniques.

9. REFERENCES
[1] Apache simplex solver. http://commons.apache.org/math/.

[2] Arcgis. http://www.esri.com/software/arcgis/index.html.

[3] Cartodb. http://cartodb.com.

[4] Cplex. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

[5] Geocommons. http://geocommons.com/.

[6] Google maps. http://maps.google.com.

[7] Mapquest. http://mapquest.com.

[8] Oracle spatial. http://www.oracle.com/us/products/database/
options/spatial/index.html.

[9] S. Agmon. The relaxation method for linear inequalities.
Canadian Journal of Mathematics, 5(3):388–414, 1954.

[10] W. G. Cochran. Sampling Techniques, 3rd Edition. John
Wiley, 1977.

[11] S. Cohen, C. Li, J. Yang, and C. Yu. Computational
journalism: A call to arms to database researchers. In CIDR,
pages 148 – 151, 2011.

[12] A. U. Frank and S. Timpf. Multiple representations for
cartographic objects in a multi-scale tree - an intelligent
graphical zoom. Computers and Graphics, 18(6):823 – 829,
1994.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., 1979.

[14] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, W. Shen, and J. Goldberg-Kidon.
Google fusion tables: web-centered data management and
collaboration. In SIGMOD Conference, 2010.
http://www.google.com/fusiontables.

[15] S. Grumbach, P. Rigaux, and L. Segoufin. The dedale system
for complex spatial queries. In SIGMOD Conference, 1998.

[16] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47–57, 1984.

[17] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[18] J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering
methods in data mining: A survey. Geographic Data Mining
and Knowledge Discovery, pages 1 – 29, 2001.

[19] D. Hilbert. Uber die stetige abbildung einer linie auf ein
flachenstuck. Math. Ann., 38:459–460, 1891.

[20] G. R. Hjaltason and H. Samet. Incremental distance join
algorithms for spatial databases. In SIGMOD Conference,
pages 237–248, 1998.

[21] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k
query processing techniques in relational database systems.
ACM Comput. Surv., 40(4):11–58, 2008.

[22] D. M. Olson, E. Dinerstein, E. Wikramanayake, N. Burgess,
G. Powell, E. Underwood, J. D’amico, I. Itoua, H. Strand,
J. Morrison, C. Loucks, T. Allnutt, T. Ricketts, Y. Kura,
J. Lamoreux, W.W.Wettengel, P. Hedao, and K. Kassem.
Terrestrial ecoregions of the world: A new map of life on earth.
BioScience, 51:933–938, 2001.

[23] J. Patel, J. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. Hall,
K. Ramasamy, R. Lueder, C. Ellmann, J. Kupsch, S. Guo,
J. Larson, D. Dewitt, and J. Naughton. Building a scalable
geo-spatial dbms: Technology, implementation, and evaluation.
In SIGMOD Conference, pages 336–347, 1997.

[24] R. Phillips and L. Noyes. An investigation of visual clutter in
the topographic base of a geological map. Cartographic
Journal, 19(2):122 – 131, 1982.

[25] E. Puppo and G. Dettori. Towards a formal model for
multiresolution spatial maps. In International Simposium on
Large Spatial Database, pages 152–169, 1995.

[26] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[27] H. Samet. The design and analysis of spatial data structures.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[28] K. Shea and R. Mcmaster. Cartographic generalization in a
digital environment: When and how to generalize. AutoCarto,
9:56–67, 1989.

[29] M. J. Ware, C. B. Jones, and N. Thomas. Automated map
generalization with multiple operators: a simulated annealing
approach. International Journal of Geographical Information
Science, 17(8):743 – 769, 2003.

[30] A. Woodruff, J. Landay, and M. Stonebraker. Constant
information density in zoomable interfaces. In AVI, pages
57–65, 1998.

