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Abstract
Known algorithms applied to online logistic regression on a feasible set of L2 diameter D achieve
regret bounds like O(eD log T ) in one dimension, but we show a bound of O(

√
D + log T ) is

possible in a binary 1-dimensional problem. Thus, we pose the following question: Is it possible
to achieve a regret bound for online logistic regression that is O(poly(D) log(T ))? Even if this is
not possible in general, it would be interesting to have a bound that reduces to our bound in the
one-dimensional case.
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1. Introduction and Problem Statement

Online logistic regression is an important problem, with applications like click-through-rate predic-
tion for web advertising and estimating the probability that an email message is spam. We formalize
the problem as follows: on each round t the adversary selects an example (xt, yt) ∈ Rn × {−1, 1},
the algorithm chooses model coefficients wt ∈ Rn, and then incurs loss

`(wt;xt, yt) = log(1 + exp(−ytwt · xt)), (1)

the negative log-likelihood of the example under a logistic model. For simplicity we assume
‖xt‖2 ≤ 1 so that any gradient ‖O`(wt)‖2 ≤ 1. While conceptually any w ∈ Rn could be used as
model parameters, for regret bounds we consider competing with a feasible setW = {w | ‖w‖2 ≤
D/2}, the L2 ball of diameter D centered at the origin.

Existing algorithms for online convex optimization can immediately be applied. First-order
algorithms like online gradient descent (Zinkevich, 2003) achieve bounds like O(D

√
T ). On a

bounded feasible set logistic loss (Eq. (1)) is exp-concave, and so we can use second-order al-
gorithms like Follow-The-Approximate-Leader (FTAL), which has a general bound of O(( 1α +
GD)n log T ) (Hazan et al., 2007) when the loss functions are α-exp-concave on the feasible set; we
have α = e−D/2 for the logistic loss (see Appendix A), which leads to a bound of O((exp(D) +
D)n log T ) in the general case, or O(exp(D) log T ) in the one-dimensional case. The exponen-
tial dependence on the diameter of the feasible set can make this bound worse than the O(D

√
T )

bounds for practical problems where the post-hoc optimal probability can be close to zero or one.
We suggest that better bounds may be possible. In the next section, we show that a sim-

ple Follow-The-Regularized-Leader (FTRL) algorithm can achieve a much better result, namely
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O(
√
D+ log T ), for one-dimensional problems where the adversary is further constrained1 to pick

xt ∈ {−1, 0,+1}. A single mis-prediction can cost about D/2, and so the additive dependence on
the diameter of the feasible set is less than the cost of one mistake. The open question is whether
such a bound is achievable for problems of arbitrary finite dimension n. Even the general one-
dimensional case, where xt ∈ [−1, 1], is not obvious.

2. Analysis in One Dimension

We analyze an FTRL algorithm. We can ignore any rounds when xt = 0, and then since only the
sign of ytxt matters, we assume xt = 1 and the adversary picks yt ∈ {−1, 1}. The cumulative loss
function on P positive examples and N negative examples is

c(w;N,P ) = P log(1 + exp(−w)) +N log(1 + exp(w)).

LetNt denote the number of negative examples seen through the t’th round, with Pt the correspond-
ing number of positive examples. We play FTRL, with

wt+1 = arg min
w

c(w;Nt + λ, Pt + λ),

for a constant λ > 0. This is just FTRL with a regularization function r(w) = c(w;λ, λ). Using the
FTRL lemma (e.g., McMahan and Streeter (2010, Lemma 1)), we have

Regret ≤ r(w∗) +
T∑
t=1

ft(wt)− ft(wt+1)

where ft(w) = `(w;xt, yt).
It is easy to verify that r(w) ≤ λ(|w| + 2 log 2). It remains to bound ft(wt) − ft(wt+1). Fix

a round t. For compactness, we write N = Nt−1 and P = Pt−1. Suppose that yt = −1, so
Nt = N +1 and Pt = P (the case when yt+1 = +1 is analogous). Since ft is convex, by definition
ft(w) ≥ ft(wt) + gt(w − wt) where gt = Oft(wt). Taking w = wt+1 and re-arranging, we have

ft(wt)− ft(wt+1) ≤ gt(wt − wt+1) ≤ |gt||wt − wt+1|.

It is easy to verify that |gt| ≤ 1, and also that

wt = log

(
P + λ

N + λ

)
.

Since yt = −1, wt+1 < wt, and so

|wt − wt+1| = log

(
P + λ

N + λ

)
− log

(
P + λ

N + 1 + λ

)
= log(N + 1 + λ)− log(N + λ)

= log

(
1 +

1

N + λ

)
≤ 1

N + λ
.

1. Constraining the adversary in this way is reasonable in many applications. For example, re-scaling each xt so
‖xt‖2 = 1 is a common pre-processing step, and many problems also are naturally featurized by xt,i ∈ {0, 1},
where xt,i = 1 indicates some property i is present on the t’th example.
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Thus, if we let T− = {t | yt = −1}, we have

∑
t∈T−

ft(wt)− ft(wt+1) ≤
NT∑
N=0

1

N + λ
≤ 1

λ
+

NT∑
N=1

1

N
≤ 1

λ
+ log(NT ) + 1.

Applying a similar argument to rounds with positive labels and summing over the rounds with
positive and negative labels independently gives

Regret ≤ λ(|w∗|+ 2 log 2) + log(PT ) + log(NT ) +
2

λ
+ 2.

Note log(PT ) + log(NT ) ≤ 2 log T . We wish to compete with w∗ where |w∗| ≤ D/2, so we can
choose λ = 1√

D/2
which gives

Regret ≤ O(
√
D + log T ).
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Appendix A. The Exp-Concavity of the Logistic Loss

Theorem 1 The logistic loss function `(wt;xt, yt) = log(1 + exp(−ytwt · xt)), from Eq. (1), is
α-exp-concave with α = exp(−D/2) over set W = {w | ‖w‖2 ≤ D/2} when ‖xt‖2 ≤ 1 and
yt ∈ {−1, 1}.

Proof Recall that a function ` is α-exp-concave if O2 exp(−α`(w)) � 0. When `(w) = g(w ·x) for
x ∈ Rn, we have O2 exp(−α`(w)) = O2f ′′(z)xx>, where f(z) = exp(−αg(z)). For the logistic
loss, we have g(z) = log(1+ exp(z)) (without loss of generality, we consider a negative example),
and so f(z) = (1 + exp(z))−α. Then,

f ′′(z) = αez(1 + ez)−α−2(αez − 1).

We need the largest α such that f ′′(z) ≤ 0, given a fixed z. We can see by inspection that α = 0
is a zero. Since ez(1 + ez)−α−2 > 0, from the term (αez − 1) we conclude α = e−z is the largest
value of α where f ′′(z) ≤ 0. Note that z = wt · xt, and so |z| ≤ D/2 since ‖xt‖2 ≤ 1, and so
taking the worst case over wt ∈ W and xt with ‖xt‖2 ≤ 1, we have α = exp(−D/2).
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