Open Problem: Better Bounds for Online Logistic Regression

H. Brendan McMahan
MCMAHAN@ GOOGLE.COM
Google Inc., Seattle, WA

Matthew Streeter
MSTREETER@GOOGLE.COM
Google Inc., Pittsburgh, PA

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract

Known algorithms applied to online logistic regression on a feasible set of L_{2} diameter D achieve regret bounds like $\mathcal{O}\left(e^{D} \log T\right)$ in one dimension, but we show a bound of $\mathcal{O}(\sqrt{D}+\log T)$ is possible in a binary 1-dimensional problem. Thus, we pose the following question: Is it possible to achieve a regret bound for online logistic regression that is $\mathcal{O}(\operatorname{poly}(D) \log (T))$? Even if this is not possible in general, it would be interesting to have a bound that reduces to our bound in the one-dimensional case.

Keywords: online convex optimization, online learning, regret bounds

1. Introduction and Problem Statement

Online logistic regression is an important problem, with applications like click-through-rate prediction for web advertising and estimating the probability that an email message is spam. We formalize the problem as follows: on each round t the adversary selects an example $\left(x_{t}, y_{t}\right) \in \mathbb{R}^{n} \times\{-1,1\}$, the algorithm chooses model coefficients $w_{t} \in \mathbb{R}^{n}$, and then incurs loss

$$
\begin{equation*}
\ell\left(w_{t} ; x_{t}, y_{t}\right)=\log \left(1+\exp \left(-y_{t} w_{t} \cdot x_{t}\right)\right) \tag{1}
\end{equation*}
$$

the negative log-likelihood of the example under a logistic model. For simplicity we assume $\left\|x_{t}\right\|_{2} \leq 1$ so that any gradient $\left\|\nabla \ell\left(w_{t}\right)\right\|_{2} \leq 1$. While conceptually any $w \in \mathbb{R}^{n}$ could be used as model parameters, for regret bounds we consider competing with a feasible set $\mathcal{W}=\left\{w \mid\|w\|_{2} \leq\right.$ $D / 2\}$, the L_{2} ball of diameter D centered at the origin.

Existing algorithms for online convex optimization can immediately be applied. First-order algorithms like online gradient descent (Zinkevich, 2003) achieve bounds like $\mathcal{O}(D \sqrt{T})$. On a bounded feasible set logistic loss (Eq. (1)) is exp-concave, and so we can use second-order algorithms like Follow-The-Approximate-Leader (FTAL), which has a general bound of $\mathcal{O}\left(\left(\frac{1}{\alpha}+\right.\right.$ $G D) n \log T)$ (Hazan et al., 2007) when the loss functions are α-exp-concave on the feasible set; we have $\alpha=e^{-D / 2}$ for the logistic loss (see Appendix A), which leads to a bound of $\mathcal{O}((\exp (D)+$ D) $n \log T)$ in the general case, or $\mathcal{O}(\exp (D) \log T)$ in the one-dimensional case. The exponential dependence on the diameter of the feasible set can make this bound worse than the $\mathcal{O}(D \sqrt{T})$ bounds for practical problems where the post-hoc optimal probability can be close to zero or one.

We suggest that better bounds may be possible. In the next section, we show that a simple Follow-The-Regularized-Leader (FTRL) algorithm can achieve a much better result, namely
$\mathcal{O}(\sqrt{D}+\log T)$, for one-dimensional problems where the adversary is further constrained ${ }^{1}$ to pick $x_{t} \in\{-1,0,+1\}$. A single mis-prediction can cost about $D / 2$, and so the additive dependence on the diameter of the feasible set is less than the cost of one mistake. The open question is whether such a bound is achievable for problems of arbitrary finite dimension n. Even the general onedimensional case, where $x_{t} \in[-1,1]$, is not obvious.

2. Analysis in One Dimension

We analyze an FTRL algorithm. We can ignore any rounds when $x_{t}=0$, and then since only the sign of $y_{t} x_{t}$ matters, we assume $x_{t}=1$ and the adversary picks $y_{t} \in\{-1,1\}$. The cumulative loss function on P positive examples and N negative examples is

$$
c(w ; N, P)=P \log (1+\exp (-w))+N \log (1+\exp (w))
$$

Let N_{t} denote the number of negative examples seen through the t 'th round, with P_{t} the corresponding number of positive examples. We play FTRL, with

$$
w_{t+1}=\underset{w}{\arg \min } c\left(w ; N_{t}+\lambda, P_{t}+\lambda\right)
$$

for a constant $\lambda>0$. This is just FTRL with a regularization function $r(w)=c(w ; \lambda, \lambda)$. Using the FTRL lemma (e.g., McMahan and Streeter (2010, Lemma 1)), we have

$$
\text { Regret } \leq r\left(w^{*}\right)+\sum_{t=1}^{T} f_{t}\left(w_{t}\right)-f_{t}\left(w_{t+1}\right)
$$

where $f_{t}(w)=\ell\left(w ; x_{t}, y_{t}\right)$.
It is easy to verify that $r(w) \leq \lambda(|w|+2 \log 2)$. It remains to bound $f_{t}\left(w_{t}\right)-f_{t}\left(w_{t+1}\right)$. Fix a round t. For compactness, we write $N=N_{t-1}$ and $P=P_{t-1}$. Suppose that $y_{t}=-1$, so $N_{t}=N+1$ and $P_{t}=P$ (the case when $y_{t+1}=+1$ is analogous). Since f_{t} is convex, by definition $f_{t}(w) \geq f_{t}\left(w_{t}\right)+g_{t}\left(w-w_{t}\right)$ where $g_{t}=\nabla f_{t}\left(w_{t}\right)$. Taking $w=w_{t+1}$ and re-arranging, we have

$$
f_{t}\left(w_{t}\right)-f_{t}\left(w_{t+1}\right) \leq g_{t}\left(w_{t}-w_{t+1}\right) \leq\left|g_{t}\right|\left|w_{t}-w_{t+1}\right|
$$

It is easy to verify that $\left|g_{t}\right| \leq 1$, and also that

$$
w_{t}=\log \left(\frac{P+\lambda}{N+\lambda}\right)
$$

Since $y_{t}=-1, w_{t+1}<w_{t}$, and so

$$
\begin{aligned}
\left|w_{t}-w_{t+1}\right| & =\log \left(\frac{P+\lambda}{N+\lambda}\right)-\log \left(\frac{P+\lambda}{N+1+\lambda}\right) \\
& =\log (N+1+\lambda)-\log (N+\lambda) \\
& =\log \left(1+\frac{1}{N+\lambda}\right) \leq \frac{1}{N+\lambda}
\end{aligned}
$$

1. Constraining the adversary in this way is reasonable in many applications. For example, re-scaling each x_{t} so $\left\|x_{t}\right\|_{2}=1$ is a common pre-processing step, and many problems also are naturally featurized by $x_{t, i} \in\{0,1\}$, where $x_{t, i}=1$ indicates some property i is present on the t^{\prime} th example.

Thus, if we let $T^{-}=\left\{t \mid y_{t}=-1\right\}$, we have

$$
\sum_{t \in T^{-}} f_{t}\left(w_{t}\right)-f_{t}\left(w_{t+1}\right) \leq \sum_{N=0}^{N_{T}} \frac{1}{N+\lambda} \leq \frac{1}{\lambda}+\sum_{N=1}^{N_{T}} \frac{1}{N} \leq \frac{1}{\lambda}+\log \left(N_{T}\right)+1
$$

Applying a similar argument to rounds with positive labels and summing over the rounds with positive and negative labels independently gives

$$
\text { Regret } \leq \lambda\left(\left|w^{*}\right|+2 \log 2\right)+\log \left(P_{T}\right)+\log \left(N_{T}\right)+\frac{2}{\lambda}+2
$$

Note $\log \left(P_{T}\right)+\log \left(N_{T}\right) \leq 2 \log T$. We wish to compete with w^{*} where $\left|w^{*}\right| \leq D / 2$, so we can choose $\lambda=\frac{1}{\sqrt{D / 2}}$ which gives

$$
\text { Regret } \leq \mathcal{O}(\sqrt{D}+\log T)
$$

References

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Mach. Learn., 69, December 2007.
H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization. In COLT, 2010.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.

Appendix A. The Exp-Concavity of the Logistic Loss

Theorem 1 The logistic loss function $\ell\left(w_{t} ; x_{t}, y_{t}\right)=\log \left(1+\exp \left(-y_{t} w_{t} \cdot x_{t}\right)\right)$, from Eq. (1), is α-exp-concave with $\alpha=\exp (-D / 2)$ over set $\mathcal{W}=\left\{w \mid\|w\|_{2} \leq D / 2\right\}$ when $\left\|x_{t}\right\|_{2} \leq 1$ and $y_{t} \in\{-1,1\}$.

Proof Recall that a function ℓ is α-exp-concave if $\nabla^{2} \exp (-\alpha \ell(w)) \preceq 0$. When $\ell(w)=g(w \cdot x)$ for $x \in \mathbb{R}^{n}$, we have $\nabla^{2} \exp (-\alpha \ell(w))=\nabla^{2} f^{\prime \prime}(z) x x^{\top}$, where $f(z)=\exp (-\alpha g(z))$. For the logistic loss, we have $g(z)=\log (1+\exp (z))$ (without loss of generality, we consider a negative example), and so $f(z)=(1+\exp (z))^{-\alpha}$. Then,

$$
f^{\prime \prime}(z)=\alpha e^{z}\left(1+e^{z}\right)^{-\alpha-2}\left(\alpha e^{z}-1\right)
$$

We need the largest α such that $f^{\prime \prime}(z) \leq 0$, given a fixed z. We can see by inspection that $\alpha=0$ is a zero. Since $e^{z}\left(1+e^{z}\right)^{-\alpha-2}>0$, from the term $\left(\alpha e^{z}-1\right)$ we conclude $\alpha=e^{-z}$ is the largest value of α where $f^{\prime \prime}(z) \leq 0$. Note that $z=w_{t} \cdot x_{t}$, and so $|z| \leq D / 2$ since $\left\|x_{t}\right\|_{2} \leq 1$, and so taking the worst case over $w_{t} \in \mathcal{W}$ and x_{t} with $\left\|x_{t}\right\|_{2} \leq 1$, we have $\alpha=\exp (-D / 2)$.

