Building Useful Program Analysis Tools Using an Extensible Java Compiler

Edward Aftandilian, Raluca Sauciuc
Google, Inc.
Mountain View, CA, USA
{eaftan, ralucas}@google.com

Abstract—Large software companies need customized tools
to manage their source code. These tools are often built in
an ad-hoc fashion, using brittle technologies such as regular
expressions and home-grown parsers. Changes in the language
cause the tools to break. More importantly, these ad-hoc tools
often do not support uncommon-but-valid code code patterns.

We report our experiences building source-code analysis
tools at Google on top of a third-party, open-source, extensible
compiler. We describe three tools in use on our Java codebase.
The first, Strict Java Dependencies, enforces our dependency
policy in order to reduce JAR file sizes and testing load. The
second, error-prone, adds new error checks to the compilation
process and automates repair of those errors at a whole-
codebase scale. The third, Thindex, reduces the indexing
burden for a Java IDE so that it can support Google-sized
projects.

Keywords-compilers; static analysis; bug finding; indexing;
dependency checking.

I. INTRODUCTION

Google’s source code repository is monolithic, promoting
reusability and allowing the same versioning, build and test
infrastructure across all languages. A developer is free to use
any library within the repository, thus minimizing the need
to branch out or re-implement the same functionality since
different projects can take advantage of common code. This
high degree of coupling across millions of lines of code is
mitigated by a distributed, incremental build system [1] and
a similar continuous integration testing system [2]. Since
development always happens on “head,” it should come as
no surprise that 20+ changes happen every minute, and 50%
of the code changes every month [3].

Development at this speed and scale raises a new set
of challenges, affecting not only Google but most large
software companies who need customized tools to manage
their source code. For example, a company may want to
enforce style rules, check for library-specific error patterns,
enforce dependency constraints between internal compo-
nents, make whole-codebase changes, and so on. These are
all instances where an IDE could have helped (if only the
codebase were small enough!), but they are now handled
by ad-hoc program analysis and source-to-source translation
tools. Generally these tools use simple techniques such as
regular expressions and homegrown parsers to accomplish

Siddharth Priya, Sundaresan Krishnan
Google, Inc.
Hyderabad, India
{siddharth, sunkrish}@ google.com

a specific task, but they fail for several reasons. First, ad-
hoc program analysis tools are often brittle and break on
uncommon-but-valid code patterns. Second, simple ad-hoc
tools don’t provide sufficient information to perform many
non-trivial analyses, including refactorings. Type and symbol
information is especially useful, but amounts to writing a
type-checker. Finally, more sophisticated program analysis
tools are expensive to create and maintain, especially as the
target language evolves.

In this paper, we present our experience building special-
purpose tools on top of the the piece of software in our
toolchain that is in the best position to understand source
code: the compiler. The compiler by definition must accept
all valid code in a given language, and many valuable
analyses can be performed using data structures that the
compiler must compute anyway, such as the abstract syntax
tree. And since the compiler must be run to generate target
code, by piggybacking on existing compiler computations,
we can minimize the performance and workflow impact of
any additional analyses that we incorporate. In addition, the
maintenance burden on the organization is reduced, since
fewer ad-hoc tools must be maintained.

The other critical aspect when considering custom code
analysis tools is their integration into the developer work-
flow. When the rate of changes is high, continuous integra-
tion is necessary to ensure that the product stays releasable.
Detecting breakages and fixing them long after the offending
code has been submitted will only slow down the release
process and increase its cost. On the other hand, it is also
expensive if the developer has to run and wait on tools
outside the usual edit-compile-submit cycle.

By building on our production compiler, we are able
to integrate all these special-purpose tools into the build
system without incurring a performance penalty. We describe
three tools in production use at Google that leverage the
OpenJDK javac compiler to implement useful analyses. The
first, Strict Java Dependencies, instruments the compiler
to find unneeded dependencies and reduce build, test, and
runtime costs. The second, error-prone, adds a framework to
the compiler both to add additional errors that are triggered
at compile time and to automate large-scale repair of such
errors that already exist in our codebase. The third, Thindex,
uses the compiler to reduce the source code indexing burden



on a Java IDE in use at Google.
Our contributions are as follows:

public class JavaCompiler implements SourceCompleter {
/#*% The compilation context #*/
protected Context context;
/++ The log to be used for error reporting x/
public Log log;
/*+ The symbol table =*/
protected Symtab symtab;
/*% The type attributor =/
protected Attr attr;
/*+ Access to file objects x/
protected JavaFileManager fileManager;

e We present our experience with reusing the javac
compiler APIs for non-trivial program analyses and
advocate for “opening up” production compilers into
extensible frameworks for the benefit of large-scale
development.

e We provide experimental evidence on how these
compiler-based analyses fit into our development work-

flow and he]p us manage our huge Java codebase. public static JavaCompiler instance (Context ctx);
public JCCompilationUnit parse (JavaFileObject file);
public Env<AttrContext> attribute (Env<AttrContext> env);

public Env<AttrContext> flow (Env<AttrContext> env);

II. EXTENDING OPENJDK’S JAVA COMPILER

JSR 199 [4], or the “Java Compiler APL,” first available in
JDK 6, has been the first step in opening up the compilation
pipeline for custom tools, by providing the ability to invoke
the compiler via an API. Essentially all the ingredients
were provided for compiling code on the fly and loading
the generated classes. The public API offers an incomplete
handle on the full functionality of the compiler, and while
work is under way to address some of the problems (such
as JSR 203 [5]), we will describe our extensions and the
abstractions we believe should be exposed via a public APIL
Initiatives similar to ours gave rise to Roslyn (Microsoft’s
complete retooling of the .Net compilers), Dehydra [6] and
Pork [7] (Mozilla’s GCC plugin for static analysis and
refactoring engine) and the Clang frontend [8]. We show
how little is needed to bring javac into a powerful toolchain.

The package com. sun.tools. javac.main provides
the main entry point, the class JavaCompiler, as the
means to construct a new compiler and run different com-
pilation phases on a set of source files. A snippet of its
signature is shown in Figure 1; note that we will provide
only a brief overview and point the interested reader to the
JavaDoc. The Context object acts as a repository for all
the compiler’s components. Each component is registered
with a key, and the compiler looks up its components (such
as the symbol table, the type attributor, the class reader, etc.)
via keys. Extending any one of them amounts to subclassing
and registering the new component with the parent’s key. For
instance, one can extend the Log class, used for emitting
warnings and errors, and provide more visually appealing
messages. Most of the compiler’s functionality can be altered
this way.

Another important abstraction of the JavaCompiler is the
file manager, which also supports custom extensions via the
ForwardingJavaFileManager wrapper. In a nutshell,
the compiler sees all files (JARs, source and class files) as
JavaFileObjects. The file manager handles the creation
of these JavaFileObjects and is free to manipulate their
contents, for example by constructing the sources on the fly
or keeping the generated classes in memory. JSR 203 brings
the ability to easily inject user-provided filesystems.

All the phases of the compiler are exposed as public
methods: parsing, annotation processing, type attribution,

public void close();

Figure 1. Interface for the Open]DK JavaCompiler class.

dataflow checks, lowering and code generation, etc. They
operate on the abstract syntax trees via the TreeScanner
visitor. The only abstractions missing are a mechanism to
register callbacks and perform custom processing after each
phase, and custom command-line flags. This forces us to
subclass the JavaCompiler and override the methods of
interest, in order to insert hooks anywhere in the compilation
pipeline. The Context allows us to pass extra information
to the compiler after parsing the custom command-line
flags, while the Log class makes it easy to emit custom
warnings and errors as our analyses dictate. Our analyses
are expressed as TreeScanners, typically running after
type attribution when all types have been resolved and the
symbol table is complete. With this architecture, it is easy
to construct plugins and “register” them with the Context,
extending the functionality of the compiler.

III. STRICT JAVA DEPENDENCIES
A. The Build System

Let us consider the simple example in Figure 2. A BUILD
file contains the project specification, which in our case
comprises three targets, two Java libraries and a test suite.
For each target, we declare the source files and the direct
dependencies, or deps, needed for compilation. Figure 3
shows the corresponding dependency graph, with gray nodes
representing either source or generated files, and white nodes
representing the build targets. During the build, an action is
constructed for each target based on its type. In our example,
for each java_library there will be a corresponding
invocation of the javac compiler, with the classpath set to
the transitive closure of all the dependent targets’ outputs,
which are their corresponding JAR files, and the output being
another JAR file.

The dependency graph is topologically sorted, and inde-
pendent actions will be scheduled in parallel and distributed



java_library (name=’1ibA’,
srcs=['A.java’],

deps=[’:11ibB’1])
java_library (name=’11ibB’,
srcs=[’'B.java’, ’'BImpl.java’l,

deps=['path/to/C:1ibC’])
java_test (name='testA’,
["UnitTestsForA.java’'l,
[’

srcs=
deps=[’:1ibA’])
Figure 2.  An example BUILD file. The BUILD file defines two Java

library targets, which correspond to output JAR files, and one Java test
target, which defines a set of tests to run.

libA.jar |- UnitTestsForA.java
»,_“."
IbA
libB.jar A.java
libC.jar

C.java

Figure 3. The dependency graph for the sample BUILD file in Figure 2.

across different build servers. This also implies that when-
ever a target is changed, everything in the transitive closure
of the reverse graph will need to be rebuilt. Moreover, the
continuous integration system runs all affected tests for each
submitted change, so all test targets that depend directly or
transitively on the modified target will have to be re-run.
In our example, the unit tests in testA will be run when
either 1ibA, 1ibB, 1ibC or any of their dependencies
change. Given the rate of changes and the size of our
repository, one can understand the demands on the build
and test infrastructure.

Manually specifying dependencies simplifies the build
process since there is no need for a dependency extraction
phase, as the dependency graph is fully specified in BUILD
files. For Java code, automatically extracting the dependen-
cies requires the code to be fully parsed, which is the most
expensive part of compilation. The disadvantage of declared
dependencies is that over time they tend to drift away from
the real dependencies, especially when the rate of change
is high and developers keep adding dependencies until the
code builds.

As a consequence, due to the transitive nature of depen-
dencies, if a low-level core library is compiled with even
a few dozen JARs on the classpath, client libraries and

user-facing binaries end up with hundreds, if not thousands,
of JARs as dependencies. Even with a highly parallel and
distributed build, the critical path is impacted since the
compiler has to wait for I/O while indexing through a huge
classpath. These numbers are typical for any monolithic and
finely grained project repository (for similar data on the C++
side, see [9], [10]).

Open-source projects using Maven [11] or similar Java
build systems end up with fewer JARs on the classpath
mainly because the boundaries between libraries are sta-
ble and code reuse is restricted by the narrow APIs that
library developers choose to expose for a particular version.
Dependency versioning is a problem, i.e. when trying to
upgrade just a subset of dependencies to a newer version,
conflicts can arise between these and older versions of the
same dependencies being pulled in through other depen-
dent libraries. Especially problematic are newer versions
that offer slightly different functionality and APIs. Google
avoids these versioning issues by building everything from
HEAD, and the continuous integration system catches any
incompatibilities early on through unit tests.

B. Overspecified and Underspecified Dependencies

Returning to the dependency graph of Figure 3, let us
consider the case when B. java doesn’t actually need 1ibC
to compile. The build system cannot detect this case, and
the compiler will not complain if the classpath contains
unneeded entries. However, the impact of these unneeded
or overspecified dependencies is considerable.

First, the classpaths for all targets depending on 1ibB,
such as 1ibA, will be larger, which translates into more
I/O and longer compile times. Second, a change to 1ibC
will be detected by the continuous build system, triggering
unnecessary recompilations and test runs for all dependent
targets, such as testA. Third, the sizes of all dependent
binaries will increase by having to include the unused classes
from 1ibC.

The related concept of an underspecified dependency can
be illustrated if we assume A . java needs 1ibC to compile.
Apparently this is not a problem, since 1ibC. jar will
always be on the transitive classpath of 1ibA because of
1ibB. However, this dependency prevents the removal of
the unneeded dependency from 1ibB to 1ibC, as doing so
will break the build for 1ibA.

Previous attempts at dealing with incorrectly specified
dependencies included tools that parsed the Java code with
regular expressions, looking at the import statements, or
tools that relied on first building the target and then extract-
ing dependencies from the generated bytecode. These tools
were designed to be manually invoked after the build, at the
developer’s convenience. Since no enforcement mechanism
was in place, the bad dependencies proliferated.



C. Compiler Hooks

We integrate the dependency checking as a plugin for
our extensible compiler. The build tool has to pass addi-
tional information to the compiler, essentially specifying for
each JAR on the classpath whether it was provided by a
direct or an indirect (transitive) dependency. We use two
new command line flags, ——direct-dependency and
-—indirect-dependency, each linking a JAR on the
classpath to its originating target. The compiler consumes
these custom flags and builds two dependency maps to be
passed to the dependency checking plugin.

The plugin registers two callbacks, one for the type
attribution phase and one for the end of compilation. After
the type attribution phase, we use a TreeScanner to
walk the ASTs, and for each type literal encountered, we
check whether the type was resolved from the classpath
JARs by consulting the two maps. If the type was resolved
from an indirect dependency, we emit a warning through the
provided Log object, pointing to the dependency that should
have been declared in the deps section. This effectively
handles the underspecified dependencies. The other callback
is invoked at the end of the compilation, when the symbol
table is scanned and for all the types encountered we mark
their corresponding JARs. Then, we emit a warning for every
JAR that hasn’t been marked, as it is a potential overspecified
compile-time dependency.

D. Evaluation

We ran a build of the whole repository and collected the
warnings emitted by the compiler for each Java target. In
total, 29% of the declared direct dependencies were marked
as unneeded by the compiler. These included runtime depen-
dencies, which we then heuristically filtered out, lowering
the ratio to 10%. For each of these dependencies, we checked
whether removing them would impact the declaring target,
because in some cases they would be required by other
dependencies in the transitive closure of the declaring target.
5% of the dependencies turned out to be truly overspecified
dependencies, no longer referenced by any of the source
files in their respective targets or dependent libraries. Quan-
tifying the exact overhead the unneeded dependencies add
to our build and test infrastructure is very hard due to the
incremental nature of these systems and the caching layers.
However, our experiments so far indicate a reduction of up
to 5% in binary sizes, a metric that correlates with the first.

Currently we are in the process of pruning the over-
specified dependencies from the codebase, and carefully
adding all the underspecified (missing direct) dependencies.
The latter step is necessary to prevent upstream projects
from suddenly failing to build. While we cannot turn these
dependency checks into errors globally until the codebase is
clean, we mark the already compliant targets with a special
attribute which promotes the checks to errors, locally. By

integrating with the build system, we can effectively prevent
the code from being checked in with incorrect dependencies.

IV. ERROR-PRONE
A. Motivation

Any sufficiently large software system contains bugs.
Many bugs are very simple—off-by-one errors, violations
of API contracts, even spelling errors—and can be detected
with a bug pattern detector like FindBugs [12]. Beyond
static analysis, software engineering best practices such as
code review and unit testing aim to prevent these bugs from
being checked into production code. Yet these bugs persist
even when all these techniques are used.

To address these bugs, we developed error-prone. error-
prone builds on top of javac to perform FindBugs-style static
checks on Java source code. error-prone presents its results
as compiler errors, no different from the other errors that
javac presents to users. The interface is familiar, results are
presented early, while the developer is still working on the
code, and most importantly, it prevents these errors from
entering the codebase—code with these errors will not even
compile. error-prone encodes a small set of error checks
(currently six, with an goal of 15-20). The errors detected
are serious and almost always errors; this avoids warning
fatigue. Finally, error-prone can also be used to detect and
repair defects at the scale of Google’s whole codebase.
error-prone checks include a “suggested fix,” which encodes
a potential repair for the problem detected. We run the
checks over our whole codebase in parallel and apply fixes
automatically, freeing programmers from manually fixing
existing instances of a specific bug. At that point the error
check can be turned on in the compiler, and the compiler
then enforces that the bug can never recur, eradicating it
from the codebase.

error-prone is extensible with new checks and config-
urable to include different sets of checks. The checking
portion is open-source and freely available [13].

B. Using error-prone

In this section we describe the usage of error prone: how
it is implemented, how errors are presented to the user, how
new checks are written, and how our checks may be used
for automatic repair of errors.

1) Implementation: We implemented error-prone as an
additional compiler pass in javac, as described in Section II.
For error-prone, we perform our error checking pass after
the flow phase of the compiler, during which a dataflow
analysis is computed to look for errors. At this point, all
type attribution and symbol information is available for our
analyses.

Our current checks are very simple. They are intrapro-
cedural and do not require dataflow analysis. Thus, we can
implement them as a scanner over AST nodes.



We provide a set of matchers that can be used to write
error-prone checks. The matchers are declarative, compos-
able predicates on AST nodes and can be thought of as an
embedded domain-specific language. In Figure IV-B3, we
show an example of how these matchers can be composed
to implement an error check. The current set of matchers is
small; we expect the library to grow as we implement more
checks and learn what code patterns users want to match on.

2) User Interface: error-prone analysis results are pre-
sented as compiler errors, so any detected errors will cause
the compilation to fail. Thus, we have to select only checks
with a low false-positive rate. On the other hand, this
approach guarantees that instances of these bugs will be
fixed, since otherwise the compilation will fail. In addition,
the interface is familiar to developers, and our existing
development tools do not have to be modified to present
the results. Finally, since results are presented early in the
development process, the bugs detected are less costly to fix.

In some corner cases, there may be a legitimate reason
for an outlawed code pattern to appear. For example, there
may be test code that checks that an exceptional condition
is triggered on an error, or there may be compiler test cases
that ensure the compiler does not crash on an erroneous code
pattern. For these cases, we provide an escape valve: the
SuppressWarnings annotation [14]. The user may annotate
her code with the SuppressWarnings annotation, passing the
name of the check to suppress as an argument, and error-
prone will not run that error check on that node and its
children.

3) Writing Checks: Checks are written as boolean pred-
icates on javac AST nodes. The predicates may be writ-
ten procedurally or by composing the declarative matchers
mentioned in Section IV-B1. To show how an error-prone
check is written, we describe our implementation of a check
for a common error in uses of the open-source Google
Core Libraries [15]. The library provides a utility method,
Preconditions.checkNotNull, that ensures that a
reference is not null. This method takes two arguments. The
first is an Object that represents the reference that should
not be null. The second is an Object that represents the
message to display on error; this is usually a constant string.
A common error is to swap the order of the arguments,
passing the constant string as the reference to be checked
for non-nullity. Since a constant can never be null, the check
trivially passes.

The predicate code for this example is shown in Fig-
ure IV-B3. The matches method takes a tree node of
type MethodInvocationTree (javac’s representation of
method calls) and determines whether:

o It is a call to a static method (line 3).

e The fully qualified name of the method is
com.google.common.base.Preconditions.
checkNotNull (line 3).

o The first argument is a string literal (line 4).

Note that the method is written in a declarative style and
does not require much understanding of the java AST. error-
prone wraps that complexity in its matcher library.

C. Automatic Repair

error-prone checks provide a “suggested fix” for the
detected problem. In the case where the problem is detected
at compile time, the suggested fix is presented in the error
message, as shown in Figure IV-C.

The suggested fix code for the Precondi-
tions.checkNotNull checker is shown in Figure IV-C.
Our library provides utility methods for deleting whole
AST nodes, replacing or swapping nodes, reflowing overly-
long lines, and adding or removing import statements when
necessary.

We use the same facility to automatically repair code
when making large-scale changes. We run error-prone over
the whole Google Java codebase in parallel using Flume-
Java [16], but instead of emitting errors, error-prone emits
textual diffs containing the suggested fix. We can then apply
the diffs to our codebase, scrubbing it of all instances of this
error before turning on the check in the compiler. Thus we
reduce the pain of fixing existing instances, and we avoid
breaking existing builds when we turn on the error check.

Suggested fixes are not required to be semantics-
preserving. In fact, in most cases the fix should change
the behavior of the program. For example, in the Pre-
conditions.checkNotNull example above, the semantics-
preserving fix would be to simply remove the call to the
checkNotNull method. However, the intent of the program-
mer was to check that the non-constant argument was non-
null, so our suggested fix swaps the order of the arguments.
We rely on our continuous testing infrastructure to reduce the
likelihood of breakages, and we request human code reviews
for riskier changes, in which the programmer’s intent was
unclear.

D. Evaluation

In this section, we discuss the results of applying error-
prone checks to Google’s Java codebase. We present results
showing the number of bugs found by each check, and we
discuss why these bugs persisted in our codebase despite
good code health practices such as code reviews and unit
testing.

1) Checks and Error Counts: Currently, we have im-
plemented six error checks. Three are novel, two replicate
FindBugs checks, and one replicates a javac lint warning. A
full list and source code can be found on our website [13].
In Table IV-D1, we present the total number of instances of
each error that we found and repaired in Google’s codebase.

Considering that error-prone checks look for “obviously
wrong” patterns, it is surprising that a non-trivial number
of them existed in our codebase. Previous work has shown
that even the best programmers make mistakes [12], so it



return allOf (

.matches (methodInvocationTree, state);

NN AW =

public boolean matches (MethodInvocationTree methodInvocationTree, VisitorState state) {

methodSelect (staticMethod ("com.google.common.base.Preconditions", "checkNotNull")),
argument (0, kindIs (STRING_LITERAL, ExpressionTree.class)))

Figure 4. The matcher code for the error-prone Preconditions.checkNotNull checker. This method matches method calls to

Preconditions.checkNotNull in which the first arugment is a string literal.

PositiveCasel.java:9: [Preconditions checkNotNull] Literal passed as first
argument to Preconditions.checkNotNull (); did you mean
'Preconditions.checkNotNull (thing, "thing is null");'?

Preconditions.checkNotNull ("thing is null", thing);

Figure 5. An error-prone error message for the Preconditions.checkNotNull check. The error message suggests a possible fix.

}

—_—

fix.delete (state.getPath() .getParentPath () .getLeaf ());

return new Refactor (stringLiteralValue, refactorMessage, fix);

1 public Refactor refactor (MethodInvocationTree methodInvocationTree, VisitorState state) {
2 List<? extends ExpressionTree> arguments = methodInvocationTree.getArguments () ;
3 ExpressionTree stringlLiteralValue = arguments.get (0);

4 SuggestedFix fix = new SuggestedFix();

5 if (arguments.size() == 2) {

6 fix.swap (arguments.get (0), arguments.get(l));

7 } else {

8

9

0

1

Figure 6. The suggested fix code for the error-prone Preconditions.checkNotNull checker. If the method call has only one argument, it suggests removing
the statement that contains the method call, as currently it is a no-op. If the method call has two arguments, it suggests swapping their order.

Check name Errors found

Empty if statement 9 ¢
Exception created but not thrown 22

Objects.equal self comparison 26
Preconditions.checkNotNull wrong argument order 103
Preconditions.checkNotNull autoboxing 82

Self assignment 60

Table 1

THE NUMBER OF ERRORS FOUND AND REPAIRED BY EACH
ERROR-PRONE CHECK WHEN RUN OVER GOOGLE’S JAVA CODEBASE.

is not surprising that several instances of even an obviously
incorrect bug might exist in an extremely large codebase.
However, it is interesting that these bugs persisted despite
testing and code reviews. We examined the bugs found and
repaired by error-prone to understand better why these bugs
were not fixed earlier.

o Many instances of these bugs are difficult to pick out
visually. For example, in the following code sample,
the error is that the parameter name is misspelled. Yet,
at a glance, the code appears correct. Many of the self
assignment errors we found fit this pattern.
public void setFoo (int foa) {

this.foo = foo;

}

In many cases, the error would only manifest in
an exceptional condition, and the exceptional condi-
tion is never tested in the unit tests. For example,
the Preconditions.checkNotNull method nor-
mally ensures that a parameter passed into a method is
not null. The error found by error-prone would cause
this check not to occur; however, this would only
change the behavior of the program if the parameter
really were null, which violates the contract of the
method. If there are no tests that violate the contract,
then the bug will not be detected.

Some of these errors occur in unused code. In these
cases, it is important either to repair the bug, in case
someone later begins using the code, or to delete the
unused code.

Some of these bugs cause subtly incorrect results. For
example, the Objects.equal self comparison bug pattern
would cause an equals method to return true in a
few cases when it should return false. These bugs are
especially dangerous and hard to find by testing.

A few instances of the “error” were intentional, used
to test an exceptional condition or as an intentional no-
op. We learned that we needed to provide an “escape
valve” (the SuppressWarnings annotation) to support
these legitimate uses.



« Some instances are in third-party code, which may not
be as thoroughly tested and reviewed as our own code.

Another observation is that even though other tools in
use at Google detect some of these bugs (e.g., FindBugs
detects self assignment and dead exceptions), they nonethe-
less persist in our codebase. Our experience with FindBugs
has taught us several lessons. First, static analysis results
must be presented early to have a good chance of being
fixed. Second, static analysis tools must be integrated into
our development process; most developers will not go out
of their way to run a separate tool. These observations
drove our choice to build error-prone on top of javac. Since
javac is our production compiler, we can generate static
analysis results at every compile and present them to the user
before code is checked into the depot. In addition, because
javac is already used to compile our Java code, the extra
checks occur naturally as part of the development workflow.
Finally, we have also observed that developers are unlikely
to go through a list of bugs and fix them on their own.
This motivated our decision to provide an automatic repair
facility and repair the bugs ourselves before turning on a
new compiler error. The error-prone model of fixing all
existing bug instances ourselves lets us quickly get to
a point where checks can catch developers introducing
these bugs into new and potentially critical code.

2) Performance evaluation: Because error-prone runs as
part of the build process, it must not add significant overhead
to the compiler. We tested performance by compiling a
large Java project using both an unmodified javac (version
1.6.0) and a javac that includes error-prone with all six
checks turned on. We repeated the compilation five times
and averaged the elapsed times and memory consumption
values. We built the project on a single, unused machine
and ensured that no output files were cached.

We found that error-prone incurs a 9.0% time overhead
and a 0.95% memory overhead, which are tolerable for
our build environment. We have not yet invested effort in
optimizing error-prone, and it should be possible to improve
its performance.

E. Related Work

error-prone builds on a long tradition of static analysis
tools. It is most closely related to the additional bug checks
provided by IDEs such as Eclipse [17] and IntelliJ [18].
These tools check for simple bug patterns and sometimes
provide a suggested fix. error-prone differs primarily in its
choice of compiler to build upon (IntelliJ inspections are
built on their own internal representation, PSI trees, and
Eclipse warnings are built on the ecj compiler). In addition,
by design error-prone supports only errors and not warnings.

error-prone is also closely related to bug pattern detector
tools like FindBugs [12] and PMD [19]. error-prone differs
from these tools in that it is integrated into our production

compiler and thus seamlessly integrates into our build sys-
tem. In addition, error-prone detects only code patterns that
are almost certainly errors; we intentionally do not support
warnings.

More sophisticated static analysis tools such as Cover-
ity [20], Klocwork [21], and Parasoft [22] can find more
complex bugs than error-prone. However, they are slower
and do not provide results quickly enough to be presented
as part of the build process. error-prone analyses, because
they are so simple, can be run at every compile.

Mozilla’s Pork [7] is another example of a large-scale
static analysis and refactoring platform. It is built on the elsa
C++ parser, which “can parse most C++ in the wild” [23].
The elsa website describes their efforts to mimic the bugs of
production compilers like gcc and MSVC; this is evidence
that building on top of the production compiler itself is a
better choice.

Mozilla’s Dehydra [6] is a static analysis tool built on top
of GCC. It allows the user to query a C++ codebase using
consise JavaScripts, and because it builds on GCC, it is easy
to integrate with projects that use GCC as their production
compiler.

error-prone has been heavily influenced by the work of
the Clang [8] team at Google. The Clang team has been
adding new errors to the LLVM C++ compiler, and they have
been using a parallel framework (Clang MapReduce [24]) to
detect and repair errors in C++ code at a large scale.

error-prone development was also informed by previous
experience with FindBugs at Google [25], [26]. We learned
that developers were more likely to fix bugs if presented
with analysis results early and as part of their normal
workflow. We also learned the value of building on a piece of
infrastructure, the compiler, that is already deeply integrated
into our build system, rather than having to integrate a
separate tool.

V. THINDEX
A. Large Codebases and IDEs

A monolithic code repository presents extra challenges
for Integrated Development Environments (IDEs). An IDE
offers the programmer many facilities for working with large
amounts of code, including:

o Auto-completion of symbols such as variables and
function and class names.

« “Go to definition,” the ability to navigate through cross-
references and jump to the source line defining the
symbol of interest.

« Instant feedback on syntax and semantic issues, as code
is continuously parsed and checked in the background.

To accomplish all the above, and more, the IDE first reads
and processes all the code added to a project in order to build
a database of symbols and abstract syntax trees of the source
code. This is called “indexing.” The IDE also needs to either



periodically poll or set up a callback to identify changes to
any of the files and re-run indexing when any of the files
changes. Large amounts of code added to a project can result
in several minutes spent in indexing, with a large volume of
I/O incurring a noticeable slowdown of the environment.

A typical solution with large codebases is to demarcate a
portion of the repository as the writable client, representing
the set of packages the developer wishes to work on. While
the writable client is sufficient for editing, it does not contain
all information needed to compile and run the project. The
code not included in the writable client but required for com-
pilation and running comes via dependencies, in the form
of JARs added to the IDE’s classpath. These dependencies
cannot be edited but contribute towards the global symbol
database. For a given writable client, the dependencies are
usually found by constructing the transitive closure of all
the “deps” sections in the corresponding BUILD files (see
Section III-A), starting from the packages in the writable
client.

B. Compile-time Dependencies vs. Transitive Closure

The transitive closure previously described is usually an
order of magnitude larger than what is required by the
IDE to provide context-sensitive information or even to
compile the code in the writable client. This stems from
the fact that manually provided “deps” attributes tend to
over-estimate the actual dependencies, augmented by the fact
that the transitive closure brings in dependencies without
distinguishing whether they are needed for the compilation
of the targets in the writable client or their dependencies.
We again rely on program analysis to refine the dependency
set based on the actual source code, and distinguish between
accessible and compile-only dependencies as follows. A type
T (i.e. a Java class or interface) has:

e An accessible dependency on type S if the type S is
present in the signature of a publicly visible method
or field belonging to type 7', or if type T extends,
implements, or is parameterized by type S;

o A compile-only dependency on type S if the type
S is present in the implementation of a method or a
static initializer, or if it only appears in the signatures
of private methods or fields.

Based on these definitions, we can express the compile-
time dependencies for the source files in the writable client
as the transitive closure over accessible dependencies, start-
ing with the compile-only dependencies of the writable
client. To illustrate with an example, consider a class A
present in the writable client. If class A uses a private field
of type B, a compile-only dependency by our definition,
then the IDE must be aware of B to enable usage of B. If
B has a method getC'() which returns an object of type C,
an accessible dependency by our definition, then C' may or
may not be required based on whether A calls B.getC().
Therefore we must conservatively provide C: while editing

A the developer will expect getC() to be readily usable
since she is already working with an object of type B. On
the other hand, if getC()’s implementation creates an object
of another type D (another compile-only dependency), then
D is not required for compilation of A because it is not
accessible from A.

We use our extensible compiler in conjunction with the
distributed build system to compute these finer-grained de-
pendencies. For each target built, an extra output artifact
contains the (local) symbol cross-reference information. The
cross-reference extraction phase is again implemented via a
TreeScanner which classifies all types seen in the ASTs
based on their location (class/method/field signature or code
section) and their visibility (public/private/protected). Due
to caching and distribution, what could have been a very
expensive computation locally—the parsing and indexing of
a transitive closure of classes—is broken into small tasks
to be run on demand. These output artifacts are shared
between users, such that low-level libraries and targets which
do not change very frequently are scanned and their cross-
references cached and reused across users.

C. The Thindex Algorithm

The algorithm works by forming the union of compile-
only dependencies of all files in the writable client. Then
we recursively find the accessible dependencies of all the
currently identified dependencies. The upper bound for this
list of dependencies is the transitive closure. However, in
practice the set of dependencies built using the algorithm is
much smaller than the transitive closure, as shown in Section
V-D.

The cross-reference information extracted by our compiler
creates a directed graph over all Java types. The edges mark
either accessible or compile-only dependencies, and let us
denote, for a node 7', the set of all accessible dependencies
with A(T') and the set of all compile-only dependencies
with C(T). The Thindex algorithm traverses the graph using
breadth first search using a queue (), and collects nodes in
the set W of white-listed source files, which are then added
in full to the IDE’s index.

T < {Types in Writable Client} (D
Cit), ifteT

XREFS(t) = 2

®) {A(t), otherwise @

D. Evaluation

The above algorithm was implemented in IntelliJ] IDEA
10. We ran the algorithm on writable clients of varying
sizes. The projects were created using both the standard and
Thindex approaches and the time taken to index in each
case was measured. Figures 7b and 7a show the reduction in
dependency size we get by applying the Thindex algorithm.



Algorithm 1 Calculate the set of white listed files
W0
Q«+T
while Q # 0 do
e+ DEQUEUE(Q)
for all d € XREFS(e) do
if d ¢ W then
ENQUEUE(Q,d)
W {d}uw
end if
end for
end while
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Figure 8.  Comparison of indexing time with and without Thindex.
Indexing time decreases by a mean of 38%.

Project

The number of classes indexed decreases by a mean of
85%, and the number of JARs indexed decreases by a mean
of 77%. Figure 8 shows the reduction in indexing time,
which decreases by a mean of 38%. The improvement is
not proportional to the decrease in dependency size since
there is a constant time overhead for indexing the JDK and
committing the index to disk.

The above measurements do not include the time taken to
identify and mark the dependencies. Since the identification
is done as a part of the compilation step, this does not add
any measurable overhead to the overall time.

E. Other Enhancements

One caveat with using the Thindex algorithm is that it
only operates on symbols referenced by code in the writable
client. For all compile-time and accessible dependencies,
we keep their complete ASTs. But if the developer wants
to use a new library from the repository and use code
completion, she has to first add it to the dependencies
and rebuild the project in order to refresh the index. This
makes using new symbols difficult and negates some of the
advantages, but can be solved through an extension called an
“autocompletion provider.” Essentially, we add a plugin that
extends the module generating the list of auto-completions

and provides a custom list of symbols, whenever auto-
completion is triggered.

The use of an external auto-completion provider extends
itself naturally to eliminate the restriction of using only the
transitive closure to enabling the use of the entire codebase.
We precompute the list of classes in the entire codebase and
keep it cached, and we use the auto-completion provider
to allow the developer to use any class from the entire
code base. When the developer wants to reference a symbol
outside the compile-time dependencies, the auto-completion
provider will assist with the name. As soon as the type name
appears as a literal in the source, we load the dependency
in the background and make its index available after a
short delay. We also add the dependency into the “deps”
section of the appropriate BUILD file. This delay is not
generally significant, and we effectively distribute the total
cost of indexing over incremental, on-demand steps. The
entire system working together frees the developer from
having to make decisions about which dependencies must
be defined and allows them to use any type defined in any
part of the codebase while still ensuring that the IDE remains
responsive.

VI. CONCLUSION

In this paper, we have described our experience building
custom code analysis tools by extending a production com-
piler, applying them to a huge Java codebase, and integrating
them into the development workflow at Google.

We encourage compiler engineers to prioritize extensibil-
ity when designing future compilers, so that their work can
be built upon by others.
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