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Abstract—Motivated by an application in kidney exchange,
we study the following query-commit problem: we are given
the set of vertices of a non-bipartite graph G. The set of edges
in this graph are not known ahead of time. We can query any
pair of vertices to determine if they are adjacent. If the queried
edge exists, we are committed to match the two endpoints. Our
objective is to maximize the size of the matching.

This restriction in the amount of information available to
the algorithm constraints us to implement myopic, greedy-like
algorithms. A simple deterministic greedy algorithm achieves
a factor 1/2 which is tight for deterministic algorithms. An im-
portant open question in this direction is to give a randomized
greedy algorithm that has a significantly better approximation
factor. This question was first asked almost 20 years ago
by Dyer and Frieze [9] where they showed that a natural
randomized strategy of picking edges uniformly at random
doesn’t help and has an approximation factor of 1/2 + o(1).
They left it as an open question to devise a better randomized
greedy algorithm. In subsequent work, Aronson, Dyer, Frieze,
and Suen [2] gave a different randomized greedy algorithm and
showed that it attains a factor 0.5 + ǫ where ǫ is 0.0000025.

In this paper we propose and analyze a new randomized
greedy algorithm for finding a large matching in a general
graph and use it to solve the query commit problem mentioned
above. We show that our algorithm attains a factor of at
least 0.56, a significant improvement over 0.50000025. We also
show that no randomized algorithm can have an approximation
factor better than 0.7916 for the query commit problem. For
another large and interesting class of randomized algorithms
that we call vertex-iterative algorithms, we show that no vertex-
iterative algorithm can have an approximation factor better
than 0.75.

Keywords-Matching; Randomized Algorithms; Combinato-
rial Optimization

I. INTRODUCTION

The matching problem has been a corner-stone of combi-

natorial optimization and has received considerable attention

starting from the work of Jack Edmonds [10]. The problem

finds applications in diverse fields such as online advertising

and several barter exchange settings [20], [25]–[29]. Even

though efficient combinatorial algorithms for the maximum

matching problem are known [10] [22], these algorithms

require complete information about the underlying graph

and rely on building global combinatorial structures such

as blossoms.

However this may not be feasible in some settings where

the underlying graph may be hidden and the algorithm

is constrained to make decisions based solely on locally

available information. For example consider the kidney

exchange problem - Often patients with a kidney disease

have a family member who is willing to donate his/her kid-

ney. Unfortunately, these donors are sometimes blood-type

incompatible. To solve this problem, a kidney exchange is

performed in which patients swap their incompatible donors

to get a compatible donor. Owing to the cost involved in

medical tests, incentive issues, and due to ethical concerns,

it is desired that an exchange is performed whenever the

test indicates that the exchange is possible. To increase the

efficiency of the kidney exchange program, it is important

to match the maximum number of compatible patient-donor

pairs. Refer to [27]–[29] and references there-in for more

details.

Formally this problem can be modeled as a maximum

matching problem in a general non-bipartite graph where

each patient-donor pair represents a node of the graph and an

edge between two nodes indicate if an exchange is possible.

For every pair (u, v) ∈ V × V we are not told a priori

whether there is an edge connecting these vertices, until we

probe/scan this pair. If we scan a pair of vertices and find

that there is an edge connecting them, we are constrained

to pick this edge and in this case both u and v are removed

from the graph. However, if we find that u and v are not

connected by an edge, they continue to be available to be

matched in the future. The goal is to maximize the number

of vertices that get matched. This problem is known as the

query-commit problem. Various variants of this model have

received considerable attention [5] [3] [23] recently.

It is easy to see that any algorithm that probes all permis-

sible edges is a 1/2 approximation since we are guaranteed

to pick a maximal matching which is at least half as big as

the largest matching in the underlying graph. One can also

construct examples to show that no deterministic algorithm

can do strictly better than 1/2 on all instances. Thus our

only hope is to seek a randomized algorithm that beats the

barrier of 1/2 in expectation.

Arguably the most natural randomized algorithm is the

one that tests all vertex pairs in a random order. However

this algorithm can have an approximation factor as bad as

1/2 + o(1). For example consider a graph over n vertices,

such that half the vertices form a clique, while for the other



half of the vertices, each one of them is adjacent to a unique

vertex in the clique. The above naive randomized algorithm

would attain a factor of only 1/2+log n/n for such graphs.

Hence, to get a better approximation factor, one could

possibly use correlated randomness (as opposed to sampling

edges at random in every step) to determine the order in

which the edges should be scanned. This idea was first

used by Aronson, Dyer, Frieze, and Suen in [2] where they

gave the following randomized algorithm for the maximum

matching problem - Pick a vertex at random and match it to

one of its unmatched neighbors uniformly at random. They

showed that this algorithm does marginally better than 0.5
and attains a factor of 0.50000025. Note that this algorithm

can be simulated in the query-commit model by first picking

a random vertex u and then scanning pairs (u, v) for all

unmatched vertices v ∈ V in a random order, until u gets

matched or it is established that u cannot be matched with

the remaining unmatched vertices.

A. Our Results

From the above discussion it is clear that choosing the

correct correlated randomization to determine the order in

which the edges are scanned is critical to get a good

approximation factor. In this work, we propose and analyze

the following randomized algorithm (referred to as SHUF-

FLE ): Shuffle the vertices according to a uniformly random

permutation ρ and iterate through them one at a time. If the

current vertex is already matched then ignore it else scan

edges incident to it in the order dictated by ρ until it gets

matched or there are no vertices left. Then proceed to the

next vertex.

Note that our algorithm differs from the algorithm given

by [2] in the sense that after picking a random vertex u,

we scan all the edges (u, v) for v ∈ V in a specific order

that is given by the randomization used to pick the vertex

u itself, instead of scanning them in a random order, as

suggested by [2].

In this paper, we show the following results:

(a) SHUFFLE attains a factor of 0.56 for the query-commit

problem, and thus improves upon the 0.50000025-

factor algorithm given by Aronson, Dyer, Frieze, and

Suen in [2].

(b) There exists a family of graphs for which SHUFFLE at-

tains a factor no better than 0.727.

(c) We show that no randomized algorithm can attain

a factor better than 0.7916 for the query-commit

problem.

(d) We also show a tighter bound for a large class of al-

gorithms called vertex iterative (VI) algorithms. Both

SHUFFLE and the algorithm in [2] fall in this class. A

VI algorithm considers the vertices one at a time and

for every vertex probes edges incident on it until it

gets matched. A vertex may also choose to “give-up”

in which case it plays no further part in the algorithm

and we move on to the next vertex. The order in which

the vertices are scanned, and the sequence in which we

scan the edges may be determined adaptively i.e. it can

depend on the past outcomes. For this general class of

algorithms we show that no randomized algorithm can

attain a factor better than 0.75.

B. Related Work

As mentioned earlier, the query-commit model essentially

limits us to implement myopic Greedy-like algorithms. Since

the greedy algorithms are easy to implement and can be

easily adapted to different environments, for instance dis-

tributed setting, they are quite prevalent in practice. As a

result, there is some interest in designing better randomized

greedy algorithms that outperform the 0.5 approximation of

a deterministic greedy algorithm. Dyer and Frieze [9] studied

the greedy algorithm where an edge is picked uniformly at

random among the unmatched vertices. They showed that

for general graphs it doesn’t give any improvement asymp-

totically, and for sparse graphs it significantly improves the

approximation factor. Later, [2] gave a different randomized

greedy algorithm that achieves a factor 0.50000025 for

general graphs.

The RANKING algorithm of Karp, Vazirani, and Vazirani

[16] and the subsequent work of [14], [18] can be thought

of as randomized greedy algorithms for bi-partite graphs.

The former giving an approximation factor of 1 − 1/e,

and the latter 0.69. In other related work, designing fast

algorithms for finding approximate maximum matchings has

also received considerable attention recently [8], [24], [30].

However all these algorithms explicitly exploit the edge

structure of the graph and are not applicable in our setting.

Some other examples of using randomization to give

simple efficient algorithms include the seminal work of

Karger [15] where randomization was used to derive a

simple and efficient algorithm for min-cut. More recently

Costello et. al. [6] considered randomized versions of the

Johnson’s algorithm [13] for the satisfiability problem and

showed how the simple greedy algorithm can be tweaked

through randomization to do better than 2/3.

Stochastic Kidney Exchange Problem: In the stochastic

setting of the query commit problem, we are given proba-

bilities puv for the existences of every edge (u, v). Recently

Molinaro and Ravi [23] gave an optimal approximation

algorithm for sparse graphs in this setting. Prior to this

Chen et al. [5] considered a generalization of this model.

In their model they associate a patience parameter with

every vertex v ∈ V t(v) bounding the maximum number

of failed probes v is willing to participate in. After t(v)
failed attempts, vertex v would leave the system, and would

not be considered for any further matches. They gave a 1/4
competitive algorithm for this problem.



The results of [5] were later extended to the weighted

setting by Bansal et al. [3] who used a linear program to

bound the performance of the optimal algorithm and gave a

1/4 competitive algorithm for the general case, and a 1/3
competitive algorithm for the special case of bipartite graphs.

In a recent paper, Costello et al. [7] studied another

variant of the stochastic kidney exchange model omitting

the patience parameter and gave upper and lower bounds

for the same.

C. Technical Contributions

Conquering Non-monotonicity: A vast body of prior

work [1] [4] [11] [14] [16] [18] on online allocation prob-

lems has relied on a crucial property called monotonicity.

This property is formally defined in Section II-B, but in-

tuitively it states that adding new vertices can not cause

one of its previously matched neighbors to get unmatched.

This property holds for bipartite graphs for most natural

algorithms like RANKING, but unfortunately as shown by

the simple example in Figure 1, it does not hold for all

graphs in general. Observe that at the heart of the example

is an odd cycle which are not present in bipartite graphs.

Thus the lack of monotonicity is a massive blow in the

quest for an algorithm for the query-commit problem. We

overcome this obstacle by defining another property called

stability. This property states that adding a vertex can only

alter the matching found by SHUFFLE by at most a single

augmenting path. Using this observation we show that every

time a vertex does not conform to the monotonicity property

in SHUFFLE it results in a certain types of good-events.

Finally we bound the approximation factor for the algorithm

in terms of the number of these good events.

Strongly Factor Revealing Family of Linear Programs:

In our analysis we prove several combinatorial lemmas

to lower bound the performance of SHUFFLE. We then

coalesce them into a large linear program parameterized by

the size of the input, that lower bounds the approximation

factor. However the linear program is quite complicated

and not amenable to traditional means of analysis that are

used to study factor revealing linear programs (refer to

[21] [17] [12] [19]). Our analysis is based on a technique

recently introduced in [18]. In this method we use these

parameterized LPs to derive a new family of LPs (strongly

factor revealing family) each of which lower bounds the

approximation factor SHUFFLE for any given input size.

Thus solving any large enough instance from this family

serves to bound the performance of SHUFFLE.

Upper Bound using Yao’s Lemma [31]: We consider a

general class of algorithms called vertex iterative algorithms

and prove a lower bound on the performance of any such

algorithm using Yao’s Lemma [31]. This entails finding

the best deterministic algorithm for an appropriately chosen

distribution over the inputs. Unfortunately it turns out to

be quite difficult to characterize the optimal determinis-

tic algorithm for the distribution that we consider in our

proof. Instead we define a class of fictitious deterministic

algorithms called revealing-algorithms and show that they

perform at least as well as any deterministic vertex iterative

algorithm. Then to analyze the optimal revealing-algorithm

for our distribution we define another randomized revealing

algorithm and argue that its expected performance is at least

as good as the best deterministic revealing algorithm. Finally

we bound to performance of this randomized algorithm to

complete our proof.

II. PRELIMINARIES

A. Problem Statement

Let G(V,E) be a non-bipartite graph where |V | = n. We

wish to analyze the performance of the following algorithm

for the query commit problem.

SHUFFLE Algorithm

1) Choose a uniformly random permutation ρ of the

vertices.

2) Apply permutation ρ to V - thereby assigning each

vertex a priority or rank.

3) Process the vertices one at a time in the increasing

order of the rank. If the vertex under consideration,

say vertex u, is already matched then ignore it, else

scan edges incident to it from the unmatched vertices

in an increasing order of their rank until vertex u gets

matched. Then proceed to the next vertex.
We will use u, v to denote the vertices of V and s, t ∈ [n],

to index the vertices in V . Let ALG(G) be the expected

size of the matching returned by the above algorithm and

let OPT(G) be the largest matching in G. We say that

SHUFFLE attains a factor of α if ALG(G) ≥ α|OPT (G)|
for every graph G.

We also use the notion of time: time t will denote the event

when the tth vertex in V is considered by the algorithm.

Define ΩV to be the set of all permutations of V . For any

permutation ρ of the vertices, we will use ρ(t) to denote

the vertex at the tth position in ρ and ρ−1(u) to denote the

position of the vertex u in ρ. For vertices u, v we say u is

above v in ρ if ρ−1(u) is less than ρ−1(v). We can similarly

define the notion of a vertex u being below another vertex

v. For any permutation ρ ∈ ΩV let ρ[u ❀ s] denote the

permutation obtained by moving u to position s keeping the

order of the other vertices unchanged.

For any t ∈ [n] define xt to be the probability that the

vertex ρ(t) ∈ V at position t gets matched in SHUFFLE,

where the probability is taken over the random choices of

ρ. We will use Shuffle(ρ) to denote an invocation of

SHUFFLE with ρ as the permutation chosen in the first step.

In general for any algorithm A and graph G we will use

A(G) to denote the performance of A on G.



B. Properties of the SHUFFLE Algorithm

In this section we will introduce some terminology that

would be central to our analysis.

Monotonicity Property: Consider u = ρ(t) that is un-

matched by Shuffle(ρ). Suppose v is another vertex that

is adjacent to u, i.e. uv ∈ E, then v is surely matched

to a vertex above u. The monotonicity property strengthens

this observation, by allowing us to translate u to any of the

n positions in ρ. Concretely, we say a vertex u satisfies

the monotonicity property with respect to v for a given

permutation ρ if,

1) uv ∈ E

2) u is unmatched in Shuffle(ρ)

3) v is matched in Shuffle(ρ)

4) v is matched above position t in Shuffle(ρ[u ❀ s])
for every s ∈ [n]

Non-monotone Event: Unfortunately some vertices may not

satisfy the monotonicity property for all choices of s (in

the fourth point above). This prompts us to define a non-

monotone event. For a given permutation ρ, a vertex u =
ρ(t) is involved in a non-monotone event with respect to

another vertex v and position s if the following conditions

are met.

1) uv ∈ E

2) u is unmatched in Shuffle(ρ)

3) v is matched in Shuffle(ρ)

4) v is matched below position t or unmatched in

Shuffle(ρ[u ❀ s])
That is, promoting u in ρ causes one of its previously

matched neighbors to match lower or to get unmatched. We

use Γv(s, t, ρ) to be the indicator variable for this event. For

illustration, consider the example shown in Figure 1.

x y v w u x y v wu

Matched edge

Unused edge

(a) (b)

Process vertices 

  in this order

Process vertices 

  in this order

Figure 1: Non-monotone event generated by translating u

The matched edges are shown in bold while the other

edges are indicated by dashed lines. Here we consider

two permutations ρ = [x, y, v, w, u] (Figure 1a) and ρ′ =
[u, x, y, v, w] (Figure 1b). Note that moving u to the start

of the permutation ρ causes one of its previously matched

neighbors v to get unmatched in Shuffle(ρ′). In this case

we say u has generated a non-monotone event by moving

to position 1, i.e., Γv(1, 5, ρ) = 1 for the above example.

Observe that {x, y, w, v, u} form a cycle with odd

number of vertices. In fact every non-monotone can be

associated with an odd cycle. This explains why such

events do not occur when the underlying graph is bipartite.

Stability Property: At a high level this property states

that for any ρ ∈ ΩV the execution of Shuffle(ρ) does

not change dramatically by altering the position of a single

vertex in ρ. For any graph H(V,E) consider ρ ∈ ΩV . For

an arbitrary vertex u ∈ V let ρ′ = ρ[u ❀ s]. Consider the

execution of Shuffle for graph H and for any v ∈ V ,

define M(v, ρ) to be the set of matched edges when v was

considered in Shuffle(ρ). Similarly let M(v, ρ′) be the set

of matched edges when v was considered by Shuffle(ρ′).
The stability property is summarized by the following claim

that can be proved by induction.

Claim 1. For all v ∈ V − u, the symmetric difference of

M(v, ρ) and M(v, ρ′) has at most one component, i.e., it is

either empty or a path or a cycle.

Good-Events: We will use a notion of good-events to quan-

tify our algorithm’s improvement over the greedy algorithm

that matches exactly half the vertices in the worst case. A

pair of vertices that are matched to each other in the optimal

solution would correspond to some good-events if they both

are also matched (even if not to each other) in an execution

of the algorithm. We will attribute any such pair of vertices

to two types of good events that are defined below.

Type 1 good-event: For any given permutation ρ ∈ ΩV

under consideration, we say a good-event of type 1 happens

at position t if both ρ(t) and its partner(if any) in OPT(G)

are matched by Shuffle(ρ). We will use Good1(t, ρ) as

the indicator variable for this event.

Type 2 good-event: The second type of good event is

defined in a slightly indirect manner. For a permutation

ρ ∈ ΩV we say a good event of type 2 happens at position

t if the following conditions are met

1) u = ρ(t) is matched in Shuffle(ρ). Let w be the

vertex that it is matched to.

2) If w∗ is the partner (if any) of w in OPT(G), then w∗

is matched in Shuffle(ρ).

3) Consider ρ′ that is produced by deleting u from ρ
and keeping the relative order of all other vertices the

same. Then, both w and w∗ are matched to each other

in Shuffle(ρ′).
From the above definitions it is clear that type 2 good

events are a subset of type 1 good events. Also note that if

OPT(G) matches w to w∗, and both the vertices are matched

in our algorithm for a given permutation, then we generate

two good events of type 1, one at the position of w and other

at the position of w∗. On the other hand, one can show that

we will generate at most one good event of type 2, which

will be at the position of the vertex u, where u is matched

to the vertex that is first to be matched among w and w∗.



III. ANALYSIS OF THE SHUFFLE ALGORITHM

We divide the analysis into two parts. In the first part,

we use combinatorial arguments to set up equations relating

the variables defined in Section II-B. In the second part of

the analysis we use these equations to give a lower bound

on the performance of SHUFFLE through a strongly factor

revealing LP.

Intuitively, the input space of graphs has two types -

graphs that have few non-monotone events(such as bipartite

graphs) and those that have large number of non-monotone

events. In the first case one can leverage the monotonicity

property to show that the algorithm has a good approxi-

mation factor. The analysis for the second type of graphs

is little more involved and relies on the observation that

if there are a large number of good-events then we get

a good approximation factor. To show that there are non-

negligible number of good-events we prove a structural

lemma - that forms the core of our arguments - to lower

bounds the number of good-events in terms of the number

of non-monotone events. To the best of our knowledge, this

is the first work that relates good-events to non-monotone

events for the matching problems (and, in general, allocation

problems), and uses it to show a non-trivial improvement

over the standard greedy algorithm.

A. Combinatorial Arguments

We begin by proving that the worst examples for SHUF-

FLE must have a perfect matching (for the proof, refer to

the full version).

Lemma 1. We may assume without loss of generality that

the graphs for which SHUFFLE attains the worst factor has

a perfect matching.

Throughout the rest of the paper we will assume that the

given graph G has a perfect matching. Furthermore, for any

u ∈ V , we will use u∗ to denote its match in OPT(G) we

will refer to u∗ (resp. u) as the partner of u (resp. u∗) with

respect to OPT(G). Also for brevity we will use Γ(s, t, ρ)
to denote Γu∗

(s, t, ρ) where u = ρ(t). Thus Γ(s, t, ρ) refers

to the non-monotone event where translating an unmatched

vertex u = ρ(t) to position s in ρ causes its partner u∗

(which was previously matched above t) to get unmatched

or to match below t.
The following observation follows easily from the defini-

tions of xt.

Observation 1. ∀t ∈ [n] : xt ≥ xt+1

The next lemma is similar in spirit to Observation 1 above.

Lemma 2. For any s, t ∈ [n] such that s < t,
∑

ρ∈ΩV

Γ(s, t, ρ) ≤
∑

ρ∈ΩV

Γ(s, t+ 1, ρ)

Proof: Consider ρ ∈ ΩV such that we generate a

non-monotone event Γ(s, t, ρ) by promoting u = ρ(t) to

position s. Let ρ′ = ρ[u ❀ t+ 1]. Since u is unmatched at

position t in ρ it will remain unmatched at position t+1 in

Shuffle(ρ′). Also translating u from position t+1 to s in

ρ′ will generate a non-monotone event Γ(s, t+ 1, ρ′). Thus

we can set up an injective map from non-montone events

of the form Γ(s, t, .) to non-monotone events of the form

Γ(s, t+ 1, .). This suffices to prove the above claim.

The following lemma relates xt and Γ(s, t, ρ).

Lemma 3. For every s, t ∈ [n],

|ΩV |(1− xt) ≥
∑

ρ∈ΩV

Γ(s, t, ρ)

Proof: The total number of times the vertex at position t
remains unmatched is given by |ΩV |(1−xt). Since a neces-

sary requirement(by property 2 in the definition) of a having

a non-montone event Γ(s, t, ρ) is that ρ(t) is unmatched in

Shuffle(ρ), the number of such non-monotone events is at

most |ΩV |(1− xt).
Lemma 4 follows from similar arguments as above.

Lemma 4. For every t ∈ [n],

1) |ΩV |xt ≥
∑

ρ∈ΩV

Good1(t, ρ)

2) |ΩV |xt ≥
∑

ρ∈ΩV

Good2(t, ρ)

We will now present three bounds on ALG(G). The first

follows trivially from the definition of xt.

Observation 2.

ALG(G) =
∑

t∈[n]

xt

The next two bounds proved in Lemmas 5 and 6 are

slightly more involved and illustrate the role of good-events

(defined in Section II-B) in attaining a factor better than 0.5.

Lemma 5.

ALG(G) =
n

2
+

∑

t

∑

ρ∈ΩV

Good1(t, ρ)

2|ΩV |

Proof: By Lemma 1 we may assume, without loss of

generality, that the underlying graph has a perfect matching.

Any algorithm(including SHUFFLE) that returns a maximal

matching would surely match at least one of w and w∗

for any vertex w ∈ V and therefore matches at least n/2
vertices.

To find the total number of vertices that get matched

we also need to add the number of pairs (w,w∗) such

that both w and w∗ are matched. Since each such pair

contributes twice to the summation
∑

t

∑
ρ∈ΩV

Good1(t, ρ),
the expected number of vertices matched by SHUFFLE is

given by n
2 +

∑
t

∑
ρ∈ΩV

Good1(t,ρ)

2|ΩV | .



Lemma 6.

ALG(G) ≥
n

2
+

∑

t

∑

ρ∈ΩV

Good2(t, ρ)

|ΩV |

Proof: As before by Lemma 1 we may assume, that the

underlying graph has a perfect matching. Thus any greedy

algorithm(including SHUFFLE) matches at least n/2 vertices.

To bound the total number of vertices that get matched we

also need to add the number of pairs (w,w∗) such that both

w and w∗ are matched. We do this by constructing a map

from good-events of type 2 into the set of such pairs.

Consider a good-event Good2(t, ρ) and let u = ρ(t). Let

w be the vertex that u is matched to in Shuffle(ρ). By

definition of a good-event of type 2, w∗ is also matched

in Shuffle(ρ). Thus each type 2 good-event maps to a

pair (w,w∗) such that both w and w∗ are matched. Also

observe that this map is one-one, i.e. given a pair (w,w∗)
that lies in the range of this map there is exactly one good-

event of type 2 that could be its preimage. This is because

if we define ŵ ∈ {w,w∗} to be the first among w and w∗

to get matched in Shuffle(ρ) then the neighbor of ŵ in

Shuffle(ρ) uniquely defines the vertex u that if deleted

would cause w and w∗ to be matched.

The following lemma illustrates the connection between

non-montone events and good-events. It is the pivotal techni-

cal lemma in the analysis. Finally in Lemma 8 we relate the

number of non-monotone events bounds to the total number

of miss events.

Lemma 7. For every t ∈ [n],
∑

ρ∈ΩV

Γ(t, n, ρ) ≤
∑

ρ∈ΩV

Good2(t, ρ) +

n
∑

s≤t

∑
ρ∈ΩV

Good1(s, ρ)

t

Proof: The proof of this Lemma relies on setting up two

maps that associate good-events (of type 1 or 2) with every

non-monotone event. Let ρ ∈ ΩV such that Γ(t, n, ρ) = 1.

Let u = ρ(n) and ρ′ = ρ[u ❀ t]. Clearly u is matched by

Shuffle(ρ′), let w 6= u∗ be the vertex that it is matched

to. Let w∗ be the partner for w in OPT (G). We consider

the following two cases.

Case 1: Both w and w∗ were matched to each other in

Shuffle(ρ).
Since we have a non-monotone event when we move u

to position t, w∗ should surely be matched in Shuffle(ρ′).
Thus in this case moving u to position t in ρ generates a

good-event of type 2 at position t in Shuffle(ρ′). Thus

in this case, every non-monotone event Γ(t, n, ρ) generates

exactly one good event of type 2. This is represented by the

first term on the right-hand side of the above inequality.

Case 2: w and w∗ were not matched to each other in

Shuffle(ρ).

Suppose we move w∗ around in ρ′, i.e. consider ρ′′ =
ρ′[w∗

❀ s] for s ∈ [n] then we have the following

two claims. The first claim says that w would always stay

matched, while the second claim says that for at least(the

top) t positions of w∗ both w and w∗ will get matched. We

defer the proofs to the appendix.

Claim 2. w is matched in Shuffle(ρ′[w∗
❀ s]) for all

choices of s ∈ [n].

Claim 3. w∗ is matched by Shuffle(ρ′[w∗
❀ s]) for all

choices of s ≤ t, s ∈ [n].

By Claim 2 w stays matched for all positions of w∗. Of

the n positions that w∗ can take, it too gets matched for at

least t positions. Thus we generate at least t good-events of

type 1 (for the top t positions of w∗) by moving w∗ over ρ′

from every non-monotone event Γ(t, n, ρ).
However, we may over count while accounting for good-

events since the same type 1 good-event can be gener-

ated from multiple non-montone events. Let us fix t for

which we are writing the equation. Consider a good-event

Good1(s, ρ̂) generated as defined above. Let u = ρ̂(t) and

w∗ = ρ̂(s). Let us count the number of non-montone events

Γ(t, n, ρ)(characterized by permutation ρ) that may generate

this good-event. The positions of all vertices except w∗

and u are predetermined by their positions in ρ̂. Now u
should surely be at position n in ρ, but the position of w∗

remains ambiguous. It may be at any of the n positions in

ρ. Thus in the worst case there may be n ways to choose

ρ such that the non-montone event Γ(t, n, ρ) generates the

good-event Good1(s, ρ̂). Thus every non-monotone event

generates t good-events of type 1 and each such good-event

may be generated by as many as n non-monotone events.

Substituting the variables gives us the second term in the

above inequality.

Lemma 8. For every t ∈ [n],

n(1− xt) ≤
∑

s≤t

xs +

∑

s≤t

∑

ρ∈ΩV

Γ(s, t, ρ)

|ΩV |

Proof: We will prove this lemma by defining a function

that maps a miss event at position t to n events that are either

match events above t or to a non-monotone events above t.
Consider ρ ∈ ΩV such that u = ρ(t) is unmatched. Consider

Shuffle(ρ[u ❀ s]) for all values of s ∈ [n] and suppose

we analyse what happens to u∗ in each of these events. It

will either continue to be matched above position t or it

may get matched below position t(or get unmatched). In the

former case we generate a match event above t, while in

the latter we generate a non-monotone event at s, Γ(s, t, ρ).
One can check that the set of events generated for distinct

miss events are disjoint.

There are |ΩV |(1 − xt) miss events in all and the total

number of match events above t is given by |ΩV |
∑

s≤t xs.



Using the above map we have

n|ΩV |(1− xt) ≤ |ΩV |
∑

s≤t

xs +
∑

s≤t

∑

ρ∈ΩV

Γ(s, t, ρ)

Dividing throughout by |ΩV | proves the lemma.

In the next section we will demonstrate how the above

structural Lemmas can be used to show that SHUFFLE attains

a factor of at least 0.560.

B. Strongly Factor Revealing Linear Program

Let us define gt to be the probability of a type 1 good

event at position t, i.e. gt =
∑

ρ∈ΩV
Good1(t,ρ)

|ΩV | . Similarly

define ht =
∑

ρ∈ΩV
Good2(t,ρ)

|ΩV | and γs,t =
∑

ρ∈ΩV
Γ(s,t,ρ)

|ΩV | . In

light of the above definitions the results of Section III-A can

be reformulated as the following linear program.

LP(n) : minimize
ALG

n
Subject to

ALG =
∑

t∈[n]

xt Observation 2

ALG =
n

2
+

1

2

∑

t

gt Lemma 5

ALG ≥
n

2
+
∑

t

ht Lemma 6

γt,n ≤ ht +
n
∑

s≤t gs

t
∀t ∈ [n] Lemma 7

n(1− xt) ≤
∑

s≤t

xs +
∑

s≤t

γs,t ∀t ∈ [n] Lemma 8

1− xt ≥ γs,t ∀s, t ∈ [n] Lemma 3

xt ≥ xt+1 ∀t ∈ [n] Observation 1

γs,t ≤ γs,t+1 ∀s, t ∈ [n] Lemma 2

xt ≥ gt ∀t ∈ [n] Lemma 4

xt ≥ ht ∀t ∈ [n] Lemma 4

0 ≤ xt, γs,t, gt, ht ≤ 1 ∀s, t ∈ [n]

Here we are trying to minimize the approximation factor

of the algorithm subject to the constraints derived in Section

III-A. The following lemma follows immediately.

Lemma 9. LP(n) lower bounds the perfor-

mance(approximation factor) of SHUFFLE on any graph

having n vertices.

Table I gives the optimal value of LP(n) for different

choices of the parameter n.

There are two main approaches towards rigorously es-

timating approximation factors using factor revealing LPs.

The first method relies on analytically solving the given

LP for an arbitrary sized input and then arguing about the

optimality of the solution (refer to [21] [17]). The second

technique relies on observing patterns in the dual for the

n Optimal Value of LP(n) Factor = LP(n)/n

20 11.124 0.5562

50 27.913 0.5582

100 55.899 0.5588

200 111.870 0.5593

300 157.879 0.5596

400 224.001 0.560

Table I: Optimal Values of LP(n)

given LP and using these to guess a near optimal dual for an

arbitrary program (e.g. [12] [19]). This approach is usually

lossy and fails to attain the optimal approximation factor.

Both of these approaches are infeasible in our context since

the linear program (and its dual) at hand is quite complex

and not amenable to analytical study. Therefore, in order

to rigorously establish that SHUFFLE does attain a factor of

at least 0.560 we will employ a technique inspired by the

recent work by [18].

In this technique we construct a family of progressively

stronger linear programs (called a strongly factor-revealing

family) such that the solution to any of these programs

lower bounds the approximation ratio of the algorithm.

Towards this end we will in fact prove that the optimal

value of LP (k) for any small constant k lower bounds the

optimal value of LP (n) for an any choice of n >> k.

Thus our family of strongly factor-revealing linear programs

is simply {LP (1), LP (2) · · ·LP (k)}. Concretely, we will

show LP-OPT(k) ≤ LP-OPT(n), where LP-OPT(n) is the

optimal value of LP (n). Refer to the full version of the

paper for the complete proof.

Lemma 10. For any fixed constant k dividing n,

LP-OPT(k) ≤ LP-OPT(n)

Lemma 10 above together with Table 1 suffices to prove

the following theorem.

Theorem 11. SHUFFLE attains a factor of at least 0.560 in

expectation.

We also show the following theorem to bound the tight-

ness of our analysis. We defer the proof to the full version.

Theorem 12. There exists a graph for which SHUFFLE at-

tains a factor of at most 0.727.

IV. UPPER BOUNDS

In Theorem 13 we provide a bound on the performance

of any randomized algorithm for the query commit problem.

The proof can be found in the full version.

Theorem 13. No randomized algorithm can attain a factor

better than 19/24 = 0.7916 for the query commit problem.

Next we will give an improved upper bound for a broad

class of randomized algorithms called vertex-iterative algo-

rithms. This class includes the SHUFFLE algorithm as well

as the algorithm in [2].



We call a randomized algorithm for the query-commit

problem to be vertex-iterative(VI) if it iterates through the

vertices one at a time in a possibly adaptive sequence

and for every vertex scans the edges incident on it in an

arbitrary(adaptive) order until it gets matched. A vertex may

also choose to scan only a subset of edges incident on it

before it decides to “give-up”, i.e., after which this vertex

will play no further role in the algorithm. For this class of

algorithms we prove the following theorem.

Theorem 14. No randomized VI algorithm can attain a

factor better than 0.75 for the query commit problem.

Proof:

We use Yao’s Lemma [31].

Lemma 15. [Yao’s Lemma] The expected worse-case per-

formance of the optimal randomized algorithm for the query-

commit problem is upper bounded by the expected perfor-

mance for the optimal deterministic algorithm for any given

distribution over input graphs.

From Yao’s Lemma above, we have to come up with a

distribution over input graphs and bound the performance of

the optimal deterministic VI algorithm for this distribution.

We will consider the following family I of n vertex graphs

- For any instance I ∈ I, the vertex set can be divided into

two equal parts C(Clique) and P (Pendant). The vertices in

C form a clique while every vertex in P is adjacent to a

unique vertex in C. For any vertex u ∈ C, let u∗ ∈ P
be the unique pendant vertex adjacent to it. An example is

shown in Figure 2. We will assume uniform distribution over

graphs in I. Alternately, our distribution may be viewed as

the uniform distribution over all relabellings (φ : [n] → [n])
of vertices of the graph Γ shown in Figure 2.

Clique

C

Pendant

 vertex

Pendant

 vertex

Pendant

 vertex

Pendant

 vertex

u

u*

1

1

1

1

1

0

Graph Adjacency Matrix

Figure 2: Graph Γ = (C ∪ P,E) ∈ I

Unfortunately, it is quite difficult to characterize the

optimal deterministic algorithm over graphs in I. Instead

we will devise a class of hypothetical algorithms, called

revealing algorithms whose performance is no-worse than

that of any deterministic VI algorithm and then bound

their factor. This class of algorithms is hypothetical in the

sense that it assumes limited access to the underlying graph

I = (C ∪ P,E). It uses a notion of active and inactive

vertices and at the start of the algorithm all vertices are

marked to be active.

A revealing algorithm is a VI algorithm that proceeds

in several phases. We begin every phase by choosing an

arbitrary active vertex say v. If v ∈ P then it gets matched

to its unique neighbor in v∗ ∈ C and we terminate the phase

by marking both v and v∗ as being inactive. Otherwise if

v ∈ C then it starts querying edges incident to other active

vertices (according to a possibly adaptive strategy). If we

query an edge incident to a vertex u∗ ∈ P then the u∗

reveals its unique neighbor u ∈ C and gets matched to it and

both u and u∗ are marked as inactive. However if v queries

another active vertex w ∈ C, then v and w get matched, as

required in the query-commit model, and {v, w, v∗, w∗} are

marked to be inactive. v may also choose to give-up after

trying a few edges, at which point it is marked as inactive

(we also mark v∗ ∈ P as inactive at this point). The phase

ends when v gets marked as inactive and it is not considered

any further by the algorithm. The algorithm terminates when

all vertices are marked to be inactive.

Let O be the optimal deterministic VI algorithm for

instances drawn from I. In Lemma 16, we show that there

exists a deterministic revealing-algorithm does at least as

well as O. We defer the proof to the appendix.

Lemma 16. There exists a deterministic revealing-algorithm

that does at least as well as O on every instance I ∈ I.

Corollary 17 follows from Lemma 16.

Corollary 17. For an instance drawn uniformly at random

from I the expected performance of the optimal deterministic

revealing-algorithm is at least as good as the expected

performance of the optimal deterministic VI algorithm.

Let A be the optimal deterministic revealing-algorithm for

graphs drawn from I. By Lemma 15 and Corollary 17 we

only need to bound performance of A. To get a handle on

this we define a randomized revealing algorithm Random-

Reveal(RR) and then in Lemma 18 we show that the ex-

pected performance of RR for the graph Γ shown in Figure

2 is (approximately) equal to the expected performance of

A on graphs drawn uniformly at random from I. Thus we

can use the analysis of RR (done in Lemma 19) to upper

bound the performance of any VI algorithm.

RR is defined as follows - For any given instance I =
(C ∪ P,E) we choose a random permutation ρ of C ∪ P .

Then we process the vertices one at a time according to ρ. If

the current vertex is inactive then it is ignored else we query

edges incident on it in random order until it gets matched.

The algorithm terminates when there are fewer than n0.9

active vertices.

Remark 1. The modified termination condition changes the

performance of the algorithm by only a negligible factor and

is used to simplify the proof.



Lemma 18. For the graph Γ shown in Figure 2

E
ρ
[RR(Γ)] = E

I∈I
[A(I)]

Proof: Without loss of generality we may assume that

A is a greedy algorithm in the sense that it will never cause

a vertex to give-up until it gets matched or has exhausted

all its options. The lemma can be proved by establishing

the following fact which follows by induction and using the

observation that at the end of any phase, the induced graph

on the set of active vertices is uniformly distributed over

graphs in I but defined over smaller number of vertices.

Fact: The distribution of the induced graphs over unmatched

vertices at the end of the kth phase is identical for both

RR and A for every choice of k ∈ [n].
Now we are left to analyze the performance of RR on

Γ to complete the proof of Theorem 14. We do this in the

following lemma.

Lemma 19. For the graph Γ shown in Figure 2

E
ρ
[RR(Γ)] = 0.75

Proof: Note that Γ has a unique optimal solution where

all n vertices get matched, namely {ww∗ | ∀w ∈ C}. We

will argue that for an arbitrary phase, the expected number

of vertices that get matched is 3/4 of the expected number

of vertices that are labeled as inactive during the phase. This

will establish the above lemma.

For a given phase let v be the active vertex chosen by

RR at the start of this phase. The proof for this case is

based on the following three simple claims whose proofs

can be found in the full version.

Claim 4. Pr [v ∈ C] = Pr [v ∈ P ]

Claim 5. If v ∈ P , then two vertices get matched by RR in

the current phase and exactly these two vertices are also

labeled to be inactive.

Claim 6. If v ∈ C, then 4 vertices get matched in

expectation and on an average we label 6 more vertices

as being inactive in this phase.

By Claims 4, 5, 6 we see that the the expected number of

vertices that get matched in any phase is given by 2(0.5) +
4(0.5) = 3 while the expected number of vertices that are

marked as inactive is 2(0.5) + 6(0.5) = 4. Thus RR attains

a factor of 3/4.
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APPENDIX

Proof of Claim 2

Proof: Since u is unmatched in Shuffle(ρ) and it is

adjacent to w(by our assumption), w must be matched in

Shuffle(ρ). Let v be the vertex that w gets matched to.

Since we are in Case 2 of Lemma 7, v 6= w∗. Next let us

look at Shuffle(ρ′); v must available when w gets matched

to u. Thus when w gets matched in Shuffle(ρ) it has at

least two options i.e. u and v.

Finally lets consider ρ′′ = ρ′[w∗
❀ s]. By the stability

property (Claim 1) the matchings produced by Shuffle(ρ′)
and Shuffle(ρ′′) at the time when w is being considered

differ by an augmenting path. Thus the number of options

available to w in Shuffle(ρ′) and Shuffle(ρ′′) can differ

by at most 1. Recall that both u and v 6= w∗ were available

to w in Shuffle(ρ′). So at least one of them should still

be available in Shuffle(ρ′′). Therefore w will get matched

in Shuffle(ρ′′).

Proof of Claim 3

Proof: Let us consider two cases.

Case 1: ρ′−1(w) > t. Since u gets matched to w in

Shuffle(ρ′), w should be unmatched before time t.
Note that the execution of Shuffle(ρ′[w∗

❀ s]) and

Shuffle(ρ′) would be identical until time s. Thus when

we consider w∗ in Shuffle(ρ′[w∗
❀ s]), w is still

unmatched. Therefore w∗ will surely get matched by

Shuffle(ρ′[w∗
❀ s]).

Case 2: ρ′−1(w) ≤ t. If possible let w∗ not get matched

in Shuffle(ρ′[w∗
❀ s]). Let r = ρ′−1(w). In this case

Shuffle(ρ′) and Shuffle(ρ′[w∗
❀ s]) are identical until

time r. Therefore both u and w∗ must be unmatched when

we consider w in Shuffle(ρ′[w∗
❀ s]). Since s ≤ t, w

would choose w∗ instead of u which is a contradiction.

Proof of Lemma 16

Proof: Consider the execution of O on any instance

I = (C ∪ P,E). We can simulate the execution of O on

I by a revealing algorithm A. The only possible difficulty

could be if O scans an edge incident on a vertex that is

already marked to be inactive by A. This step is not allowed

in A, and cannot be simulated. In this case the current vertex

in our simulation immediately gives up and we proceed to

the next phase. One can check that under this simulation

A produces a matching that is at least as large as the one

returned by O.


