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ABSTRACT

A typical behavioral targeting system optimizing purchase
activities, called conversions, faces two main challenges: the
web-scale amounts of user histories to process on a daily ba-
sis, and the relative sparsity of conversions. In this paper,
we try to address these challenges through feature selec-
tion. We formulate a multi-task (or group) feature-selection
problem among a set of related tasks (sharing a common
set of features), namely advertising campaigns. We apply
a group-sparse penalty consisting of a combination of an
{1 and {2 penalty and an associated fast optimization algo-
rithm for distributed parameter estimation. Our algorithm
relies on a variant of the well known Fast Iterative Thresh-
olding Algorithm (FISTA), a closed-form solution for mixed
norm programming and a distributed subgradient oracle. To
efficiently handle web-scale user histories, we present a dis-
tributed inference algorithm for the problem that scales to
billions of instances and millions of attributes. We show the
superiority of our algorithm in terms of both sparsity and
ROC performance over baseline feature selection methods
(both single-task Ll-regularization and multi-task mutual-
information gain).
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1. INTRODUCTION

A typical behavioral targeting platform optimizing for con-
versions, e.g. [10, 3], faces two core issues:1) the large vol-
umes of user histories to be processed in a periodic fashion
and 2) sparseness of conversions. Processing activities of bil-
lions of users on a daily basis imposes many challenges such
as how to build user profiles in an efficient way, and how
to optimize multiple campaigns at the same time. Conver-
sion rarity is another issue further complicating the task of
the platform as it requires parsimoniously mining the user
historical online behavior. Though Yahoo!’s novel platform
presented in [3] develops a variety of engineering and ma-
chine learning techniques to cope with these two issues, it is
never enough. While an increased number of features is often
beneficial, using the maximum number of features possible
may not amount to the best engineering decision, especially
because of consequently increased computational costs. An
additional pain point for our platform is to optimize cam-
paigns with very low conversion volumes (tens or hundreds).
For these campaigns, conversion rarity represents a major
bottleneck against achieving tangible advertising improve-
ments.

In this paper, we resort to feature selection as a powerful
technique to cope with both problems. There is ample liter-
ature covering this subject both from an algorithmic [5] and
a statistical [6] aspect. Feature selection clearly copes with
the large volumes of user histories to be processed. To cope
with conversion sparseness problem we consider the union
of all (possibly sparse) attribute sets of all advertisers to
decide which ad to choose (e.g. by means of a generalized
second price auction).

Our problem is a variant of the multi-task learning prob-
lem with the key difference that we are not necessarily inter-
ested in the best function space but rather in the minimal
subset of attributes required for good joint performance. We
refer to this problem as multi-task feature selection. The key
tool we use in this context is that of convex optimization for
sparsity. To summarize, our contributions are the following:

e We formulate feature selection in behavioral target-
ing as a large-scale sparse mixed-norm optimization
problem and show that the recently proposed FISTA
algorithm for non-smooth convex optimization can be
applied to this setting.

o We design an efficient distributed implementation that
scales to terascale-sized data sets comprising billions of
instances and millions of features.

e Using a real-world web-scale display advertising tar-



geting data set, we show the ability of our algorithm to
beat baseline with both per-campaign and cross cam-
paign standard feature selection techniques in terms of
modeling performance (using the ROC measure) while
achieving a reduction of one to two orders of magni-
tude in actually used behavioral features.

2. PROBLEM FORMULATION

Our behavioral targeting problem can be formalized as
follows. To capture the interaction between covariates ,
campaigns ¢ and associated labels y (e.g. whether a partic-
ular user converted on an ad in a particular campaign at
a particular occasion) we consider the issue of estimating
y|z,c for a large range of campaigns simultaneously. We
assume that the input space of the covariates is R, that
is, each covariate x§ for instance i of campaign c lies in a
d-dimensional feature space. We also let n denote the total
number of campaigns.

Formally we consider sets of covariates and labels indexed
by a campaign ¢, as denoted by

X ={af,..,xnec} CXand Y ={yf,...,ymc} CY

Here each (xf, y§) is drawn from some distribution p(z, y|c)
of covariates and labels respectively. Typically we choose
Y = {£1}, in particular when dealing with a simple classi-
fication problem. The prediction problem can be expressed
either as one of risk minimization (we want to come up with
a classifier which makes a small number of mistakes) or as
one of maximizing the data likelihood. In the latter case we
want to find a parameter w = {w',w?,... w°} such that

p(YIX,w) = [T pvelxe,wt) = [T [ [ pwilatw®) (1)

c i=1

is large. Here, we can also view w as a n X d matrix such
that each w® is a d-dimensional row vector.

For the purpose of the present paper we pick a rather spe-
cific form of p(Y | X ¢, w), namely a log-linear model where

—log p(Y°|X°, w°) = log (1 + e—Y”wC’X”) G

Rather than minimizing the negative log-likelihood, we cast
the problem of finding w as risk minimization. Here we
minimize a penalized version of the aggregate risk

Rlw] = > R[w 3)

1
where R[w®] = me Zl(mf7 Y, w). (4)
i=1

Here the function I(z,y,w) is a loss function, which is typ-
ically convex in w. Note that by choosing the logistic loss
l(z,y,w) = log (1 + e*y“‘”m)) (which is what we use in our
experiments), logistic likelihood maximization and risk min-
imization can be treated in the same framework.

The specific choice of a regularizer is the subject of Sec-
tion 3. For the moment we abstractly define it as Q[w]. This
means that the problem of Maximum a Posteriori (MAP) es-
timation for w can be cast as convex minimization:

minignize Z Rwe] + AQ[w]. (5)

3. GROUP-SPARSE FEATURE SELECTION

Recall that we denote by R°[w] the empirical risk terms
incurred by the individual campaigns ¢ and by R[w] the
aggregate risk as defined in (4). For the purpose of fast
estimation we want to ensure that only a small number of
attributes are used in any of the campaigns — after all, if
we were to use a feature in even just one campaign we would
need to compute it beforehand regardless. This is achieved
by combining a penalty per entry w;; of the parameter ma-
trix, with one per group of parameters for each feature (i.e,
per column |[[w];]]). We thus obtain the problem of mini-
mizing

Lw] := Rlw] + A [Jwll, +/\22||[w}i|\2- (6)

The last term of the above expression also corresponds to
the 1,2 mixed-norm (see e.g. [9]) of the parameter matrix w.
It is easy to see that L[w] enhances sparsity of the solution.
For instance, provided that at optimality any subgradient
|Ow,. R[w]| < A1 it follows immediately that w;. = 0. Fur-
thermore, if ||0w, R[w]|| < A2 then likewise the entire coeffi-
cient vector satisfies [w]; = 0.

To solve the associated optimization problem we employ
the Fast Iterative Shrinkage Algorithm (FISTA) of [5]. At
its heart lies a proximal operator p(c|\) (see e.g. [7]), which
solves a simplified version of the penalized risk minimiza-
tion problem studied above, and a subgradient computation
which we distribute for the benefit of scalability. For the
sake of completeness we state the problem solved by the
proximal operator explicitly (it is easier to derive it from
scratch rather than specializing [4]).

Lemma 1 The mized norm optimization problem p(c|\)

1 2
argmin 2 [l — el + A 2l + A2 Y Il

(3

can be found by x = p(c|A\) in the following algorithm

Zij + T(Cij, A1) for all 4,3 (7
zi < (i, A2) for all i (8)
9)

Here 7(x,\) = xmax(0,1 — ||lz||; " \) is a shrinkage map.

Proor. Taking subgradients of the various norms in the
optimization problem we see that 9, ||z, = ||z||; " z if z # 0
and 0, ||z|l, = B1 otherwise (i.e. it is an element of the unit
ball). Hence it follows that x can be written as a sum of
subgradients

vee— | Mdsllell, + 00 3 [llalilly + Aade 2], | . (10)

That is, x satisfies the first order optimality conditions and

we established the result. [
An analogous shrinkage result holds whenever we mini-

mize R[w] rather than % ||z — c||2. Moreover, the steps out-
lined above constitute the inner loop of the fast iterated
shrinkage algorithm (FISTA) of [5].

3.1 Optimization Using the FISTA Algorithm

We now adapt FISTA to the problem at hand. The basic
strategy is described in Algorithm 1. That is, the algorithm
first computes the subgradient g := 9, R[w]. Subsequently



the gradient and the current (and past) parameter vector
are used in the prox operator to obtain a new iterate of the
parameter vector.

Algorithm 1 Optimization Using the FISTA Algorithm.
input: Lipschitz constant L for Rw].
Set zo =w1 =0 € RIC™? and t; =1
for i =1to N do

g < Ow, Rlw;] (11a)
. 9y
5 el = D) (11b)
tiy1 < 0.5 |:1 + 14/ 1+ 4t12:| (11C)
ti — 1
Wit1 < Zi + (ZZ — Zi+1) (11d)
i+1

end for

In order to invoke Algorithm 1 we need a number of com-
ponents: firstly we need a Lipschitz bound L on R[w]. In our
experiments, we use the logistic loss, for which it is known
that the corresponding Lipschitz constant is 1. If the in-
stances are bounded in terms of their norm by some r > ||z|
we can easily obtain an (admittedly) conservative bound of
L < rm. Whenever R is already normalized in terms of the
sample size this reduces to L < r. [5, Lemma 4.3] show that
FISTA converges at rate O(Lk™2) where k is the number
of iterations. Moreover, whenever this estimate of L is too
conservative we may use an alternative step size adaptive
variant of FISTA.

In terms of practical constraints — we need to be able
to compute g efficiently in a distributed fashion and to dis-
tribute parts of g to different machines in order to invoke
the prox operator p. These are the computationally expen-
sive parts of the algorithm. Fortunately p((w; — £)|3) de-
composes into individual attributes , each of which can be
computed individually. Likewise, computing g can be eas-
ily parallelized over different campaigns, each of which have
their own parameter vector w®. We discuss both parts in
further detail in section 4.

Machine 1 Machine 2

e @ -

Instances for Instances for Instances for
C/P campaigns  C/P campaigns C/P campaigns

Figure 1: Work flow during the distributed opti-
mization algorithm. The weight matrix is broken
into a set of PxP blocks and stored in a distributed
hash table. The instances are partitioned among the
machines. Each machine is assigned all instances
that belong to C/P campaigns, where C is the num-
ber of campaigns and P are the number of machines.

4. DISTRIBUTED OPTIMIZATION

Invoking Algorithm 1 involves the following main steps:

DIP DIP

C/P{

Weight Matrix

CxD
1 e o B e v

Figure 2: Storage of the weight matrix. C is the num-
ber of campaigns, D is the number of features, and P is
the number of machines. The weight matrix is divided
into PxP blocks (A;.p,1:p) each of which spans C/P cam-
paigns and D/P features.

1. Compute partial subgradients of R[w] for all campaigns

2. Aggregate subgradients obtained from all instances.

3. Distribute coordinates (or subsets S € 8 thereof) of
the subgradients to different machines for application
of the prox operator.

4. Invoke the prox operator and redistribute the results.

Naively this problem suggests the use of a MapReduce com-
putation on Hadoop. Unfortunately, the latter is not well
suited to computations that repeatedly use the same data as
Hadoop mainly communicates via files which is undesirable
since disk I/O overhead becomes comparable to the time to
compute the results. Hence we resort to a method discussed
in [1, 11], namely to allocate the machines using Hadoop
and then the establish an overlay communication network.
Let P be the number of machines, D be the number of
attributes, and C' be the number of campaigns. Thus the
weight matrix to be learnt is of size C' x D. We first dis-
tribute the instances across machines, where each machine
is assigned the instances (examples) of a set of C/P camp-
ings.These allocations do not change as the algorithm pro-
ceeds, thus minimizing data movement. As shown in Fig-
ure 2, the weight matrix is divided into P x P blocks each
of which spans C'/P campaigns and D/P attributes.This
weight matrix divided into blocks can be stored across the
Hadoop file system and these blocks can be exchanged be-
tween machines via file disk I/O operation. However, in-
stead of writing these to disk and synchronizing processes
via file I/O we synchronize them by storing the blocks in
memcached. The latter, when used in storage rather than
caching mode, allows us to spread the data evenly and to
retain it in memory since it uses consistent hashing [3].

4.1 Distributed Subgradient Oracle

Computing subgradients of R[w] requires the following op-
eration

9= 2 e 3 Bulletvi ) (12)

= (- mi Til Duel(a i w'), ) (13)

1=g°¢
In other words, the subgradient trivially decomposes into
Owe R°[w°]. Hence it is advantageous to aggregate data from
individual campaigns on each machine. This way most coor-
dinates of the subgradient will vanish on each machine and
only the composite g be largely nonzero. Consequently we



only need to transmit smaller g¢ between the machines hold-
ing individual blocks. More specifically, each machine, say
i, computes the gradient of the C//P campaigns assigned to
it. To do that, the machine first retrieves the current weight
vector from the distributed hash table. This amounts to
reading blocks A; 1.p from the distributed hash table. As ev-
idence, this step can be performed in parallel across all ma-
chines. Once the machine obtains the current weight vector
pertaining to its allocated campaigns, it does a single pass
over the examples stored locally to compute the gradient
and update the weight vector corresponding to its assigned
campaigns. The next step now for machine i is to write back
the new weight vector to the distributed hash table. To do
so, it first breaks its assigned weight into P blocks and write
them back to the hash table. Since each machine i reads
blocks A; 1.p and writes back blocks A; 1.p, it is clear that
these two steps can be executed in parallel across all the ma-
chines. After this step, the machine reach a barrier before
proceeding to the next step. Similar to [2], we implemented
a reverse-sense barrier algorithm that scales logarithmically
with the number of machines.

4.2 Distributed Prox Operator

The final step required in addressing the distributed op-
timization problem of minimizing L[w] is to solve the prox
operator p. It decomposes along the set of attributes. Hence
we simply need to solve each of the arising problems accord-
ing to the algorithm described in Lemma 1 separately. Note
that the latter can be done in linear time — we only require
computing norms of vectors and rescaling them.

The data exchange is completely analogous to the gra-
dient computation, except that we now work on attributes
rather than campaigns. Each machine, say machine ¢, reads
blocks Ai.p,; and solves the prox operator for a set of D/P
attributes. Once performed, it then breaks each of these at-
tributes vectors (each of which is of dimension C) back into
a set of P blocks and writes them back to the distributed
hash table. Similar to the gradient computation phase, this
read and write steps can be performed in parallel, and fol-
lowed by a barrier to ensure consistency of the weight matrix
before moving to the next iteration.

4.3 Communication Complexity

As a consequence the (key,value) pairs are distributed uni-
formly over the p machines involved. Hence the data ex-
change between any pair of machines is O(1/p?) — a fixed
amount of data is distributed between p machines. Each
O(1/p) sized block is distributed over p machines. As long
as all machines are located on the same switch this exhibits
perfect scalability, i.e. it takes O(1/p) time to process and
synchronize. Finally, we obtain the following theorem:

Theorem 2 In order to process m instances with D dimen-
stons from C' campaigns on P processors we need O (
time. Here n is the ratio between network transfer and data
processing speed.

ProOOF. To process the gradients associated with mD data
on P machines costs O(mD/P) time. Exchanging chunks
costs O(nCD/P) time. Evaluating the prox operator costs
O(CD/P) time. Since we may safely assume that the net-
work is the limiting factor relative to processing the latter
does not matter. We ignore log factors associated with net-
work congestion and collision. []

mD+nCD )
P

Algorithm 2 Distributed Optimization
1: for alli =1--- P do parallel do

2 Read blocks A;1.p

33 foralle=(i—1)*$+1---ix< do

4 compute subgradient ge := 9y, R[w].

5 end for

6:  Write back to the hash table blocks A; 1.p.
7: end for

8: Reach a barrier.

9: for alli=1--. P do parallel do

10:  Read blocks Ai.p;

11: foralld=(i—1)*8+1---ix 2 do
12: solve the prox operator

13: end for

14: Write back to the hash table blocks Ai.p,;.
15: end for

16: Reach a barrier.

# days | # users | #features | # campaigns | dataset size

56 5.2B 834K 1468 2.143TB

Table 1: Basic statistics of the data used.

5. EXPERIMENTS

To model the performance of our algorithm, we build tar-
geting models for display advertising campaigns based on
the targeting system for conversion-optimization presented
in [3]. Table 1 presents some statistics about our data set.

We study the performance of our techniques compared
to the baseline system developed in [3]. We mainly com-
pare modeling performance in terms of the area under the
ROC curve (AUC). Unless otherwise specified, all metrics
are measured as conversion-weighted average of AUC across
all campaigns in the benchmark set.

To assess the performance of our proposed sparse multi-
task feature selection technique (denoted as MTFS), we start
by applying standard feature selection baseline techniques
to our data set. The first baseline that we use to compare
our performance is a per-campaign Ll-regularized learning
model. In addition, we also use as a second baseline, a cross-
campaign greedy information gain heuristic. More specifi-
cally, the set of baseline feature selection techniques that we
compare against, are:

e Independent Per-Campaign ¢; Feature Selection: In

1500

Sparse Multi-task (aggressive)
= = = Sparse Multi-task(conservative)
Per-Campaign L1

1000

frequency (number of campaigns)

20” ;0’ 1‘02 16“ 10
feature id in log scale
Figure 3: Features histogram across campaigns. The
X-axis represents the rank index of features under
each method and the Y-axis gives the number of
cmapigns having this feature in their model when

trained using this method.



this baseline, we apply logistic regression with ¢ reg-
ularization to each campaign separately.

e Global Cross-Campaign Mutual Information (MI) Gain:
In this baseline, we compute the mutual information
between features and labels on a per-campaign basis.
Then, for each feature, we average all per-campaign
mutual information values to compute the average global
mutual information value across all campaigns. We use
this latter to sort features cross campaign and take the
top-k list. We apply logistic regression using f2 regu-
larization. (Note that performing ¢1 here didn’t en-
hance the performance, since the number of features
are already small after the filtering step based on MI).

All Parameters for all models were tuned over a validation
set. For our model we report two runs with conservative
(A1 = 0.4, X2 = 10)and aggressive (A1 = 0.4, A2 = 25 )fea-
ture selections to give more insight about its mechanics. All
results are reported in terms of the weighted average ROC
measure * 100 across all campaigns.

As can be seen from Table 3, our MTFS group feature
selection models for both conservative and aggressive spar-
sity levels, outperform the ROCs for not only the Cross-

Campaign Information Gain Models, but also the Per-Campaign

Information L1 Feature Selection Model.

In Figure 3, we show the histogram of feature counts in
the trained model of different techniques. As evident, MTFS
significantly reduces the total number of features which re-
sults in compact models that can be loaded in memory as
well as trained more frequently and thus reduces the latency
to predict user conversions It is quite striking that perform-
ing feature selection over each campaign independently re-
sults in 500K global features yet performs poorly compared
to the merely 17K global features discovered by our joint
training algorithm. This is largely due to the heavy tail dis-
tribution that occurs when features are not selected jointly
(see Figure 3). Moreover, [3] showed that merely cutting
features based on their frequency in the trained models, did
NOT improve the accuracy of those models.

Table 2 shows the performance comparison of the differ-
ent techniques for campaigns with less than 100 and 500
conversions, respectively. The numbers clearly show the su-
periority of our algorithm in leveraging cross-campaign in-
formation to improve the performance of campaigns with
very few conversions, as opposed to the baseline techniques.

Finally, concerning the running time, the algorithm con-
verges after only a few iterations (< 10) and the time con-
sumed by the I/O was negligible to the time consumed by
the gradient computation step. Finally, it should be noted
that the gradient computation step just requires a single
pass over the data, which is comparable to the amount of
time required to train each model separately.

6. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of multi-task fea-
ture selection for behavioral targeting across different adver-
tising campaigns. We formulated the problem as a mixed-
norm optimization problem and devised a novel and efficient
distributed inference algorithm that scales to billions of in-
stances and millions of attributes. We empirically showed
that our algorithm not only reduces the number of over-
all features needed for classifications but also improves per-
formance, especially for campaigns with sparse conversions,

Method ROC (<100 C.) ROC (<500 C.)
Global-MI: top 50K + L2 53.2 53.8
Per-Campaign L1 50 50.1
MTFS (conservative) 60.3 62.7
MTFS (aggressive) 57.3 61.3
Table 2: Modeling performance comparison for
Campaigns with few conversions.
Method ROC Feature Count
Global-MTI: top 10K + L2 56.6 10,000
Global-MI: top 30K + L2 56.9 30,000
Global-MTI: top 50K + L2 56.7 50,000
Per-Campaign L1 54.5 588,975
MTFS (conservative: A\; = 0.4, A2 =10) 61.1 17,789
MTFS (aggressive: A1 = 0.4, A\ = 25) 59.3 3,992

Table 3: Modeling Performance and Resulting Fea-
ture Set Sizes for the Different Feature Selection
Techniques.

over models that perform individual task-level optimization.
In future work, we intend to model the effect of hierarchical
sparsity constraints for groups of features.
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