
Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Real-time non-photorealistic animation for immersive storytelling in “Age of Sail”

Cassidy Curtisa, Kevin Dartb, Theresa Latzkob, John Kahrsc

aGoogle Spotlight Stories
bChromosphere LA
cBoathouse Studios

A R T I C L E I N F O

Article history:

Received October 21, 2019

Keywords: non-photorealistic rendering,

real-time, virtual reality, storytelling, an-

imation

A B S T R A C T

Immersive media such as virtual and augmented reality pose some interesting new chal-

lenges for non-photorealistic animation: we must not only balance the screen-space

rules of a 2D visual style against 3D motion coherence, but also account for stereo

spatialization and interactive camera movement, at a rate of 90 frames per second. We

introduce two new real-time rendering techniques: MetaTexture, an example-based tex-

turing method that adheres to the movement of 3D geometry while preserving the tex-

ture’s screen-space characteristics, and Edge Breakup, a method for roughening edges

by warping with structured noise. We also describe a custom rendering pipeline featur-

ing art-directable coloring, shadow filtering, and texture indication, and our approach

to animating and rendering a painterly ocean in real time. We show how we have used

these techniques to achieve the “moving illustration” style of the real-time immersive

short film “Age of Sail”.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The immersive short film Age of Sail [1] tells the story of

an old sailor adrift in the north Atlantic in the year 1900. For

this story to succeed, it had to reach the audience on two lev-

els: engage them emotionally with the characters, but also im-

merse them in a world that is believable enough to create a real

sense of peril. The story also had to run in real time within the

limitations of current virtual reality hardware, including mobile

devices.

We chose a visual style that we felt would support these

goals: deliberately polygonal shapes with naturalistic propor-

tions and movement, coupled with a limited color palette, flat-

colored regions with roughened edges, rounded shadow shapes,

and indications of texture (see Figures 1-2).

Adapting even a simple visual style from a static flat image

to real-time animated 6DoF VR is an act of interpretation that

requires careful thought. In this paper we will describe how we

captured the essential qualities of Age of Sail’s visual style, in-

cluding two new rendering techniques (MetaTexture and Edge

Breakup) that solve problems unique to the 6DoF VR context.

1.1. Related Work

Balancing screen-space stylistic rules against 3D motion co-

herence is a well-known challenge in the field of NPAR. Vari-

ous approaches have been made to produce coherent silhouettes

[2, 3, 4, 5], using brushstrokes to fill regions [6, 7], volumetric

textures [8] and screen-space advection [9, 10]. Our method dif-

fers from most of these in that it can be implemented within an

existing real-time animation and rendering pipeline, using only

a few custom shaders and image-processing filters. Also, none

of these previous methods account for the needs of stereoscopic

6DoF VR. The artifacts they introduce may differ between left

and right eye views, resulting in a misleading or incoherent per-

ception of stereo depth.

There have been various papers describing non-photorealistic

rendering in VR or AR: [11, 12, 13, 14, 15]. However, none of

these address the complete set of issues including stereo fusion

and temporal coherence. Northam et al [16] does address stereo

coherence, but uses a technique inappropriate for real-time ren-

dering.

Our multresolution texture method can be considered a gen-

2 Preprint Submitted for review /Computers & Graphics (2019)

Fig. 1: Concept art for Age of Sail by Céline Desrumaux and Jasmin Lai.

(a) rough edges (b) limited color palette (c) rounded shadow shapes (d) indications of texture

Fig. 2: Important details from the concept art.

eralization of the UV-gradient-based curved hatching described

by Saito and Takahashi [17]. Multiresolution or self-similar

textures have been used to allow screen-space marks to adjust

smoothly under changes in viewpoint, scale, or deformation:

Bénard et al [18] and Kalnins et al [2] do it in linear edge space;

Klein et al [11] rely on pre-rendered “art maps” that do not

account for real-time lighting or animation changes. Dirksen

[19] used a scalar multiresolution noise texture for pixel-scale

dithering in 6DoF VR. Our method is more general, operating

on full-color textures as well as vector fields, with special con-

siderations for screen space orientation, texture skewing, and

continuity across triangle edges.

Our edge breakup method is a direct extension of the warp-

ing technique used on the immersive short Pearl [20], with ad-

ditional features specific to the 6DoF VR domain. Our overall

approach to planning and executing non-photorealistic anima-

tion production follows the guidelines set out by Curtis [21].

This paper is an extended journal version of the Expressive

2019 paper by Curtis et al [22]. Compared to the original pa-

per, the major new contributions in this version are: (1) analy-

sis of the concept art that motivated the development of these

techniques, (2) a detailed explanation of the custom rendering

pipeline, ocean, and shaders, and (3) a method for compensat-

ing for contrast reduction in MetaTexture.

1.2. Overview

We will start by describing our overall artistic design ap-

proach (Section 2), and the new non-photorealistic techniques

MetaTexture (Section 3), and Edge Breakup (Section 4). We

will describe the customized animation and rendering pipeline

(Section 5) that we built around these techniques. Following

that, we will show examples of how we applied these techniques

in production (Section 6), and suggest future directions for fur-

ther exploration (Section 7).

2. Design

2.1. Inspiration

Fig. 3: Oil painting Ship in

Green Water by Bernie Fuchs.

Note the darkened edges that

give the scene a subtle “inner

glow” effect.

Age of Sail’s visual style (Fig-

ure 1) is inspired by the work

of painters like Bernie Fuchs

[23] and Thomas Hoyne [24].

Fuchs uses limited color palettes

with roughened edges and hints

of texture to produce evocative

scenes; some of his paintings

also have an “inner glow” that

comes from his unique oil rub-

out technique (see Figure 3).

Hoyne’s compelling portrayals

of life on the open ocean show

thoughtful control of texture in

lit and shadowed regions.

A key insight we drew from

these illustrators is that each in

his own way controls what the

audience perceives by manipu-

lating the salience of every element in the scene. They use

techniques like indication [25] to convey the feeling that an ob-

ject is textured without explicitly rendering its texture every-

where in full detail, or lost and found edges [26] which focuses

Preprint Submitted for review /Computers & Graphics (2019) 3

Fig. 4: A final rendered frame from Age of Sail.

the viewer’s attention by carefully planning the locations of the

most salient edges, and reducing edge salience elsewhere. What

these techniques have in common is that they remove informa-

tion from the scene, engaging and inviting the viewer to fill in

the blanks.

2.2. Our design choices

We used a combination of these approaches in our designs.

The hand-painted concept art in Figure 1 illustrates several of

the elements of Age of Sail’s visual language. The scene con-

sists mainly of solid-colored regions which, though simple and

polygonal in shape, are drawn with rough edges that give them

a handmade quality (Figure 2a). The color palette is limited: for

example, there are only four shades of blue in the ocean (Figure

2b). Shadow shapes are rounded in a way that unifies the over-

all composition, and suggests they were painted with a brush of

a certain size (Figure 2c). Texture is indicated sparingly, mainly

on transitions between the lit and shadowed regions of smooth

surfaces (Figure 2d).

The choice to build the image mainly of regions of solid color

unifies the overall composition in an appealing way, and also

makes the production process more flexible. Because overlap-

ping objects with matching colors are perceived as one shape,

the digital artists on our team are free to mix different tech-

niques to produce a seamless end result (Figure 4).

2.3. The devil in the details

If our design style consisted only of simple, smooth-edged

regions of color, adapting it to an immersive medium like 6DoF

VR would be fairly straightforward. However, our style also has

some highly salient fine-grained detail, of two distinct kinds:

texture, and rough edges. These details pose an interesting tech-

nical challenge.

To function well in VR, every detail in the scene must (1)

conform to the 2D screen-space rules of the style, (2) cohere

with the movement of objects in 3D space, (3) adapt to the

audience’s dynamically changing viewpoint, and (4) spatialize

stereoscopically at an appropriate depth. This is a highly over-

constrained problem.

Fortunately, our goal is not a mathematically perfect solution,

but an illusion that achieves all of these goals in the viewer’s

mind (a problem analogous to the “plausible physics” proposed

by Barzel et al [27].) An error that is imperceptible to the audi-

ence is equivalent to a perfect result for our purposes. Our task,

then, is to develop methods whose mistakes can be pushed be-

low the threshold of perceivability. We will describe two such

methods in the sections that follow: MetaTexture (Section 3)

and Edge Breakup (Section 4).

3. MetaTexture

To achieve the illusion of a 2D visual style in 6DoF VR,

we need a texturing technique that preserves the style’s screen-

space characteristics while adhering to the movement of sur-

faces in 3D space. The technique must also be simple enough

to perform well at high frame rates, a requirement that excludes

most procedural or solid texturing methods. For this reason, we

have opted for an example-based approach.

A MetaTexture is a multiresolution texture made by blending

multiple copies of a single tileable example texture (Figure 5a),

4 Preprint Submitted for review /Computers & Graphics (2019)

(a) (b) (c) (d) (e) (f)

Fig. 5: (a) Example texture. (b) Ordinary texture mapping produces undesirable distortion in screen space. (c) Quantized regions with UV scales adjusted to the

nearest power-of-two, to approximate screen-space size of example texture. (d) MetaTexture with blending. (e) Quantized regions of positive (green) or negative

(red) skew (n = 4). (f) MetaTexture with skew compensation and blending.

under different affine transformations in UV space. The trans-

forms are chosen so that at any point on the surface, the trans-

formed textures approximate as closely as possible the example

texture’s shape and size in screen space (Figure 5c). Although

the range of possible transforms is infinite, only a finite number

of transforms are needed for any given fragment, so the texture

can still be calculated in constant time.

3.1. Texture scales and blend coefficients

The first component of the affine transformation is the scale

of the texture in UV space, which may be non-uniform. One

way to determine texture scales is by using the magnitudes of

the screen-space gradients of the texture coordinates
⇀
U = 〈u, v〉.

Assuming a square example texture of width w pixels, the ideal

texture scale, i.e. one which would produce locally the same

screen-space proportions of the original texture, would be:

⇀
S =

〈

1

w|∇u|
,

1

w|∇v|

〉

(1)

However we cannot simply scale the texture by this vector

locally at every pixel, as these gradients may vary continuously

across the screen, producing wildly distorted textures. We must

find a discrete set of scale values that can be relied upon not

to change, and then smoothly interpolate between the resulting

textures. For this, we have chosen the powers of two (similar

to anisotropic mipmaps or ripmaps). We convert the scale to an

exponent vector
⇀
E as follows:

⇀
E =

〈

log2(
⇀
S u), log2(

⇀
S v)

〉

(2)

We threshold those exponents to produce the four nearest

power-of-two scaled texture coordinates
⇀
U0−3, and blend co-

efficients
⇀
B:

⇀
U0 =

〈

2⌊Eu⌋u, 2⌊Ev⌋v
〉

(3)

⇀
U1 = 〈2u0, v0〉 (4)

⇀
U2 = 〈u0, 2v0〉 (5)

⇀
U3 = 〈2u0, 2v0〉 (6)

⇀
B = 〈β(Eu − ⌊Eu⌋), β(Ev − ⌊Ev⌋)〉 (7)

where β(x) is any smooth monotonic blending function meeting

the criteria that β(0) = 0 and β(1) = 1. (In practice, we have

found the cubic blend β(x) = −2x3 + 3x2 produces pleasing

results.)

The MetaTexture color M is then determined by sampling the

texture T four times, and blending the results:

M(
⇀
U) = (1 − Bv)[(1 − Bu)T (

⇀
U0) + BuT (

⇀
U2)]+

Bv[(1 − Bu)T (
⇀
U1) + BuT (

⇀
U3)]

(8)

Because the blend function is smooth, it is not immediately

obvious to the viewer where one texture scale region ends and

the next one begins (see Figure 5d). The regions overlap, and

the transitions between them are less salient than the details of

the texture itself, and thus they fall below the threshold of per-

ceivability. This is also true of how the texture changes when

an animated surface moves through 3D space: the transitions

over time are quite subtle compared to the gross movement of

the object as a whole. Thus we preserve the twin illusions of

consistent 2D texture quality and 3D motion coherence while

minimizing distracting artifacts.

3.2. Approximate smooth UV gradients

UV gradients have two disadvantages: first, they may not

be continuous at triangle boundaries, which can lead to visible

hard-edged artifacts when the discontinuities are large (see Fig-

ure 6a.) Second, gradients are based on derivatives, which must

be calculated in the fragment shader, which is less efficient than

the vertex shader when triangles are large.

We can approximate the UV gradients by deriving them from

the local tangent and binormal, which can be calculated in the

vertex shader and interpolated smoothly across the triangles.

Given the screen-space projections of the unit tangent and bi-

normal (
⇀
Ts and

⇀
Bs), and the world-space UV gradients ∇wu and

∇wv, we approximate the screen-space gradients as follows:

∇su = |∇wu|⇀Ts/|⇀Ts|2 (9)

∇sv = |∇wv|⇀Bs/|⇀Bs|2 (10)

Preprint Submitted for review /Computers & Graphics (2019) 5

(a) (b)

Fig. 6: (a) hard-edged artifacts resulting from discontinuous UV gradients. (b)

approximate smooth gradients.

By substituting ∇su and ∇sv into Equation 1, we obtain

smoother results, as seen in Figure 6b.

Note: this method assumes the world-space UV gradients are

known for any vertex in the mesh. Calculating those gradients

for every vertex every frame on deforming meshes may be com-

putationally expensive on certain hardware configurations. In

practice we have only used this method on meshes where the

gradients can be approximated by a constant value across the

entire mesh. (This method also assumes that the gradients of u

and v are perpendicular in world space, which may not be true

on all meshes. This is only an issue if compensating for skew

as described in Section 3.4.)

Under certain circumstances, the method described above

might produce a stereoscopic “shimmer” artifact, where the left

and right eye views have completely unrelated textures when a

surface subtends significantly different areas in the two differ-

ent views. This can be corrected by projecting
⇀
Ts and

⇀
Bs using

a single camera rather than projecting each eye separately. (In

practice we have not found this necessary, since this only oc-

curs when a large vertical surface is oblique to camera, and our

most prominent use of MetaTexture is on the horizontal surface

of the ocean: see Section 6.1.)

3.3. Compensating for radial angle

The above calculations assume that the desired result is a

uniform texture scale in screen space. However, in a VR de-

vice, pixels near the edge of the screen subtend a significantly

smaller radial angle than pixels near the center, which means

that the apparent level of detail varies across the screen. Thus,

the same surface will have a different appearance when viewed

head-on versus obliquely, a difference that is quite noticeable if

the viewer turns her head. We compensate for this by adding a

radial angle compensation coefficient α to equation 1:

⇀
S =

〈

1

αw|∇u|
,

1

αw|∇v|

〉

(11)

As a pixel’s radial angle depends on its location and the cam-

era’s focal length, we can derive α from the screen space posi-

tion s and the camera projection matrix P as follows:

⇀
Q =

〈

sx

P0,0

,
sy

P1,1

〉

(12)

α = |⇀Q|2 + 1 (13)

3.4. Compensating for skew

So far we have only discussed scaling textures orthogonally

along the u and v axes. However, it is still possible for textures

to become highly stretched or distorted if the angle between ∇u

and ∇v diverges too far from 90 degrees (Figures 7a and 5d).

∇v ∇u

(a)

∇v ∇u

ψ ψ

(b)

Fig. 7: (a) Skewed texture. (b) Compensating for skew by rotating the eigen-

vectors in UV space.

To compensate for this distortion, we can rotate both eigen-

vectors in UV space by an angle ψ so that their screen-space

projections become perpendicular (Figure 7b). To find ψ, we

start by computing a skew factor σ as follows:

σ = tan−1(ǫ)

(

∇u

|∇u|
· ∇v

|∇v|

)

(14)

where

ǫ =

|∇u|/|∇v|, if |∇u| ≤ |∇v|
|∇v|/|∇u|, otherwise

(15)

We quantize the skew factor at a user-determined finite num-

ber of levels n (see Figure 5e; in practice, values between 2

and 4 seem to work well) and use those to calculate quantized

angles ψ0, ψ1, and finally determine new UV coordinates
⇀
U′,

⇀
U′′:

σ0 =
⌊nσ⌋

n
(16)

σ1 =
⌊nσ⌋ + 1

n
(17)

ψ0 = tan−1
(

σ0

2

)

(18)

ψ1 = tan−1
(

σ1

2

)

(19)

⇀
U′ = 〈u cos(ψ0) + v sin(ψ0), v cos(ψ0) + u sin(ψ0)〉 (20)

⇀
U′′ = 〈u cos(ψ1) + v sin(ψ1), v cos(ψ1) + u sin(ψ1)〉 (21)

Quantizing and blending based on the skew factor means we

must sample the texture eight times rather than four. We gener-

ate the eight sets of coordinates
⇀
U′

0..3
and

⇀
U′′

0..3
using equations

2-5, and we calculate a third blend factor Bw, and MetaTexture

as follows:

6 Preprint Submitted for review /Computers & Graphics (2019)

Bw = β(nσ − ⌊nσ⌋) (22)

M(
⇀
U) = (1 − Bw){(1 − Bv)[(1 − Bu)T (

⇀
U′0) + BuT (

⇀
U′2)]+

Bv[(1 − Bu)T (
⇀
U′1) + BuT (

⇀
U′3)]}+

Bw{(1 − Bv)[(1 − Bu)T (
⇀
U′′0) + BuT (

⇀
U′′2)]+

Bv[(1 − Bu)T (
⇀
U′′1) + BuT (

⇀
U′′3)]}

(23)

There is a tradeoff here: the reduced distortion comes at the

cost of increasing the number of overlapping regions (Figure

5f). In practice, whether skew compensation is needed depends

on the texture and the desired result.

3.5. Orienting texture to indicate contour

In some cases a texture may have a clear sense of direction-

ality to it, which you may wish to use to indicate contour along

the surface. In this case we can reorient the texture depending

on the relative magnitudes of ∇u and ∇v. (See Figure 8.)

(a) (b)

Fig. 8: An ocean surface with a clearly directional MetaTexture (a) in its default

orientation, (b) re-oriented to indicate contour.

3.6. Compensating for contrast reduction

The above techniques alone do not guarantee a consistent

level of contrast across the entire image. Some regions may

be dominated by a single texture (Figure 9a) while others may

be a blend of up to eight different textures (Figure 9b), which

significantly reduces feature contrast and salience. (A similar

problem often occurs in “fractalized” textures [28].)

This can be improved by using a histogram-preserving blend-

ing operator as described by Heitz and Neyret [29]. If you start

with a texture that already has an approximately Gaussian his-

togram (Figure 9d), which turns out to be quite common in

noise-based textures, you can skip the gaussification and de-

gaussification steps entirely, and simply multiply the contrast

by a single compensation factor c, which can be reduced to the

simple function:

c = k(Bu)k(Bv)k(Bw) (24)

where

k(t) = 2t2 − 2t + 1 (25)

The adjusted result will more closely approximate the ap-

parent contrast level of the original texture (Figure 9c). Note:

while this feature was not needed in the case of Age of Sail, we

have since found it useful on other projects where the reduced

contrast is more noticeable.

(a) original texture (b) blended textures (c) contrast adjusted

(d) (e) (f)

Fig. 9: (a/d) Original texture and its histogram. (b/e) Blending multiple textures

reduces contrast. (c/f) A histogram-preserving blend restores contrast.

4. Edge Breakup

The rough edges in the concept art (Figure 2a) were made

using standard digital painting techniques, which typically in-

volve 2D height fields or halftone patterns. To reproduce the

look of those edges in stereoscopic 3D, we need to create the

illusion that the roughness is “attached” to 3D objects in the

scene. To achieve this, we use the strategy of warping the im-

age with a structured vector field.

(a) (b)

(c) (d)

Fig. 10: (a) A self-similar, tileable noise texture. (b) Warp pass, with noise

rendered with MetaTexture on inflated surface. (c) Color pass, with clean-edged

rendered surface. (d) Edges roughened by warping.

We start with a texture that represents warp vectors using

the red and green color channels. (For best results, the texture

should tile seamlessly and be self-similar, as in Figure 10a). To

“attach” this texture to a 3D object, we map it onto the object’s

geometry, and render it using different shaders into a separate

buffer (Figure 10b). This screen-space vector field is then used

Preprint Submitted for review /Computers & Graphics (2019) 7

to warp the clean-edged color pass (Figure 10c) to produce the

final result (Figure 10d). Because the vector field is coincident

with the geometry in 3D space, it will always move coherently,

and its salient features will also spatialize at the correct depth

when viewed in binocular stereo. This way we avoid the un-

desirable ”rippled glass” effect common with image warping

effects.

With an ordinary texture, the perceptual quality of the warped

edge may vary depending on the viewer’s point of view. For

example, when viewed up close, the texture may get blurry, re-

sulting in lines that are soft and wiggly as opposed to rough.

(This is in fact what happens in the 6DoF version of the im-

mersive short Pearl [20].) So we use MetaTexture here as well,

to guarantee that the roughness remains perceptually consistent

regardless of the viewer’s point of view.

4.1. Edge inflation

To ensure that the edges can be warped in both directions,

both towards and away from the object’s silhouette, our shader

inflates the geometry by a small amount (measured in screen

space, as pixels or as percentage of image size) by moving each

vertex outward along its screen-space projected normal. (See

Figure 11.)

(a)

(b)

Fig. 11: The effect of edge breakup (a) without inflation and (b) with inflation.

Note that without inflation, the edge breakup affects only pixels that are entirely

within the object’s silhouette, resulting in a hard outer edge.

4.2. Animated line boil

Line boil is how animators describe the subtle differences

between drawn lines across successive frames of hand-drawn

animation. We can mimic this effect by adding a periodically

changing offset to the texture coordinates. (See Figure 12.)

Fig. 12: Four frames from a scene with animated line boil.

4.3. Compensating for camera roll

Because the red and green channels encode warp vectors in

screen space, if we were to roll the camera (e.g. if the viewer

tilts her head sideways), the warped edges would change their

shape (see Figure 13.) To compensate for this, we rotate the

vectors in the shader, so that the frame of reference remains

aligned with the screen space U gradient regardless of orienta-

tion.

(a) (b) (c)

Fig. 13: (a) Warping an edge using vectors encoded in the red/green channels.

(b) Warping with the same vectors after camera rotation produces a different

shape. (c) Rotating the vectors before encoding keeps the shape consistent.

4.4. Compensating for distance

The above techniques will ensure a uniform degree of screen-

space roughness, creating the illusion that the entire image was

painted using the same tools and materials. However, in order

to preserve certain important details, it is sometimes desirable

to reduce the roughness as an object recedes in the distance.

In that case we can attenuate the intensity of the warp effect ρ

based on the distance from camera d:

ρ′ =
ρ

1 + d2
(26)

(a)

(b)

Fig. 14: The effect of edge breakup (a) without and (b) with distance compen-

sation. Note that without distance compensation, the edge breakup makes the

character’s silhouette more difficult to read.

8 Preprint Submitted for review /Computers & Graphics (2019)

5. The Rendering Pipeline

To render the full scene with our visual style, we do not need

all of the features of a traditional photorealistic renderer, but

we do need some extra rendering passes and image processing

filters not typically present in standard pipelines. So we de-

veloped a custom rendering pipeline comprising the minimal

set of features we needed, optimized for real-time performance

(see Figure 15).

3D scene
description

depth pass shadow pass warp pass

blur pass

final shadow

color pass

final color pass

Fig. 15: Our custom rendering pipeline, showing the dependencies between

the different passes. (Blue indicates a rendering pass, and yellow an image-

processing pass.)

Our pipeline consists of a series of 3D rendering passes in-

terleaved with image-processing operations, as follows:

1. Warp Pass (render): In this pass we render all objects in

the scene with the special shaders described in Section 4

(Figure 16a).

2. Depth Pass (render): Here we render only shadow-casting

objects into a depth buffer, to be used later for casting shad-

ows. The depth buffer’s spatial coordinates are warped

with a sigmoid function so as to provide more detail in

the areas near the viewer (Figure 16b).

3. Shadow Pass (render): In this pass (Figure 16c) we render

different information into each of the three channels (Fig-

ures 16d-16f). In the red channel, we render a simplified

Lambert-shaded version of the objects, with cast shadows

(Figure 16d). The green channel denotes objects that need

to have screen-space lens effects, such as light sources or

(a) Warp Pass (b) Depth Pass (c) Shadow Pass

(d) Shadow Red (e) Shadow Green (f) Shadow Blue

(g) Blur Pass (h) Final Shadow Pass (i) Color Pass

(j) Final Color Pass

Fig. 16: The various passes of our custom rendering pipeline.

specular highlights (Figure 16e). We also apply an op-

tional breakup map texture to the blue channel on certain

surfaces (Figure 16f). This will be used later to control the

“palette knife” effect for texture indication.

4. Blur Pass (image processing): Here we blur the Shadow

Pass using a series of alternating 1D Gaussian blur and

downsampling filters (Figure 16g).

5. Final Shadow Pass (image processing): In this pass we

combine information from the Shadow Pass and Blur Pass

to produce rounded shadow shapes, inner glow, and texture

indication (Figure 16h). For details of how this is done, see

Section 5.1.

6. Color Pass (render): In this pass we render the colors of all

objects in the scene (Figure 16i), using the Final Shadow

Pass as an input texture. For details, see Section 5.2.

7. Final Color Pass (image processing): In this final step of

Preprint Submitted for review /Computers & Graphics (2019) 9

the pipeline, we use the Warp Pass to warp the pixels of

the Color Pass. (Here we also add bloom effects based on

the Final Shadow Pass green channel.) (Figure 16j).

5.1. Shadow shapes, inner glow, and indication

To produce hard-edged silhouettes with rounded corners, we

threshold the Blur Pass red channel. We create the Fuchs-

inspired “inner glow” effect by inverting the Blur Pass and

clamping it to add a bit of light to the interior of the dark re-

gions. For texture indication, wherever the Shadow Pass blue

channel is non-zero, we increase the number of steps in the

thresholding operation. This has the effect of breaking up the

transitions from light to shadow in regions of the surface that

are oblique to the light direction (Figure 16h).

5.2. Color control

Each character and prop in the scene contains two full sets

of texture maps, one for shadowed areas (Figure 17a), and one

for illuminated areas (Figure 17b). These textures are hand-

painted, and art-directed so that certain salient details may stand

out only in shadows, and others only when lit. We use the Final

Shadow Pass red channel to blend between these lit and shad-

owed texture maps on all objects.

(a) (b) (c)

Fig. 17: Texture examples: (a) shadow textures, (b) lit textures, (c) final result.

The shaders used in this pass also have color overlay and sat-

uration controls, which can be used to adjust the coloring of the

lit and shadowed regions independently, allowing us to achieve

a variety of different lighting conditions and moods using only a

few user controls. These controls are also animatable, allowing

us to adjust lighting conditions smoothly over time.

6. Applications

Here are some examples of these techniques applied to the

task of rendering characters and visual effects in Age of Sail.

6.1. Painterly Ocean

The ocean plays a critical role in the story of Age of Sail.

The viewer’s sense of peril hangs directly on the believability

of this effect. The ocean also goes through significant transfor-

mations in texture, color and movement as the weather condi-

tions change. To reproduce this complex natural phenomenon

in a real-time experience, we rely on the strategy of removing

unnecessary visual information.

In order to run on the full range of devices, the ocean’s data

footprint must be very small, and it cannot require excessive

Fig. 18: The 5-by-5 grid of ocean tiles, with the center tile highlighted, and

vertices pushed down beyond the “false horizon”.

amounts of real-time computation. This excludes from con-

sideration any approaches involving real-time fluid simulation,

volumetric data, high resolution geometry, or overly long ani-

mation clips. We have focused on two key elements to present a

convincing illusion: (1) realistic movement and wave silhouette

shapes, and (2) a painterly appearance that suggests the infinite

detail of the ocean using limited visual complexity, much the

way Hoyne’s paintings use brushstrokes of a limited thickness

and palette.

To capture the characteristic feeling of the shapes and move-

ment of ocean waves, we use a Tessendorf deep ocean wave

model [30]. This model has the advantage that it consists of

waves that repeat periodically in both time and space. Thus

we are able to apply this deformation to a very low-resolution

mesh, an 80-by-80 square grid about 60 meters wide (approx-

imately 75cm per quad in physical space), in a clip lasting 20

seconds, whose first and last frames match seamlessly. Because

of the spatial repetition, one could tile an arbitrarily wide swath

of ocean with instances of this single tile. However, since a typ-

ical human viewer cannot perceive distinctions in stereoscopic

depth beyond about 50 meters, a 5-by-5 grid of these tiles turns

out to be sufficient. To simulate travel across the ocean, we an-

imate the tiles treadmill-style, translating them past the origin

(where the boat remains, for the convenience of the animators)

and allowing them to disappear behind the boat and reappear

in front. We conceal this treadmilling action by using a vertex

shader to push down vertices beyond a 120-meter radius “false

horizon” (Figure 18), and use simpler geometry for the ring of

ocean between that and the real horizon (about 1km away).

These ocean tiles are textured with a custom fragment shader

to add detail only where it is needed (Figure 19e). The shader

uses a hand-painted texture (Figure 19a) with MetaTexture to

create an underlying dithering pattern that stays consistent in

screen space regardless of viewpoint. This is then used as an in-

10 Preprint Submitted for review /Computers & Graphics (2019)

(a) Dithering

(b) Bathic map

(c) Foam erosion

(d) Sky reflection (e) The final rendered ocean.

Fig. 19: The various textures that contribute to the appearance of the ocean shader.

Fig. 20: Two other moments from Age of Sail, with their respective sky and bathic maps.

Preprint Submitted for review /Computers & Graphics (2019) 11

dex into a second texture, the bathic map, which represents the

full palette of colors of the water at different depths and levels

of illumination (Figure 19b.) Sea foam, based on a third texture

(Figure 19c) is applied to the up-wind sides of the waves. A

fourth texture acts as a sky reflection map (Figure 19d), which

is also distorted using the dithering pattern. By changing the

bathic and sky maps, we can create a variety of different moods

(see Figure 20). In certain scenes we also apply animatable

overlay color and saturation controls to each of these maps, to

capture the gradual shift of colors due to changing weather con-

ditions on the open sea.

The movement of the ocean geometry as it passes by the

boat, combined with MetaTexture, creates a fairly dynamic ef-

fect when the viewer looks out towards the horizon. However,

when looking directly down at a patch of ocean surface, some-

times the static nature of the dithering texture can become no-

ticeable, breaking the subjective illusion of wateriness. To com-

pensate for this, we calculate a “live texture” T ′ based on the

original texture T , blending smoothly and cyclically through a

mix of the red, green and blue channels at frequency f cycles

per second (we have found frequencies between 0.5 and 1.0 to

give pleasingly ocean-like results.)

⇀
T ′ = ⇀

L0 + (
⇀
T · ⇀L1) cos(f t) + (

⇀
T · ⇀L2) sin(f t) (27)

where

⇀
L0 = 〈0.5, 0.5, 0.5〉 (28)

⇀
L1 = 〈0.707, 0.0,−0.707〉 (29)

⇀
L2 = 〈−0.408, 0.816,−0.408〉 (30)

We can also offset the time value using world-space coordi-

nates for an even more dynamic effect.

(a) (b)

(c) (d)

Fig. 21: Decorating the ocean: (a) ocean, wake and splash geometry; (b) ocean

surface; (c) ocean with vertices deformed and texture suppressed in the area

around the boat; (d) wake superimposed seamlessly on top.

6.2. Wakes, ripples and splashes

Wherever a boat or character interacts with the ocean, more

detailed movement is needed to produce a convincing effect.

To achieve this, we decorate the ocean with smaller pieces of

higher-resolution geometry for wakes, ripples and splashes (See

Figure 21). To avoid geometry intersections and visually con-

flicting texture movement, we push the base mesh downwards,

and suppress its texture so that it has effectively zero saliency

(note that this is another case of removing information from the

scene.)

Interestingly, if a partly transparent decoration is placed at

the same height as the original ocean mesh, the holes in the dec-

oration are not perceived as holes: because there are no salient

details in the base mesh’s texture, its color appears to become

part of the decoration’s texture. The result, even in stereoscopic

6DoF VR, is the illusion of a perfectly seamless ocean.

6.3. Animated Characters

Another area where we have deliberately removed informa-

tion is in the character animation. The characters in Age of Sail

were animated at 24fps, on “twos and threes” i.e. with poses

held static for 2-3 frames (83-125ms) rather than smoothly in-

terpolated between keys. The characters also have animated

line boil to keep them alive even when they are not moving. In

combination, these two effects support the feeling that the ani-

mation is hand-crafted as opposed to synthetic. We also reduced

the intensity of the edge breakup on facial features to keep their

expressions clear (Figure 22), and on entire characters when

they are far from camera (Figure 14b).

(a) (b)

Fig. 22: Reduced edge breakup on facial features.

7. Discussion

New developments in entertainment media technology often

lead to a shift in audience response. For example, the release

of the first high frame rate (48fps) stereoscopic film The Hobbit

had a polarizing effect on the audience: while most viewers en-

joyed the added realism, for some the high frame rate made the

artifice of prosthetics, sets and synthetic characters too obvious

when juxtaposed against the real human actors, a dissonance

that prevented them from suspending their disbelief [31].

We suspect that virtual reality may have its own version of

the Uncanny Valley [32]: as a simulation’s information density

12 Preprint Submitted for review /Computers & Graphics (2019)

increases, so does our ability to detect fakery within it. Since

VR devices, with their high frame rates and interactive respon-

siveness, have an inherently high information density, staying

on the right side of this “Unbelievable Valley” would require a

level of realism unachievable with current hardware. We chose

instead to run to the left. By simplifying the visual style and

choosing a deliberately staccato frame rate, we seem to have

reduced the information density enough to compensate for the

device’s excesses.

7.1. Taking the Art Seriously

We feel we were largely successful in capturing the concept

art’s important qualities (Figures 1-3) in the final rendered re-

sults (Figure 4). This is not so much because of a particular

graphics technique, but because of the structure of our collabo-

ration. The key is taking the concept art seriously: if production

designers create paintings that truly represent how they envision

the end product, and graphics developers seek to understand

the concept art’s details deeply enough to adapt them to a new

medium, and each group asks thoughtful questions about the

other’s creative process, and answers them openly, this cycle of

feedback inevitably leads to good results. We hope this work

serves as a positive example of how artists and engineers can

collaborate effectively in any medium.

7.2. Performance

Age of Sail runs in real time on devices ranging from tethered

VR headsets to mobile phones. It renders an average of 800,000

triangles grouped into approximately 250 meshes, at a consis-

tent frame rate of 90fps on a Windows 10 PC with an NVidia

GeForce GTX1080 GPU. On mobile hardware such as a Pixel

3 or iPhone 8, it plays consistently at 57-60fps in both mono-

and stereoscopic modes.

7.3. Limitations

These techniques are certainly applicable to a wide variety of

other visual styles beyond that of Age of Sail. However, there

are certain limitations that should be considered.

The edge breakup can produce a noticeable “heat ripple” ef-

fect, where a foreground object’s warp field distorts the back-

ground in the area immediately around it, if the background has

a lot of salient, high-contrast detail (Figure 23). In such cir-

cumstances it may be preferable to render and warp the scene

in multiple layers, although that would come at a higher com-

putational cost.

7.4. Future Work

This project raises some questions that warrant further study.

For example, is there an ideal frame rate for animated characters

in an immersive medium? Our choice to animate the characters

“on twos” (12fps) was deliberate, and has been well received

by most viewers, but there is a segment of our audience who

find that frame rate distracting. It would be interesting to ex-

plore this further via a control experiment or survey similar to

Michelle et al [31].

We also note that our choice to use powers of two as our dis-

crete set of scale values for our implementation of MetaTexture,

Fig. 23: “Heat ripple” effect (exaggerated here for clarity). Note that the black

and white checkered background is distorted near the edges of the red torus.

although entirely natural for those familiar with graphics tech-

niques like mipmaps, is somewhat arbitrary. It may be possible

to get different and interesting results by quantizing based on

powers of some other number, such as 3,
√

2 or the golden ratio

φ. Also, texture orientation need not remain the same from one

scale level to the next. Our skew compensation method works

well enough in practice, but is admittedly ad hoc, and there

may be more robust approaches that we have not yet considered.

One can think of our particular implementation of MetaTexture

as a subset of a much larger space of possible example-based

texturing techniques that differ in their details while retaining

the same core principle of balancing screen-space texture scale

against stereoscopic 3D coherence. We would like to explore

that space further.

Our early experiments using these techniques in augmented

reality (see Figure 24) also raise interesting questions: how

should stylized virtual characters integrate into a real-world

background, and how can that background be manipulated to

feel consistent with the visual style?

Fig. 24: A scene from augmented reality experiment The End.

8. Acknowledgements

The authors would like to thank: Dan Kaufman for his sup-

port of our efforts, Rachid El Guerrab for asking an inter-

esting question four years ago, Jan Pinkava, Karen Dufilho,

and David Eisenmann for their unwavering leadership, Céline

Desrumaux and Jasmin Lai for their inspiring production de-

sign, Josiah Larson for sweating the details, Tim J. Smith for

Preprint Submitted for review /Computers & Graphics (2019) 13

psychological insights, Jon Klassen for designing and direct-

ing The End, David Apatoff and the Fuchs family for sharing

Bernie Fuchs’ work, and everyone at Google ATAP, Chromo-

sphere LA, Boathouse Studios and Evil Eye Pictures for their

contributions to Age of Sail.

References

[1] Kahrs, J. Age of Sail. https://atap.google.com/

spotlight-stories/age-of-sail/; 2018.

[2] Kalnins, RD, Davidson, PL, Markosian, L, Finkelstein, A. Coherent

stylized silhouettes. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03;

New York, NY, USA: ACM. ISBN 1-58113-709-5; 2003, p. 856–861.

doi:10.1145/1201775.882355.

[3] Zheng, M, Milliez, A, Gross, M, Sumner, RW. Example-based brushes

for coherent stylized renderings. In: Proceedings of the Symposium on

Non-Photorealistic Animation and Rendering. NPAR ’17; New York, NY,

USA: ACM. ISBN 978-1-4503-5081-5; 2017, p. 3:1–3:10. doi:10.1145/

3092919.3092929.

[4] Bénard, P, Cole, F, Kass, M, Mordatch, I, Hegarty, J, Senn, MS, et al.

Stylizing animation by example. ACM Trans Graph 2013;32(4):119:1–

119:12. doi:10.1145/2461912.2461929.

[5] Bénard, P, Cole, F, Golovinskiy, A, Finkelstein, A. Self-similar tex-

ture for coherent line stylization. In: Proceedings of the 8th International

Symposium on Non-Photorealistic Animation and Rendering. NPAR ’10;

New York, NY, USA: ACM. ISBN 978-1-4503-0125-1; 2010, p. 91–97.

doi:10.1145/1809939.1809950.

[6] Bléron, A, Vergne, R, Hurtut, T, Thollot, J. Motion-coherent stylization

with screen-space image filters. In: Proceedings of the Joint Symposium

on Computational Aesthetics and Sketch-Based Interfaces and Modeling

and Non-Photorealistic Animation and Rendering. Expressive ’18; New

York, NY, USA: ACM. ISBN 978-1-4503-5892-7; 2018, p. 10:1–10:13.

doi:10.1145/3229147.3229163.

[7] Bénard, P, Lagae, A, Vangorp, P, Lefebvre, S, Drettakis, G, Thol-

lot, J. A dynamic noise primitive for coherent stylization. In: Pro-

ceedings of the 21st Eurographics Conference on Rendering. EGSR’10;

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association; 2010,

p. 1497–1506. doi:10.1111/j.1467-8659.2010.01747.x.

[8] Bénard, P, Bousseau, A, Thollot, J. Dynamic solid textures for real-

time coherent stylization. In: Proceedings of the 2009 Symposium on

Interactive 3D Graphics and Games. I3D ’09; New York, NY, USA: ACM.

ISBN 978-1-60558-429-4; 2009, p. 121–127. doi:10.1145/1507149.

1507169.

[9] Whited, B, Daniels, E, Kaschalk, M, Osborne, P, Odermatt, K.

Computer-assisted animation of line and paint in Disney’s Paperman. In:

ACM SIGGRAPH 2012 Talks. SIGGRAPH ’12; New York, NY, USA:

ACM. ISBN 978-1-4503-1683-5; 2012, p. 19:1–19:1. doi:10.1145/

2343045.2343071.

[10] Kass, M, Pesare, D. Coherent noise for non-photorealistic rendering. In:

ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11; New York, NY, USA:

ACM. ISBN 978-1-4503-0943-1; 2011, p. 30:1–30:6. doi:10.1145/

1964921.1964925.

[11] Klein, AW, Li, W, Kazhdan, MM, Corrêa, WT, Finkelstein, A,

Funkhouser, TA. Non-photorealistic virtual environments. In: Pro-

ceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’00; New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co. ISBN 1-58113-208-5; 2000, p.

527–534. doi:10.1145/344779.345075.

[12] Haller, M, Sperl, D. Real-time painterly rendering for MR applica-

tions. In: Proceedings of the 2nd International Conference on Computer

Graphics and Interactive Techniques in Australasia and South East Asia.

GRAPHITE ’04; New York, NY, USA: ACM. ISBN 1-58113-883-0;

2004, p. 30–38. doi:10.1145/988834.988839.

[13] Haller, M, Landerl, F, Billinghurst, M. A loose and sketchy approach

in a mediated reality environment. In: Proceedings of the 3rd Interna-

tional Conference on Computer Graphics and Interactive Techniques in

Australasia and South East Asia. GRAPHITE ’05; New York, NY, USA:

ACM. ISBN 1-59593-201-1; 2005, p. 371–379. doi:10.1145/1101389.

1101463.

[14] Chen, J, Turk, G, MacIntyre, B. Watercolor inspired non-photorealistic

rendering for augmented reality. In: Proceedings of the 2008 ACM Sym-

posium on Virtual Reality Software and Technology. VRST ’08; New

York, NY, USA: ACM. ISBN 978-1-59593-951-7; 2008, p. 231–234.

doi:10.1145/1450579.1450629.

[15] Fischer, J, Bartz, D, Strasser, W. Artistic reality: Fast brush stroke styl-

ization for augmented reality. In: Proceedings of the ACM Symposium

on Virtual Reality Software and Technology. VRST ’05; New York, NY,

USA: ACM. ISBN 1-59593-098-1; 2005, p. 155–158. doi:10.1145/

1101616.1101649.

[16] Northam, L, Asente, P, Kaplan, CS. Consistent stylization and painterly

rendering of stereoscopic 3d images. In: Proceedings of the Symposium

on Non-Photorealistic Animation and Rendering. NPAR ’12; Goslar Ger-

many, Germany: Eurographics Association. ISBN 978-3-905673-90-6;

2012, p. 47–56.

[17] Saito, T, Takahashi, T. Comprehensible rendering of 3-d shapes. In:

Proceedings of the 17th Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’90; New York, NY, USA: ACM.

ISBN 0-89791-344-2; 1990, p. 197–206. doi:10.1145/97879.97901.

[18] Bénard, P, Lu, J, Cole, F, Finkelstein, A, Thollot, J. Active strokes:

Coherent line stylization for animated 3D models. In: Proceedings of

the Symposium on Non-Photorealistic Animation and Rendering. NPAR

’12; Goslar Germany, Germany: Eurographics Association. ISBN 978-3-

905673-90-6; 2012, p. 37–46. URL: http://dl.acm.org/citation.

cfm?id=2330147.2330156.

[19] Dirksen, N. Creating a VR storybook look for Rainbow Crow. https:

//www.youtube.com/watch?v=uELM5qQvBkY; 2017.

[20] Curtis, C, Eisenmann, D, El Guerrab, R, Stafford, S. The making

of “Pearl”, a 360◦ Google Spotlight Story. In: ACM SIGGRAPH 2016

VR Village. SIGGRAPH ’16; New York, NY, USA: ACM. ISBN 978-1-

4503-4377-0; 2016, p. 21:1–21:1. doi:10.1145/2929490.2956565.

[21] Curtis, C. Non-photorealistic animation. ACM SIGGRAPH 1999 Course

Notes 1999;17.

[22] Curtis, CJ, Dart, K, Latzko, T, Kahrs, J. Non-Photorealistic Anima-

tion for Immersive Storytelling. In: ACM/EG Expressive Symposium.

The Eurographics Association. ISBN 978-3-03868-078-9; 2019,doi:10.

2312/exp.20191071.

[23] Apatoff, D. The Life and Art of Bernie Fuchs. The Illustrated Press;

2017. ISBN 0997029269.

[24] Palley, R, Palley, MA. Wooden Ships and Iron Men: The Maritime Art

of Thomas Hoyne. Quantuck Lane Press; 2005. ISBN 1593720130.

[25] Winkenbach, G, Salesin, DH. Computer-generated pen-and-ink illustra-

tion. In: Proceedings of the 21st Annual Conference on Computer Graph-

ics and Interactive Techniques. SIGGRAPH ’94; New York, NY, USA:

ACM. ISBN 0-89791-667-0; 1994, p. 91–100. doi:10.1145/192161.

192184.

[26] Reid, C. Planning lost and found edges. Watercolor Artist Magazine

2009;.

[27] Barzel, R, Hughes, JR, Wood, DN. Plausible motion simulation for

computer graphics animation. In: Boulic, R, Hégron, G, editors. Com-

puter Animation and Simulation ’96. Vienna: Springer Vienna. ISBN

978-3-7091-7486-9; 1996, p. 183–197.

[28] Bénard, P, Thollot, J, Sillion, F. Quality assessment of fractalized

NPR textures: A perceptual objective metric. In: Proceedings of the 6th

Symposium on Applied Perception in Graphics and Visualization. APGV

’09; New York, NY, USA: ACM. ISBN 978-1-60558-743-1; 2009, p.

117–120. doi:10.1145/1620993.1621016.

[29] Heitz, E, Neyret, F. High-performance by-example noise using a

histogram-preserving blending operator. Proc ACM Comput Graph In-

teract Tech 2018;1(2):31:1–31:25. doi:10.1145/3233304.

[30] Tessendorf, J. Simulating ocean surfaces. ACM SIGGRAPH 2004

Course Notes 2004;32.

[31] Michelle, C, Davis, C, Hight, C, Hardy, A. The Hobbit hyperre-

ality paradox: Polarization among audiences for a 3D high frame rate

film. Convergence: The International Journal of Research into New Me-

dia Technologies 2015;23. doi:10.1177/1354856515584880.

[32] Mori, M, MacDorman, KF, Kageki, N. The uncanny valley [from the

field]. IEEE Robotics Automation Magazine 2012;19(2):98–100. doi:10.

1109/MRA.2012.2192811.

