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Abstract

We describe a new method for non-stationary noise sup-
pression that is simple to implement yet has performance
that rivals far more complex algorithms.

Spectral Intersections is a model based MMSE signal
separation method that uses a new approximation to the
observation likelihood. Furthermore, Spectral Intersec-
tions uses an efficient approximation to the expectation
integral of the MMSE estimate that could be described as
unscented importance sampling.

We apply the new method to the task of separat-
ing speech mixed with music. We report results on the
Google Voice Search task where the new method pro-
vides a 7% relative reduction in WER at 10 dB SNR. In-
terestingly, the new method provides considerably greater
reduction in average WER than the Max method and ap-
proaches the performance of the more complex Algo-
nquin algorithm.
Index Terms: Speech Recognition, Noise Robustness,
Noise Suppression, Spectral Subtraction, Algonquin1.

1. Introduction

With the rapid growth of speech recognition for mobile
applications there is a greater need for robustness to non-
stationary noise interference such as music. Traditional
methods such as Spectral Subtraction[1] and Ephraim
Malah[2] are effective for suppression of stationary noise,
but are ill suited for non-stationary noise. Model based
methods such as Max and Algonquin can perform well
[3] for very non-stationary noise such as music, but are
complex. A good overview of the state of the art of model
based methods is provided by Hershey et al. [4].

Spectral Intersections is in the family of model based
Minimum Mean Squared Error (MMSE) algorithms such
as Wiener, Max[5] and Algonquin[6][7]. It offers good
performance while being easy to implement and is based
on a new and interesting approximation.

1This work was performed while Trausti Kristjansson was at Google
Research.

1.1. Background and Overview

In this work, we model the signals in the log spectrum do-
main. Starting with the time domain signal x[t], we first
compute the short time Fourier transform of sequential
segments of the signal X(f) and finally the log spectrum
x = log(|X(f)|).

We use Gaussian Mixture Models (GMMs) for the
component signals in the log spectrum domain

p(x) =
∑

i

pi(x) =
∑

i

πiN(x;µi,Σi). (1)

where πi is the mixture weight, µi is the mixture mean,
and Σi is the covariance matrix for mixture i.

The observed signal yobs is an acoustic mixture of the
target signal x1 and interference signal x2. The MMSE
estimate for the separated target signal x1 is:

x̂1 = E[x1|yobs] = z

∫
x1 · p(yobs, x1, x2)dx1dx2,

= z
∑

i,j

∫
x1 · p(yobs|x1, x2)pi(x1)pj(x2)dx1dx2,

(2)

where p(yobs|x1, x2) is the observation likelihood, p(x1)
is the target prior model, p(x2) is the interference prior
model and z = p(yobs)−1. In this paper we will in-
terchangeably talk about the speech model for the target
model and music model for the interference model.

In Section 2 we explain the method for approximating
the observation likelihood by taking only the constructive
and destructive combinations into account. In Section 3
we explain a lightweight approximation to the expecta-
tion integral required for the MMSE estimate. In Section
4 we report results on the real world task of recognizing
Voice Search utterances mixed with music and in Section
5 we summarize and contrast the new method to Algo-
nquin and Max methods.

2. Signal Mixing Model
The model for mixed speech and music in the time do-
main is

y[t] = x1[t] + x2[t] (3)
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Figure 1: The plot shows the distribution for r = cos(θ),
i.e. p(r) = [π

√
1− r2]−1. Notice the peaks at either end

of the interval (−1, 1).

where x1[t] denotes the target speech signal at time t,
x2[t] denotes the interference music signal and y[t] de-
notes the mixed signal. In the Fourier domain, the rela-
tionship becomes

Y (f) = X1(f) +X2(f) (4)

where f designates the frequency component of the FFT.
This can also be written in terms of the magnitude and
the phase of each component:

|Y (f)|∠Y (f) = |X1(f)|∠X1(f) + |X2(f)|∠X2(f)
(5)

where |Y (f)| is the magnitude of Y (f) and ∠Y (f) is the
phase and similarly for X1 and X2.

2.1. Constructive and Destructive Mixing

By the law of cosines, the relationship between the com-
ponents is (dropping the dependence on the frequency f )

|Y |2 = |X1|2 + |X2|2 + 2|X1||X2| cos(θ) (6)

where θ is the angle between X1 and X2. The target and
interference signals are independent and it follows that θ
can be treated as a uniformly distributed random variable.
The distribution for r = cos(θ) is p(r) = [π

√
1− r2]−1

which has sharp peaks at either end of the interval (−1, 1)
as shown in Figure 1. These correspond to cases where
the component signals are exactly in phase or exactly out
of phase or θ = {0,π}, i.e. the constructive and destruc-
tive combinations respectively. This suggests that we can
reasonably approximate this distribution by considering
only the constructive and destructive combinations.

If the acoustic mixing is exactly constructive, Equa-
tion (5) becomes

|Y | = |X1|+ |X2| (7)

and if the acoustic mixing is exactly destructive, we have
two cases

|Y | = |X1|− |X2| if |X1| > |X2| (8)
|Y | = |X2|− |X1| if |X2| > |X1|. (9)
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Figure 2: Given Y , the plot shows the constructive (blue)
|Y | = |X1|+ |X2| and destructive (green) |Y | = |X1|−
|X2| and |Y | = |X2| − |X1| lines. Also shown are the
contours of the prior distribution for a particular mixture
combination i, j with mode [µ1,i, µ2,j ] in the log spec-
trum domain corresponding to (exp(µ1,i), exp(µ2,i)) in
the magnitude spectrum domain.

These equations describe valid combinations of |X1| and
|X2|. In Figure 2 the constructive combinations are
shown as the blue downward line and the destructive
combinations are shown as the green lines.

2.2. Constructive and Destructive Intersections

Recall that we use Gaussian mixture models for the prior
models for the target signal p(x1) and interference sig-
nals p(x2). Consider a particular mixture combination
i, j where i is the index for the target mixture and j is the
index of interference mixture. The joint distribution for
this combination, pi,j(x1, x2), is a product of two Gaus-
sian distributions with a mode [µ1,i, µ2,j ] in the log spec-
trum domain. In the magnitude spectrum domain, we de-
note this coordinate as (exp(µ1,i), exp(µ2,j))

Consider a line from the origin (0, 0) through the co-
ordinate (exp(µ1,i), exp(µ2,i)). This line is shown in
Figure 2 as the red line.

Now consider the intersection of this line to the lines
for the constructive and destructive mixing. We call the
intersection points the constructive intersection and the
destructive intersection. In the magnitude spectrum do-
main, the coordinate of the constructive intersection point
is (|Xcon

1,i,j |, |Xcon
2,i,j |) where

|Xcon
1,i,j | =

|Y |
1 + exp(µ2,j)/ exp(µ1,i)

(10)

|Xcon
2,i,j | =

|Y |
1 + exp(µ1,i)/ exp(µ2,j)

(11)



and the coordinate of the destructive intersection point is
(|Xdes

1,i,j |, |Xdes
2,i,j |) where

|Xdes
1,i,j | =

|Y |
1− exp(µ2,j)/ exp(µ1,i)

(12)

|Xdes
2,i,j | =

|Y |
−1 + exp(µ1,i)/ exp(µ2,j)

, (13)

for the case |X1| > |X2| and similarly with signs re-
versed for the case |X2| > |X1|. In the log spectrum
domain the constructive intersection is

(xcon
1,i,j , x

con
2,i,j) = (log(|Xcon

1,i,j |), log(|Xcon
2,i,j |)) (14)

and similarly for the destructive intersection.

3. Unscented MMSE
Since we use Gaussian mixture models for the prior mod-
els, the exact evaluation of the MMSE estimate requires
that we evaluate an integral for each combination i, j in
Equation (2).

Instead of computing the full integral over x1 and x2,
we use an approximation that can be seen as an extremely
sparse importance sampling[8] method for finding the ex-
pectation in Equation (2). Instead of using random sam-
ples drawn from a proposal distribution, we use only two
samples, i.e. the samples corresponding to the construc-
tive and destructive intersections.

The spectral intersection estimate for the target signal
is

x̂1 = E[x1|yobs] ≈ Z ·
∑

i,j

πiπj ·

· {xcon
1,i,j ·N(xcon

1,i,j , µ1,i,Σ1,i)N(xcon
2,i,j , µ2,j ,Σ2,j)

+ xdes
1,i,j ·N(xdes

1,i,j , µ1,i,Σ1,i)N(xdes
2,i,j , µ2,j ,Σ2,j)}

(15)

where Z is a normalizing factor2. Notice that this
amounts to little more than evaluating the prior distribu-
tion at the constructive and destructive intersections.

The way in which we chose the sample points is rem-
iniscent of the unscented approximation [9]. Hence, this
method could be called unscented importance sampling.

4. ASR Experiments
We evaluated the algorithms on real utterances from the
Google Voice Search system. Since the utterances are
generally near field and of high SNR, we artificially
added music to the data to produce noise conditions with
varying SNR. We evaluated using our state of the art ASR
system. A more detailed explanation of the system and
discussion of the influence of the size of the music model
for Max and Algonquin can be found in [3].

2Z−1 =
∑

i,j,k πiπjN(xk
1,i,j , µ1,i,Σ1,i)N(xk

2,i,j , µ2,j ,Σ2,j)

4.1. Dataset characteristics

The dataset consists of approximately 38,000
manually-transcribed utterances containing 38 hours of
anonymized English-language spoken queries to Google
Voice Search. The utterances were spoken by 296
different speakers, and range in length from 0.2 to 12.3
seconds, with a mean of 3.6 seconds. The utterances
were recorded and stored in 16-bit, 16kHz uncompressed
format.

The dataset contains a varying amount of speech for
each speaker and hence the amount of training data for
each speech model is different.

4.2. Training speech models

To train the speech model for each speaker the data
was segmented into a low-noise training data and higher
noise-test data. We compute 256-dimensional log-
spectral feature vectors for each of the speaker’s utter-
ances, using 25ms frames spaced at 10ms intervals.

Since this is real data, much of the cleaner speech
data contains low non-stationary background noise, such
as TV noise. If speech models are trained directly on
this data, the majority of the model components are al-
located to modeling this low non-stationary noise back-
ground. To circumvent this problem, we use a percentile
based VAD to separate the low-noise condition speech
into speech frames and non-speech frames.

From the speech frames, we estimate a GMM with at
most 200 components subject to the constraint that there
are at least 20 frames per Gaussian component. From the
non-speech frames we estimate a smaller 20-component
GMM. These two models are then combined to form a
clean-speech GMM.

4.3. Training noise models

At least 30% of the data for each speaker is held out as
test data. For each utterance in the test set, we select a
random song from a database of 500 popular songs, and
mix it with the utterance at the desired SNR. Noise mod-
els are trained on the music directly prior to the speech.
Hence we included 8 seconds of musical prologue before
the onset of speech in the utterance. We then compute the
same 256-dimensional log-spectral feature vectors used
to create the speech model, and use the feature frames
from the prologue to construct 8 mixture noise GMMs.

4.4. Experimental Setup

The SNR of the utterances for each speaker is first com-
puted. Based on the SNR, they are divided into training
and testing sets, where the least-noisy 70% of the data is
used for training and the remaining 30% is used for test-
ing.



Max SI Algon.

Average WER reduction 2.7 4.0 4.8
WER reduction at 10 dB 4.6 7.6 7.0

Table 1: Average reduction in WER for all conditions, 10
dB - 20 dB.
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Figure 3: Comparison of WER results for the Max, Spec-
tral Intersection and Algonquin Algorithms for a range of
SNRs.

4.5. Signal separation and evaluation

We then apply the Max, Algonquin and Spectral Inter-
sections noise reduction techniques using the per-speaker
speech model constructed from the speaker’s training
data, and the per-utterance noise model constructed from
each utterance’s prologue.

The resulting cleaned feature frame sequence is then
re-synthesized as a waveform using the overlap-add algo-
rithm and sent to the speech recognizer to test the denois-
ing quality. All speech recognition was performed with
a recent version of Google’s Voice Search speech recog-
nizer. This system uses an acoustic model with approxi-
mately 8000 context-dependent states and approximately
330k Gaussians, and is trained with LDA, STC, and
MMI. The Voice Search language model used for recog-
nition contains more than one million English words.

We did not retrain the acoustic models on denoised
data which would be expected to give better results. How-
ever, the relative performance of the respective methods
is expected to remain the same.

4.6. Results

The average performance across noise conditions is a 4%
relative reduction in error rate which approaches the per-
formance of Algonquin while substantially outperform-
ing the Max method.

As can be seen from Table 1 and Figure 3 the Spec-
tral Intersections method follows the trend of Algonquin

but provides slightly less gain in all conditions except the
noisiest 10 dB condition where it outperforms Algonquin.
However, it exceeds Max in almost all conditions.

5. Discussion
We have presented a new method for non-stationary noise
suppression. The method is easy to implement but has
performance that rivals far more complex methods.

The computational complexity of the new method is
the same as that of Max or Algonquin, which is domi-
nated by the cross product of the number of mixtures in
the target and interference models, i.e. O(I · J), where I
is the number of mixtures in the target model and J is the
number of mixtures in the interference model. However,
Algonquin requires Newton iterations of a Laplace trans-
form involving a matrix inverse and Max requires the
computation of the log of the cumulative normal distri-
bution which requires careful attention to numerical sta-
bility when implementing.

In contrast, the new method involves simple line in-
tersections and the evaluation of standard GMM distribu-
tions which are well understood and optimized.
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