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Abstract

We present an approach which takes advantage of
both structure and semantics for unsupervised monoc-
ular learning of depth and ego-motion. More specif-
ically we model the motions of individual objects and
learn their 3D motion vector jointly with depth and ego-
motion. We obtain more accurate results, especially for
challenging dynamic scenes not addressed by previous
approaches. This is an extended version of Casser et
al. [1]. Code and models have been open sourced at:
https://sites.google.com/corp/view/struct2depth.

1. Introduction

Predicting scene depth and agent ego-motion from input im-
agery is important for robot navigation, both for indoors and
outdoors settings. While supervised dense depth prediction
has been successful [3], we here consider joint learning of
depth and ego-motion from monocular input videos only.
Unsupervised monocular or stereo-based learning has also
shown progress recently [22, 7], but prior work has not been
successful at dynamic scenes.

We present an approach that explicitly models 3D mo-
tions of moving objects, together with camera ego-motion
and scene depth, and adapts to new environments by learn-
ing with an online refinement of multiple frames (Figure 1).
With the newly introduced motion handling and the pro-
posed object size constraint, this approach is the first to
effectively learn from highly dynamic scenes in a monoc-
ular setting. Our approach introduces both structure and
semantics in the learning process by representing objects in
3D and modeling motion as SE3 transforms; this is trained
from uncalibrated monocular videos in a fully differentiable
manner. We further introduce an online refinement method
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Figure 1: Our method utilizes 3D geometry structure and
semantics during learning by modeling motions of individ-
ual objects, ego-motion and scene depth in a principled way.
Furthermore, a refinement approach adapts the model on the
fly in an online fashion.

for domain transfer in this unsupervised learning setting,
which can be applied independently of the base method.
This work is an extended version of [1]. We here present ad-
ditionally new results on the challenging Cityscapes dataset
with prevalent dynamic scenes and on ego-motion. Our al-
gorithm yields significant improvements on two publicly
available datasets and on both depth and ego-motion es-
timation, compared to the state-of-the-art, especially on
dynamic scenes. Furthermore, we evaluate direct domain
transfer, by training on one dataset and testing on another,
without fine-tuning.

Setup: The main learning setup is unsupervised learn-
ing of depth and ego-motion from monocular video [22],
where the only source of supervision is obtained from the
video itself. No depth sensor supervision is used. Objects’
masks are introduced from an off-the-shelf algorithm dur-
ing training only. During inference, only a still input image
is needed to predict depth, and two images to predict ego-
motion. Runtime: our model runs at 50 FPS and 30 FPS
on a Geforce 1080Ti for batch 4 and 1, respectively.

2. Previous work

Recent methods have demonstrated supervised learning
of scene depth from input imagery [3, 11, 10, 12]. Depth in-
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Figure 2: Schematic of the warping sequence for our method: first object masks are used to remove regions with movement;
then object ego-motion is computed; after that individual object motion is computed, but this is done using the output of the
image warped according to ego-motion. The final warped images both previous and next (with a validity mask) are compared
in RGB space to the original image.

formation provided by a sensor, such as a LiDAR, is used as
supervision. In parallel to supervised learning techniques,
unsupervised image-to-depth learning has been proposed
[22, 4, 7, 15, 13], where the only supervision is obtained
from a monocular video. The work of Garg et al. [4] in-
troduced joint learning of depth and ego-motion in a neu-
ral based framework. Zhou et al. [22] proposed the first
fully differentiable deep neural network approach for un-
supervised learning of depth and ego-motion, and showed
it outperforms prior approaches which used depth sensors
as supervision. Many subsequent works have further im-
proved the quality of depth and ego-motion [19, 15, 13, 14,
18, 20, 16, 9]. Some of these approaches have successfully
used stereo pair videos during training [7, 15, 21, 17, 6] to
also produce a single image-based depth estimation. These
methods tend to achieve better quality results, due to the
extra camera input.

3. Depth and ego-motion learning

We here present an approach which is able to model dy-
namic scenes by modeling object motion, and that can op-
tionally adapt its learning strategy with an online refinement
technique. Note that both ideas are tangential and can be
used either separately or jointly. See [1] for details.

During training, the method operates on sequences of
three consecutive RGB images1 (I1, I2, I3) ∈ RH×W×3,
and camera intrinsics matrix K ∈ R3×3. Depth is predicted

1While in theory the whole formulation can be done with two consec-
utive frames, for convenience, we consider three images in a sequence and
impose constraints between two pairs of frames.

by learning a depth function θ : RH×W×3 → RH×W ,
which is a fully convolutional encoder-decoder neural net-
work producing a dense depth map Di = θ(Ii) from a sin-
gle RGB frame. Ego-motion is predicted by an ego-motion
network ψE : R2×H×W×3 → R6 which takes a sequence
of two RGB images as input and produces the SE3 trans-
form between the frames, i.e. 6-dimensional transformation
vector E1→2 = ψE(I1, I2) specifying translation and rota-
tion parameters between the frames.

Let us suppose that the depth network output is provid-
ing an adequate depth of the scene per frame, then using
it, we can represent points in 3D space. Further, given the
ego-motion between consecutive frames, we can transform
the scene and project it to obtain the neighbouring frame.
More specifically, by using a differentiable image warping
operator φ(Ii, Dj , Ei→j)→ Îi→j , we can inverse-warp any
source RGB-image Ii into Ij given corresponding depth
estimate Dj and an ego-motion estimate Ei→j . Here, φ
performs the warping by reading from transformed image
pixel coordinates, setting Îxyi→j = I x̂ŷi , where [x̂, ŷ, 1]T =

KEi→j(D
xy
j · K−1[x, y, 1]T ). The latter construct suc-

cinctly denotes projecting the depth into a 3D point cloud,
then transforming it according to Ei→j and then projecting
the transformed 3D point cloud into image space. In prac-
tice, we always warp the outer images towards the center
frame within a sequence. The supervisory signal is then es-
tablished using a photometric loss comparing the projected
scene onto the next frame Îi→j with the actual next frame
Ij image in RGB space, for example using a reconstruction
loss: Lrec = min(‖Îi→j − Ij‖.



3.1. Motion Model

In order to handle highly dynamic scenes, we model mo-
tions of individual objects. Namely, we introduce a third
component ψM to the model, which is specialized to pre-
dicting motion of objects in 3D (Figure 1). It uses the
same network structure as the ego-motion network ψE but
trains to separate weights. The object motion model takes
an RGB image sequence as input, complemented by pre-
computed instance segmentation masks. The motion model
learns to predict the transformation vectors per each object
in 3D-space, which create the observed object appearance
in the respective target frame when applied to the camera.
In the new model, the final warping result is a combina-
tion of the individual warping from moving objects, and the
ego-motion. (Figure 2). In order to compute ego-motion,
object motions are masked out of the images first, i.e. the
static scene binary mask is applied to all images in the se-
quence by element-wise multiplication, before feeding the
sequence to the ego-motion model. The static background
is generated by a single warp based on ψE , whereas all seg-
mented objects are then added by their appearance being
warped first according to ψE and then ψM . Outlines of po-
tentially moving objects are provided by an off-the-shelf al-
gorithm [8] and are needed only for training (similar to prior
work that use optical flow [17] that is not trained on either
of the datasets of interest). Our approach not only models
objects in 3D but also learns their motion on the fly, together
with scene depth and ego-motion.

3.2. Imposing Object Size Constraints

Previous work has pointed out a significant limitation for
monocular methods [6] [17] [16] - that cars moving in front
at roughly the same speed often get projected into infinite
depth e.g. [6, 17]. This is because the object in front shows
no apparent motion, and if the network estimates it as be-
ing infinitely far away, the reprojection error is almost re-
duced to zero which is preferred to the correct case. Previ-
ously, only methods with stereo images as input were able
to solve this problem. Instead, we propose a different ap-
proach. Since the main problem stems from the fact that if
the model has no knowledge about object scales, it could ex-
plain the same object motion by placing an object very far
away and predicting large motion, or placing it close and
predicting small motion, we here let the model learn the
scales of objects as part of the training process. Assuming
a weak prior on the height of certain objects, we can get an
approximate depth estimation for it given its segmentation
mask and the camera intrinsics using Dapprox(p;h) ≈ fy

p
h

where fy ∈ R is the focal length, p ∈ R our height prior in
world units, and h ∈ N the height of the respective segmen-
tation blob in pixels. A loss term on the scale of each object
i (i = 1 . . . N ) is added to the main loss. Let t(i) : N → N
define a category ID for any object i, and pj be a learnable

height prior for each category ID j. Let D be a depth map
estimation and S the corresponding object outline mask per
object Oi (� is the element-wise multiplication). Then the
loss is:

Lsc =

N∑
i=1

‖D �Oi(S)

D
−
Dapprox(pt(i);h(Oi(S)))

D
‖

We scale by D, which is the mean estimated depth of the
middle frame, to reduce a potential issue of trivial loss re-
duction by jointly shrinking priors and the depth prediction
range. To our knowledge this is the first method to address
common degenerative cases in a fully monocular training
setup in 3D.

In addition to the above-mentioned losses, the full loss
includes the photometric reconstruction loss, the SSIM loss,
a depth smoothness loss [22, 16]. The loss is also applied
on 4 image resolutions.

3.3. Test Time Refinement Model

With the above-mentioned model, depth can be predicted
from a single, still image during inference. If multi-frames
are available during inference too, one may take advantage
of that and learn on the fly. More specifically, we propose to
further optimize the model weights during inference which
allows the model to adapt to the environment online. Thus,
the model will be training for a number of steps, while per-
forming inference. In doing that, we also show that even
with very limited temporal resolution (i.e., three-frame se-
quences), the quality of depth predictions, both qualitatively
and quantitatively, improves.

4. Experimental Results
We conduct experiments on depth estimation, ego-

motion estimation and on transfer learning to new environ-
ments, using common metrics and protocols for evaluation
adopted by prior methods. We report results on the two
main benchmarks for depth and ego-motion evaluation: the
KITTI dataset [5] and the Cityscapes dataset [2].

Results on the KITTI Dataset. Figure 3 visualizes the
results of our method compared to the ground truth provided
by a sensor and Tables 1 and 2 show quantitative results.
Improvement over the baseline and over previous methods
in the literature is observed. Our method outperforms com-
petitive models that use motion [17] and [20]. Furthermore,
our results which are trained in monocular setup, are close
to methods which use stereo or a combination of stereo and
monocular, e.g. [7, 17, 6]. More results can be seen in [1].

Experimental Results on the Cityscapes Dataset. In
this section we evaluate our method on the Cityscapes
dataset, whhich contains many dynamic scenes. Ta-
ble 3 shows our experimental results when training on the



Figure 3: Example results of depth estimation. Each column shows an input image, depth prediction of our method, and
ground truth depth. KITTI dataset.

Method Supervision? Motion? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [3] Coarse GT Depth - 80m 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen [3] Fine GT Depth - 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu [11] GT Depth - 80m 0.201 1.584 6.471 0.273 0.68 0.898 0.967
Zhou [22] - - 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang [19] - - 80m 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2Depth [13] - - 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [18] - Yes 80m 0.162 1.352 6.276 0.252 0.783 0.921 0.969
GeoNet [20] - Yes 80m 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [16] - - 80m 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Godard [6] - - 80m 0.133 1.158 5.370 0.208 0.841 0.949 0.978
Yang [17] - Yes 80m 0.131 1.254 6.117 0.220 0.826 0.931 0.973
Ours (Baseline) - - 80m 0.1417 1.1385 5.5205 0.2186 0.8203 0.9415 0.9762
Ours (M) - Yes 80m 0.1412 1.0258 5.2905 0.2153 0.8160 0.9452 0.9791
Ours (R) - - 80m 0.1231 1.4367 5.3099 0.2043 0.8705 0.9514 0.9765
Ours (M+R) - Yes 80m 0.1087 0.8250 4.7503 0.1866 0.8738 0.9577 0.9825

Table 1: Evaluation of depth estimation of our method compared to the state-of-the-art. Separate results of the motion model
(M), the online refinement one (R), and both (M+R) are presented. For the purple columns, lower is better, for the yellow
ones higher is better. KITTI dataset.

Cityscapes data, and then evaluating on KITTI (without
fine-tuning). We also show evaluation on the Cityscapes
dataset itself, which contains many moving objects. These
experiments clearly demonstrate the benefit of our method
for dynamic scenes as we see significant improvements in
depth estimation. We observe that the improvements are
due to the appropriate depth learning of many moving ob-
jects (Figure 4) enabled by the motion model. We further
note that these are new results and training and testing on
Cityscapes is not customarily done, as seen in the table,
since the dataset is very challenging.

Motion Model. We here further examine the effects of
the motion model. Figure 4 shows several examples of dy-
namic scenes from the Cityscapes dataset, which contain
many moving objects. We note that our baseline, which is
by itself a top performer on KITTI, is failing on moving
objects. Our method makes a notable difference both qual-
itatively (Figure 4) and quantitatively (see Table 3). Fig-
ure 5 further compares our results with previous monocular
methods in the case of a moving vehicle in front of the ego-
motion vehicle. As seen our approach is the only one that

can extract its depth. Another benefit provided by the mo-
tion model is that it learns to predict motions of individual
objects in 3D, which can be available for inference if an ob-
ject mask is specified [1]. In the general case, object masks
are not needed for depth or ego-motion inference.

Refinement Model. Figure 6 shows results of the re-
finement method only. We can see improvements of the
refinement model on both KITTI and Cityscapes datasets
for a model trained on KITTI. As seen for both evaluating
on KITTI or Cityscapes dataset the refinement is helpful in
recovering the geometry structure better. Of note that in the
case of Cityscape (left), this is testing across datasets. Fig-
ure 8 further shows improvements per frame by the online
refinement model. As seen, most frames benefit from re-
finement and improve their depth estimation. More online
refinement results, demonstrated on an indoor dataset, col-
lected by the Fetch robot are shown in [1].

Visual Odometry Results. The ego-motion results are
shown in Table 4. The experiments are conducted by a stan-
dard protocol adopted by prior work [22, 6] on the KITTI
odometry dataset. As seen our algorithm outperforms state-



Method Supervision? Motion? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Garg [4]* - - 50m 0.169 1.08 5.104 0.273 0.740 0.904 0.962
Mahjourian [13] - - 50m 0.155 0.927 4.549 0.231 0.781 0.931 0.975
GeoNet [20] - - 50m 0.147 0.936 4.348 0.218 0.810 0.941 0.977
DDVO [16]† - - 50m 0.1436 0.9348 4.2338 0.2144 0.8267 0.9446 0.9774
Ours (Baseline) - - 50m 0.1343 0.8229 4.1078 0.2038 0.8365 0.9506 0.9802
Ours (R) - - 50m 0.1141 0.9284 3.8777 0.1897 0.8841 0.9571 0.9792
Ours (M) - Yes 50m 0.1350 0.7912 4.0573 0.2031 0.8311 0.9527 0.9822
Ours (M+R) - Yes 50m 0.1030 0.6217 3.5546 0.1749 0.8866 0.9632 0.9846

Table 2: Evaluation of depth estimation of our method compared on the KITTI dataset, for 50 meters range cap. Methods
marked with an asterik (*) use depth computed from disparities as ground truth, and are trained on stereo images. Results
marked with † were computed by us using predictions that the authors provided.

Figure 4: Examples of depth estimation with the motion model (M) on highly dynamic scenes. Cityscapes dataset; from left
to right: image input, baseline, ours, ground truth. A common failure case for dynamic scenes in monocular methods are
objects moving with the camera itself. These objects are projected into infinite depth in prior work. Our method correctly
estimates depth notably here, particularly on moving vehicles and persons.

of-the-art methods, even the ones that use more temporal
information. Handling of motion is the biggest contributing
factor to improving the ego-motion estimation of our algo-
rithm. Figure 7 shows results on the KITTI sequence.

Experiments discussion. As shown previously (in Ta-
bles 1, 2, and 3) our method benefits from both motion and
online refinement, but each component works in different
extents. For example, the motion net although extremely
beneficial for Cityscapes, a dataset with many dynamic
scenes, affects the metrics to moderate amounts in KITTI,
which reflects the scarcity of motion in this dataset.Online
refinement, on the other hand, is generally useful, but some
confusion may arise when applying it solo on a data with
a lot of motion, e.g., Cityscapes. When both online refine-
ment and motion are applied we have much better results
than the baselines.

Figure 9 shows several typical examples of failures for
depth estimation for the motion-only model. These can
generally happen in scenes which are considerably differ-
ent than scenes seen during training, for example scenes in
which the average depth is very low over the full image, or

images with new objects, such as a tank truck or a bridge.
Notes on the evaluation procedure and revised re-

sults. As pointed out by Godard [6], the evaluation code
released by [22] contains an inaccuracy where the depth
ground truth on the KITTI dataset is computed with respect
to the camera instead of the LIDAR. Fortunately, in prac-
tice, the effects of this are rather subtle as the displacement
is not very large. We know that at least the results of Zhou
[22], Mahjourian [13], MonoDepth [7], Pilzer [14] and
GeoNet [20] are affected, as they adopted the same evalu-
ation code. To be able to better compare to these methods,
all numbers reported in the main paper use the old evalua-
tion code for both caps at 50m and 80m. We show results
using the revised evaluation code in Table 5. For all meth-
ods where we have raw predictions available, we recompute
their scores and also include them in the table.

5. Conclusions
This paper addresses the monocular depth and ego-

motion problem by modeling individual objects’ motion in
3D, and an online refinement algorithm which is beneficial



Input Godard [6] Mono GeoNet [20]

DDVO [16] Baseline Ours (M)

Figure 5: Example showing a common failure case for monocular methods, which is handled correctly by our motion model
due to imposed size constraints. KITTI.

Method Train Test Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard [6]* C K 0.233 3.533 7.412 0.292 0.700 0.892 0.953
Ours (R) C K 0.1696 1.7083 6.0151 0.2412 0.7840 0.9279 0.9703
Ours (M) C K 0.1876 1.3541 6.3166 0.2641 0.7135 0.9046 0.9667
Ours (M+R) C K 0.1529 1.1087 5.5573 0.2272 0.7956 0.9338 0.9752
Pilzer [14]* C C 0.440 6.036 5.443 0.398 0.730 0.887 0.944
Pilzer [14]* C C 0.467 7.399 5.741 0.493 0.735 0.890 0.945
Ours (R) C C 0.2218 5.7374 8.6133 0.2584 0.7738 0.9076 0.9542
Ours (M) C C 0.1454 1.7368 7.2798 0.2046 0.8130 0.9415 0.9775
Ours (M+R) C C 0.1511 2.4916 7.0237 0.2023 0.8255 0.9372 0.9721

Table 3: Depth prediction results when training on Cityscapes. Evaluation on both KITTI (K) and Cityscapes (C) is shown
here; 80m range cap. Methods marked with an asterik (*) might use a different cropping as the exact parameters were not
available.

Figure 6: Online refinement model (R). Cityscapes (left
columns), KITTI (right columns). The model is trained on
KITTI.

Method Seq. 09 Seq. 10
Mean Odometry 0.032 ±0.026 0.028± 0.023
ORB-SLAM (short) 0.064± 0.141 0.064± 0.130
Vid2Depth (Mahjourian 2018) 0.013± 0.010 0.012± 0.011
Godard (Godard 2018)† 0.023± 0.013 0.018± 0.014
Zhou (Zhou 2017)† 0.021± 0.017 0.020± 0.015
GeoNet (Yin 2018) 0.012± 0.007 0.012± 0.009
ORB-SLAM (full)* 0.014± 0.008 0.012± 0.011
Ours 0.011± 0.006 0.011± 0.010

Table 4: Quantitative evaluation of odometry on the KITTI
Odometry test sequences. Methods using more information
than a set of rolling 3-frames are marked (*). Models that
are trained on a different part of the dataset are marked (†).

for transfering learned models to new environments. The
algorithm allows application to videos with dynamic scenes

and motion. Results on two major and challenging bench-
marks datasets, KITTI and Cityscapes, for depth and ego-
motion prediction are presented. We also showed successful
transfer across datasets.
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