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Overview 
Sleep constitutes nearly ⅓ of the human lifespan, yet most individuals are unaware of precisely 

how much or how well they’re sleeping. With low-energy radar technology, integrated into the 

new second-generation Nest Hub device, users can access a contactless, bedside sleep-

sensing system. Radar-based detection of sub-centimeter body movements enables the 

passive monitoring of sleep patterns with relative ease (e.g., no need to remember to charge the 

device or turn it on) and without the need for cameras, microphones, or physical contact with the 

user. Moreover, privacy-preserving, on-device processing of the raw sensor data is employed, 

so only the results of the algorithm (e.g., awake or asleep) are securely uploaded and provided 

to the user.  

 

This paper provides a detailed understanding of the capabilities of the second-generation Nest 

Hub’s Sleep Sensing feature, including algorithm development and validation. In brief, the deep 

learning algorithm, when compared to gold-standard clinical sleep assessment, achieved overall 

epoch-by-epoch sleep-wake accuracy of 87% in healthy sleepers: correctly detecting 96% of 

sleep epochs and 55% of wake epochs. This accuracy is comparable to published results for 

other clinical- and consumer-grade devices. 

Introduction 

Inadequate sleep has been linked to nearly half of the conditions that are the top causes of 

mortality in the United States.1,2 However, due to a multitude of factors - from lack of awareness 

of what constitutes healthy sleep to limited access to care - many individuals end up 

deprioritizing sleep, resulting in accumulation of a chronic sleep debt and progressive 

impairment in daily function and wellbeing. This has left nearly two thirds of adults in developed 

nations not attaining the recommended amount of nightly sleep.2 

 

Recent advances in technology have enabled sleep to be monitored on a more continuous 

basis through a variety of different consumer-grade sensors. Given these technologies often 

lack accuracy on par with the gold-standard polysomnogram (PSG), a recent American 

Academy of Sleep Medicine Position Statement noted that they are not currently deemed 

appropriate for the diagnosis or treatment of sleep disorders.3 Nonetheless, sleep-tracking 

wearables and “nearables” (contactless sensors) provide individuals the opportunity to 

understand their sleep patterns,4 with the potential to make adjustments to their behaviors that 

can promote better sleep and overall wellness. 

  

https://paperpile.com/c/8rQhWy/XSsC+obdq
https://paperpile.com/c/8rQhWy/obdq
https://paperpile.com/c/8rQhWy/uDb9
https://paperpile.com/c/8rQhWy/HCYh
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Methods 

Signal analysis and algorithm development 

To automatically track sleep at a short distance from the user, the second-generation Nest Hub 

uses Soli (https://atap.google.com/soli/), a 60 GHz frequency-modulated continuous wave 

(FMCW) radar chip developed for use in consumer electronic devices.5 It operates by emitting 

an ultra-low-power radio wave and measuring its reflection from the region of interest. The 

frequency spectrum of the reflected signal contains an aggregate representation of the distance 

and velocity of objects within the scene.  This signal can be processed to isolate a specified 

range of distances corresponding to the user’s sleeping area and detect motion within this 

region.  

 
Figure 1. A Soli spectrogram demonstrating the ability to detect a wide range of motions. Following the target 

user entering the scene, the spectrogram helps to differentiate (a) an empty room (no variation in the reflected signal 

demonstrated by the black space) from (b) large pose changes, (c) brief, isolated limb movements, and (d) sub-

centimeter chest and torso displacements from human breathing while at rest.  

 

As shown in Figure 1, once a user enters the target space causing variations in the reflected 

radar signal, the Soli chip is sensitive enough to detect and characterize a wide range of 

motions, deriving full-body actigraphy from large pose changes to smaller limb movements, and 

even exploring cardiopulmonary physiology from sub-centimeter chest and torso displacements 

during quiet respiration. These clearly recognizable patterns help determine whether or not a 

person is present in the specified area and, if so, whether the person is asleep or awake. 

 

To perform this task, a convolutional neural network (CNN) was developed to distinguish 

between three possible states: absent, awake, and asleep. This classifier was trained from a 

large, supervised dataset comprising raw radar data,  participant-provided sleep diaries, reference 

sensor recordings, and external annotations collected from thousands of volunteers. At inference 

time, raw radar data is processed to produce a continuous series of 3D tensors representing the 

amount of activity across a range of distances and frequencies and over a given window of time. 

These features are classified by the CNN to produce a time series of state probability estimates, 

which are further processed to determine the most likely state (absent, awake, or asleep). 

https://atap.google.com/soli/
https://atap.google.com/soli/
https://paperpile.com/c/8rQhWy/1ZGX
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Algorithm validation 

To validate the system’s performance, a reference dataset was collected, comprising raw 

sensor data along with corresponding ground-truth, which allows us to quantitatively measure 

the accuracy of the current algorithm and subsequently compare its performance to any future 

versions. To prevent overfitting to this benchmark, this study data was never used during model 

training or algorithm development and was not used to inform any design decisions; validation 

was only performed to obtain final performance metrics after algorithm designs were completed. 

 

The primary ground truth was in-lab polysomnography (PSG), which was scored by two board-

certified PSG technologists. In order to ensure an accurate ground truth, only epochs classified 

by both technologists as sleep (or wake) were used in the epoch-by-epoch analysis. Epoch-by-

epoch analyses in the sleep studies were done using 30-second epochs, comparing the 

algorithm’s prediction of sleep and awake/absent to the set of epochs that were similarly scored 

by both scorers (i.e., concordant epochs). Similarly, because inter-scorer reliability for the two 

scorers was good (in excess of the traditional standards for clinical benchmarks6), comparison 

was made to the average of summary sleep metrics generated by each of the scorers, in order 

to eliminate bias in the ground truth that might be introduced by either scorer’s differing 

application of the rules. 

Validation study population 

The validation study was conducted in order to assess performance of the Sleep Sensing 

algorithm in a convenience sample of volunteers recruited from clinical sleep disorder 

populations of SleepMed (a national healthcare and clinical research organization, and 

subsidiary of BioSerenity) and the surrounding community of South Carolina. The validation 

study was approved by the Advarra institutional review board, and all participants provided 

written informed consent prior to participation. 

 

Participants were recruited through multimedia advertising and direct contact of previously 

studied individuals who had authorized future recruitment. Participants were recruited to fulfill 

quotas that ensured uniform representation of certain demographic groups - ages 18-80 and 

male/female sex - that are likely to use the device (Table 1). Healthy sleeper participants were 

recruited through either evidence (on PSG) of no significant sleep disorders, or a combination of 

screening measures (e.g., Insomnia Severity Index, Epworth sleepiness scale) and self-report 

that suggested low pre-test probability for sleep disorders at the time of intake. Finally, all 

subjects were asked to abstain from the consumption of alcohol, caffeine, or nicotine containing 

products prior to the sleep study. In order to ensure natural sleep physiology, the following 

exclusion criteria were applied: 

1. Regular shift work or any night shift work in the past 4 weeks 

2. Travel across more than two time zones in the past 3 weeks 

3. Serious health conditions such as severe/decompensated cardiovascular disease, 

history of myocardial infarction or stroke, respiratory conditions (e.g., emphysema, 

chronic bronchitis), or any other conditions deemed by the principal investigator to be 

serious, severe, or decompensated 

4. Current pregnancy 

https://paperpile.com/c/8rQhWy/Vxfb
https://sleepmedinc.com/
https://www.bioserenity.com/
https://www.advarra.com/
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5. Current or recent history (within 3 months) of major psychiatric disorders (e.g., severe or 

uncontrolled requiring initiation of treatment with a medication or hospitalization), history 

of schizophrenia or bipolar I disorder, or drug dependency 

6. Any use of the following prescribed medications within the past 3 months (as determined 

by self-report or study questionnaires) of: 

a. antipsychotics (e.g., haloperidol, prochlorperazine, aripiprazole, etc.) 

b. mood stabilizers (e.g., lithium, carbamazepine, lamotrigine, valproate, asenapine) 

c. sleep medications (e.g., TCAs, benzodiazepines, “Z”-drugs, barbiturates, etc.) 

d. anticholinergic medications (Detrol, Elavil, etc.) 

e. opiate/opioid analgesics (Demerol, Percocet, etc.) 

f. wake-promoting therapeutics (Adderall, Ritalin, etc.) 

7. Symptoms of active illness (e.g., fever) on the night of the study visit 

Polysomnography 

The participants in the validation cohort underwent a single night of standard, level I PSG in a 

clinical research facility operated by BioSerenity. The PSG included all American Academy of 

Sleep Medicine (AASM) required signals - electroencephalography, electrooculography, chin 

and tibialis anterior electromyography, nasal pressure transducer, naso-oral thermistor, snore 

microphone, electrocardiography, thoracic and abdominal respiratory inductance 

plethysmography, digital photoplethysmography/oximetry - sampled at the recommended 

frequencies and stored digitally.7 In a sleep-technologist monitored setting, participants were 

allowed to sleep in a temperature-controlled environment with a bedtime of their choosing 

(usually starting around 21:00-23:00) and were awoken approximately 8 hours later at a 

preselected time. 

 

Using the AASM scoring manual,7 staging and scoring of each PSG was performed by two 

board-certified sleep PSG technologists, independently. Standard summary metrics were 

extracted from the scored files including sleep duration (total sleep time [TST]), the time from 

lights off to lights on (time in bed [TIB]), time of sleep onset (SOn; the first epoch of sleep 

following lights off), time from lights off to sleep onset (sleep onset latency [SOL]), sleep offset 

(SOff; the last epoch of sleep), time spent awake in between sleep onset and offset (wake after 

sleep onset [WASO]), and percentage of time in bed spent sleeping in between lights off and 

lights on (sleep efficiency [SE]). Additionally, standard indices of sleep phenomena were 

calculated as events per hour of sleep: periodic limb movement index (PLMI), apnea-hypopnea 

index using the AASM-recommended hypopnea criterion of associated 3% desaturation or 

electrographic arousal (AHI), and apnea-hypopnea index using the alternate hypopnea criterion 

of associated 4% desaturation that is commonly used for Medicare patients (CMS-AHI). 

Statistical analysis 

Descriptive statistics were assessed for normality using the Shapiro-Wilk test. Following 

confirmation of normality, continuous data were presented as mean±SD or, in the case of 

comparisons of sleep summary metrics mean (95% CI). Non-normal variables were represented 

by median and interquartile range. Count data were summarized as N(%). 

 

https://paperpile.com/c/8rQhWy/Oqh0
https://paperpile.com/c/8rQhWy/Oqh0
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Epoch-by-epoch comparisons resulted in the generation of a number of standard statistics for 

each individual/night of sleep. The performance metrics of interest were sensitivity, specificity, 

positive predictive value, negative predictive value, and accuracy. For purposes of calculating 

these metrics a true positive (TP) indicates an epoch classified as sleep by the algorithm and as 

any stage of sleep (N1, N2, N3, REM) by both technicians. Conversely, a false negative (FN) 

occurred when the algorithm classified such epochs as wake. A true negative (TN) was counted 

when the algorithm classified an epoch as awake or absent and both technicians scored wake 

(W) or out of bed; whereas, false positives (FP) indicated an instance where the algorithm 

incorrectly identified sleep when the technicians both scored wake/out-of-bed. 

 

For normally distributed variables means were compared with two-tailed t-tests. Significance 

was set at an α threshold of 0.05, without correction for multiple comparisons, as this was a pilot 

validation study. Analyses were performed using version 4.0.3 of the R statistical programming 

language.8 Bland-Altman plots were generated using the BlandAltmanLeh package. 

Results 

Cohort demographics 

Of the volunteers who were screened for study inclusion, 7 were excluded due to not meeting 

the inclusion/exclusion criteria (1 for sleep apnea, 1 for clonazepam usage, 1 for prescription 

stimulant usage, 1 for ISI >7, 1 for unwillingness to abstain from alcohol, 1 for prior stroke, and 1 

for inability to complete consent), and 4 were withdrawn after consenting (3 no shows to study 

visit that were lost to follow up; 1 withdrew due to concerns over safety related to the COVID-19 

pandemic). There were 33 nights of data available for analysis after removal of nights that 

lacked analyzable signals due to improper set-up (2 with device miscalibration, 2 with no 

recorded data from the Nest Hub). The PSG validation cohort was generally representative of 

the regional U.S. population from which it was recruited, with intentional over-representation of 

specific demographics (e.g., age) (Table 1). This cohort was older 41.6±11.8 and comprised of 

more females (61%) than the U.S. population - median age 38.5 years and 51% female9 - and 

global population - average median age 29.610 and 50% female11. The cohort was generally 

overweight, congruent with the U.S. population.12 The cohort was 64% White and 36% Black or 

African American. 

 

The population did not have a significant degree of sleep-disordered breathing - CMS AHI 

1.81±1.16; AASM AHI 6.53±3.97 - or periodic limb movements during sleep - periodic limb 

movement index (PLMI) of 3.96±9.67.7 The sleep duration was generally in excess of 6 hours, 

constituting 81.8%±10.4% of the nearly 8 hour sleep opportunity afforded. Based on validated 

cut points for the Insomnia Severity Index (ISI >7)13 and the SleepMed Insomnia Index (SMII 

>20),14 as a whole, these individuals did not have clinically significant insomnia symptoms. 

 

 

 

https://paperpile.com/c/8rQhWy/n7PX
https://paperpile.com/c/8rQhWy/t8i9
https://paperpile.com/c/8rQhWy/5NNC
https://paperpile.com/c/8rQhWy/Yldu
https://paperpile.com/c/8rQhWy/G3gq
https://paperpile.com/c/8rQhWy/Oqh0
https://paperpile.com/c/8rQhWy/eCLe
https://paperpile.com/c/8rQhWy/DkWQ
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Mean±SD or N(%) 

(N=33) 

Demographic variables 

Age (yrs) 41.6±11.8 

Sex (F) 20 (61%) 

BMI (kg/m²) 27.05±4.24 

Race/Ethnicity  

American Indian or Alaska Native 0 (0%) 

Asian 0 (0%) 

Black or African American 12 (36%) 

Native Hawaiian or Other Pacific Islander 0 (0%) 

White 21 (64%) 

More than one race 0 (0%) 

Unknown or not reported 0 (0%) 

Clinical variables 

CMS AHI (events/hr) 1.81±1.16 

AHI (events/hr) 6.53±3.97 

NadirSpO2 (%) 86.3%±7.5% 

TST (min) 386.99±50.33 

TIB (min) 473.21±21.28 

SE (%) 81.8%±10.4% 

PLMI (events/hr) 3.96±9.67 

ISI 3.3±2.39 

SMII 5.12±3.03 

 
Table 1. Demographics of the validation cohort. Abbreviations: AHI - AASM-recommended apnea-hypopnea 

index; BMI - body mass index; CMS AHI - AASM alternate AHI, commonly used by Medicare; ISI - Insomnia Severity 

Index; PLMI - periodic limb movement index; SE - sleep efficiency; SMII - SleepMed Insomnia Index; TIB - time in 

bed; TST - total sleep time 

Epoch-by-epoch performance 

There was no statistically significant difference in the sleep-wake detection performance 

between sleep technicians (κ=0.93±0.2 for 5-stage sleep scoring). A median of 4.4% [IQR: 

3.2%-6.6%] of epochs were removed because of disagreement between scorers. Performance 

metrics were aggregated across the whole cohort, after being calculated on a per-individual 

basis (Table 2). The overall accuracy of the algorithm for sleep-wake detection was 0.87±0.06, 
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with correct detection of sleep epochs (sensitivity or recall) of 0.96±0.06 and wake epochs 

(specificity) of 0.55±0.20. Positive and negative predictive values exceeded 85%. 

 

 Algorithm performance 

Sensitivity 0.96±0.06 

Specificity 0.55±0.20 

Accuracy 0.87±0.06 

PPV 0.88±0.07 

NPV 0.86±0.17 

 
Table 2. Epoch-by-epoch performance of algorithm vs concordant epochs of 2 expert scorers. Abbreviations: 

NPV - negative predictive value; PPV - positive predictive value 

 

In comparison to previously published performance of other sleep-tracking devices, the Nest 

Hub Sleep Sensing algorithm demonstrated sleep-wake detection accuracies on par with or, in 

some cases, better than existing clinical and consumer sleep-tracking devices (Figure 2 & 

Supplementary Table 1). 

 

 
Figure 2. Comparison of the Sleep Sensing algorithm to aggregated performance of various sleep tracking 

technologies. Aggregate performance (in orange) from previously published accuracies for detection of sleep 

(sensitivity) and wake (specificity) of a variety of sleep trackers against polysomnography in a variety of different 

studies, accounting for 3,990 nights in total. The performance of Sleep Sensing on Nest Hub (in purple) in a 

population of healthy sleepers who underwent polysomnography along with the second-generation Nest Hub is 

added to the figure for rough comparison. The size of the circles is a reflection of the number of nights. The zoomed-

in plot illustrates the means±standard deviations for the performance metrics. Perfect performance would be in the 

top-right corner of the figure (i.e., 100% accuracy for both sleep and wake detection). 
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Summary sleep metric performance 

As shown in Table 3, the algorithm-determined sleep metrics were not statistically different from 

expert-scored PSG in the estimation of sleep onset, sleep offset, sleep onset latency, total sleep 

time, or sleep efficiency (p>0.1 for all). Comparatively, the algorithm tended to underscore wake 

after sleep onset by about 25 minutes (95% CI: -34.85 to -15.28; t-test, p-value: <0.001). Bland-

Altman plots (Figure 3) were generated to explore patterns in the bias of algorithm performance. 

Notable were a 12min delay for sleep offset (11:39; 95% CI: 4:49 to 18:28); and a 35min 

overestimation of total sleep time, primarily related to the aforementioned underestimation in 

wake after sleep onset, which also resulted in an overestimation of sleep efficiency by 7%). 

 

 

 Mean difference (95% CI) t-test, p-value 

SOn (min:sec) 1:14 (-5:48,8:15) 0.62 

SOff (min:sec) 11:39 (4:49,18:28) 0.67 

TST (min) 35.48 (22.13,48.84) 0.15 

SOL (min) 1.23 (-5.8,8.25) 0.42 

WASO (min) -25.07 (-34.85,-15.28) <0.01 

SE (%) 7.23% (4.4%,10.06%) 0.16 

 
Table 3. Summary metric performance of algorithm vs average of 2 expert scorers. Difference between 

algorithm and average of 2 expert scorers, expressed as mean (95% CI) with accompanying p-values of a two-tailed, 

paired t-test assessing the difference in means. Abbreviations: SE - sleep efficiency; SOff - sleep offset; SOL - sleep 

onset latency; SOn - sleep onset; TST - total sleep time; WASO - wake after sleep onset 
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Figure 3. Bland-Altman plots of various sleep summary metrics. Comparisons between the algorithm and the 

average of 2 expert scorers, with the abscissa represents the mean of the algorithm and scorers and the ordinate 

represents the difference between the algorithm and scorers (where a positive indicates a high/delayed estimate and 

a negative indicates a low/early estimate). Dashed and dotted lines plotted for the mean difference and 95% CI (red) 

along with 2 standard deviations above/below the mean and 95% CI (blue). Abbreviations: SE - sleep efficiency; SOff 

- sleep offset; SOL - sleep onset latency; SOn - sleep onset; TST - total sleep time; WASO - wake after sleep onset 
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Conclusions 

We report here on the performance of sleep-wake detection by a radar-based, bedside device 

and algorithm, in a cohort of 33 healthy sleepers, using clinical PSG for comparison. The overall 

epoch-by-epoch sleep-wake accuracy was 87%, correctly detecting 96% of sleep epochs and 

55% of wake epochs. The findings for this deep learning algorithm are comparable to the 

reported sensitivity range (65-99%) and specificity range (10-82%) of clinical grade actigraphy, 

as well as many sleep-tracking devices currently used by consumers (Figure 2 & 

Supplementary Table 1). Along these lines, expected overestimation of sleep duration and 

underestimation of time spent awake occurred; however, except for underestimation of the 

amount of wakefulness interrupting the sleep period, analyses revealed that the algorithm’s 

determination of major summary metrics were, on average, not statistically different than the 

average scoring of 2 expert sleep technicians. 

 

The second-generation Nest Hub with Sleep Sensing allows users to monitor their sleep 

patterns with performance similar to that of other sleep-tracking devices. 
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Supplementary Materials 

Supplementary Table 1 

 

Study Device/Algorithm N Sn Sp Sn t, p Sp t, p 

Consumer Wearables 

Beattie et al 201715 Fitbit Surge (normal) 60 98% 35% -1.72, 0.09 5.01, <0.01 

Cook et al 201716 Fitbit Flex (normal) 21 98% 35% -1.62, 0.12 4.33, <0.01 

Kang et al 201717 Fitbit Flex (normal) 17 97% 36% N/A N/A 

Maskevich et al 201718 Fitbit One (normal) 7 99% 27% -2.22, 0.07 3.61, 0.01 

Meltzer et al 201519 Fitbit Ultra (normal) 63 87% 52% N/A N/A 

Montgomery-Downs et al 201220 Fitbit Classic (normal) 24 98% 20% -1.36, 0.19 5.02, <0.01 

Osterbauer et al 201621 Fitbit Flex (normal) 14 99% 10% -2.81, 0.01 8.34, <0.01 

Scott et al 202122 Fitbit Flex (normal) 25 98% 32% -1.51, 0.14 4.01, <0.01 

Scott et al 202122 Fitbit Alta (normal) 20 96% 39% 0.20, 0.84 2.92, <0.01 

Beattie et al 201715 Fitbit Surge (sensitive) 60 78% 80% 12.06, <0.01 -6.06, <0.01 

Cook et al 201716 Fitbit Flex (sensitive) 21 78% 80% 8.34, <0.01 -4.93, <0.01 

Kang et al 201717 Fitbit Flex (sensitive) 17 65% 82% N/A N/A 

Meltzer et al 201519 Fitbit Ultra (sensitive) 63 70% 79% N/A N/A 

Cook et al 201923 Fitbit Alta HR (sleep) 49 96% 58% 0.27, 0.79 -0.76, 0.45 

deZambotti et al 201624 Fitbit Charge HR (sleep) 32 97% 42% -0.71, 0.49 2.79, <0.01 

deZambotti et al 201825 Fitbit Charge 2 (sleep) 44 96% 61% N/A N/A 

Svensson et al 201926 Fitbit Versa (sleep) 20 92% 54% 4.39, <0.01 0.19, 0.85 

Moreno-Pino et al. 201927 Fitbit Charge 2 & Alta HR (sleep) 7 89% 40% 2.83, 0.03 1.65, 0.15 

https://paperpile.com/c/8rQhWy/dEr8I
https://paperpile.com/c/8rQhWy/moOcr
https://paperpile.com/c/8rQhWy/ViEMc
https://paperpile.com/c/8rQhWy/EzWrL
https://paperpile.com/c/8rQhWy/LimoF
https://paperpile.com/c/8rQhWy/l4Q6l
https://paperpile.com/c/8rQhWy/FEUFc
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/dEr8I
https://paperpile.com/c/8rQhWy/moOcr
https://paperpile.com/c/8rQhWy/ViEMc
https://paperpile.com/c/8rQhWy/LimoF
https://paperpile.com/c/8rQhWy/Hc724
https://paperpile.com/c/8rQhWy/Xqp4L
https://paperpile.com/c/8rQhWy/YoygQ
https://paperpile.com/c/8rQhWy/NG52a
https://paperpile.com/c/8rQhWy/niLt6
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Chinoy et al 202128 Fitbit Alta HR (sleep) 49 95% 54% N/A N/A 

Chinoy et al 202128 Garmin Fenix 5S 29 99% 18% N/A N/A 

Chinoy et al 202128 Garmin Vivosmart 3 43 99% 19% N/A N/A 

Scott et al 202122 THIM 25 91% 59% 5.27, <0.01 -1.03, 0.31 

Scott et al 202122 THIM 20 89% 59% 5.42, <0.01 -1.07, 0.30 

Roberts et al 202029 Oura Ring 32 96% 41% -0.04, 0.96 4.69, <0.01 

  Avg 90.71% 50.05%   

  Max 99% 82%   

  Min 65% 10%   

Clinical Actigraph 

Chakar et al 201730 Actiwatch 2 (default) 38 96% 48% N/A N/A 

De Souza et al 200331 Mini motionlogger (Cole-Kripke) 21 99% 34% N/A N/A 

De Souza et al 200331 Mini motionlogger (Sadeh) 21 97% 44% N/A N/A 

Fonseca et al 201732 Actiwatch Spectrum (default) 49 97% 46% -0.83, 0.41 2.04, 0.05 

Jean-Louis et al 200133 Actillume I 31 95% 31% N/A N/A 

Jean-Louis et al 200134 Actillume I 5 99% 28% N/A N/A 

Jumabhoy et al 201935 Actiwatch 2 (default) 22 97% 27% N/A N/A 

Kogure et al 201136 Micro-Mini & Mini Motionlogger 6 99% 34% N/A N/A 

Kosmadopoulos et al 201437 Actiwatch-64 (medium sensitivity) 22 96% 38% 0.42, 0.68 3.61, <0.01 

Kuo et al 201738 Non-commercial 59 95% 71% N/A N/A 

Markwald et al 201639 Actiwatch-64 (medium sensitivity) 26 97% 37% N/A N/A 

Montgomery-Downs et al 201220 Actiwatch-64 24 96% 39% 0.42, 0.68 2.14, 0.04 

O'Hare et al 201540 Actiwatch 20 97% 34% -0.96, 0.35 4.57, <0.01 

Paquet et al 200741 Actiwatch-L 15 95% 54% 0.82, 0.43 0.06, 0.95 

Roberts et al 202029 ActiGraph Link (Cole-Kripke) 32 94% 57% 2.03, 0.05 -0.46, 0.65 

https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/gdC7R
https://paperpile.com/c/8rQhWy/OCP44
https://paperpile.com/c/8rQhWy/hw8U0
https://paperpile.com/c/8rQhWy/hw8U0
https://paperpile.com/c/8rQhWy/DxnX6
https://paperpile.com/c/8rQhWy/OAecI
https://paperpile.com/c/8rQhWy/s9MgS
https://paperpile.com/c/8rQhWy/pUTle
https://paperpile.com/c/8rQhWy/ZThP5
https://paperpile.com/c/8rQhWy/eTmTF
https://paperpile.com/c/8rQhWy/g3rFr
https://paperpile.com/c/8rQhWy/5Zg4X
https://paperpile.com/c/8rQhWy/l4Q6l
https://paperpile.com/c/8rQhWy/taJX
https://paperpile.com/c/8rQhWy/GXx1m
https://paperpile.com/c/8rQhWy/gdC7R
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Roberts et al 202029 ActiGraph Link (Sadeh) 32 91% 65% 3.40, <0.01 -2.19, 0.04 

Roberts et al 202029 Actiwatch Spectrum Plus 32 98% 37% -1.94, 0.06 4.22, <0.01 

Sargent et al 201642 Actiware 16 88% 77% N/A N/A 

Slater et al 201543 GTX3+ 108 90% 46% 8.33, <0.01 4.65, <0.01 

Scott et al 202122 Actiwatch 2 25 95% 35% 1.59, 0.13 5.47, <0.01 

Scott et al 202122 Actiwatch 2 20 95% 59% 1.42, 0.17 -0.97, 0.35 

Chinoy et al 202128 Actiwatch 2 (medium sensitivity) 98 97% 39% N/A N/A 

Palotti et al 201944 Actiwatch Spectrum (multiple algorithms) 2237 93% 50% 24.15, <0.01 23.10, <0.01 

  Avg 93.38% 48.69%   

  Max 99% 77%   

  Min 88% 27%   

Under-mattress sensor 

Tal et al 201745 EarlySense 85 93% 80% N/A N/A 

Chinoy et al 202128 EarlySense Live 51 96% 47% N/A N/A 

  Avg 93.81% 67.88%   

  Max 96% 80%   

  Min 93% 47%   

Radar 

Chinoy et al 202128 ResMed S+ 51 93% 51% N/A N/A 

Chinoy et al 202128 SleepScore Max 42 94% 50% N/A N/A 

O'Hare et al 201540 SleepMinder 20 95% 42% 1.02, 0.32 2.89, <0.01 

O'Hare et al 201540 SleepDesign 20 96% 38% -0.06, 0.96 5.38, <0.01 

  Avg 94.17% 47.38%   

  Max 96% 51%   

  Min 93% 38%   

https://paperpile.com/c/8rQhWy/gdC7R
https://paperpile.com/c/8rQhWy/gdC7R
https://paperpile.com/c/8rQhWy/Sv03I
https://paperpile.com/c/8rQhWy/cB2uu
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/tEgfe
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/YZHq
https://paperpile.com/c/8rQhWy/etC6m
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/eoui
https://paperpile.com/c/8rQhWy/taJX
https://paperpile.com/c/8rQhWy/taJX
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Aggregate of all modalities (weighted average & standard deviation) 

   92.91±4.70% 49.56±11.52% 3.44, <0.01 1.44, 0.16 

  Max 99% 82%   

  Min 65% 10%   

  Algorithm superior N (%) 6 (20.00%) 18 (60.00%) 

 
Supplementary Table 1. Existing studies validating various devices against polysomnography. Reported mean sensitivity and specificity from various consumer and clinical 

devices along with category-specific, weighted averages, maxima, and minima. t-statistics and p-values provided for comparisons between algorithm performance and previously 

published means, for those data that had reported a measure of dispersion (e.g., standard deviation). While these are not head-to-head comparisons, a positive t-statistic suggests 

superior performance of the algorithm; otherwise, there is an “N/A” when no measures of dispersion were available to allow for statistical comparisons. All instances where the 

algorithm was statistically superior in one domain (e.g., sensitivity) while not statistically worse in the other (e.g., specificity) in comparison to the reported performance are bolded 

and italicized, with a count and percentage of all such instances provided at the bottom of the table. Comparison was also made against an aggregate performance of all devices, 

roughly approximated by weighted mean of means and standard deviation of means. Abbreviations: Sn - sensitivity; Sp - specificity. 
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