
A Step-by-Step Process for Building TTS Voices Using Open Source Data and
Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese

Keshan Sodimana, Pasindu De Silva2, Supheakmungkol Sarin1, Knot Pipatsrisawat1, Oddur
Kjartansson1, Martin Jansche1, Linne Ha1

1Google,2Google (on contract from Teledirect Pte Ltd)
{ksodimana,pasindu,mungkol,thammaknot,oddur,mjansche,linne}@google.com

Abstract
The availability of language resources is vital for the develop-
ment of text-to-speech (TTS) systems. Thus, open source re-
sources are highly beneficial for TTS research communities fo-
cused on low-resourced languages. In this paper, we present
data sets for 6 low-resourced languages that we open sourced
to the public. The data sets consist of audio files, pronuncia-
tion lexicons, and phonology definitions for Bangla, Javanese,
Khmer, Nepali, Sinhala, and Sundanese. These data sets are
sufficient for building voices in these languages. We also de-
scribe a recipe for building a new TTS voice using our data
together with openly available resources and tools.
Index Terms: text-to-speech, linguistic resources, low-
resourced languages, open source

1. Introduction
As natural human-machine communication becomes more
prevalent, text-to-speech (TTS) systems play an equally im-
portant role as speech recognition systems. From our experi-
ence building TTS voices for many low-resourced languages,
we have observed the following common obstacles that prevent
more rapid research: the lack of language resources (e.g., audio,
lexicon, linguists) and the complexity of voice building process.

Without resources for the language, voice building becomes
a much more challenging problem. Even when some data are
available, we still need a native speaker (usually a linguist) to
help curate various resources and to provide feedbacks on the
resulting voices. Because voice building tools often require
non-trivial amount of technical proficiency to configure and use,
this working scheme may create a heavy dependency on the en-
gineering team. This problem is further amplified if the opera-
tions are scaled across many languages in different time zones.

In this paper, we aim to address some of these obstacles.
First, we present a set of data that we open sourced for the pub-
lic to use freely. These data consist of audio recordings of short
phrases/sentences, a pronunciation lexicon, and a phonology
definition for each of the following 6 low-resourced languages:
Bangla (Bangladeshi Bengali), Javanese, Khmer, Nepali, Sin-
hala, and Sundanese. Moreover, to help guide researchers who
are interested in experimenting with our data, we also present
a step-by-step recipe for building TTS voices from our data
with a web-based open source tool. The tool abstracts away
the technical burdens of configuring and maintaining complex
systems. We hope that our contributions here will help spur
more interests in natural language processing for low-resourced
languages.

In the next section, we discuss related work. In Section 3,
we describe the open source resources that we are contributing
to the community and discuss TTS tools that we will utilize for

building TTS voices. Then, in Section 4, we present a step-by-
step guide for building a new TTS voice using the tools. In Sec-
tion 5, we discuss the quality of our data. Finally, in Section 6,
we wrap up with some discussions about future directions and
some conclusions.

2. Related Work
All the languages discussed in this paper are considered low-
resourced languages. Therefore, work in this area is min-
imum for some languages. However, some work has been
done on building Sinhala [1] and Bangla [2] voices using Fes-
tival [3]. Both of these voices are based on the unit selection
technique [4]. These Bangla and Sinhala Festival voices have
been open sourced and can be downloaded from their respective
websites1. In a more recent work, a parametric voice building
technique has been used to build a Bangla voice from audio col-
lected from multiple speakers via a crowdsource approach [5].
A voice building process for any new language based on the
MaryTTS system has been discussed in [6].

Our key contributions in this work are (1) addressing the
lack of TTS data for several low-resourced languages by mak-
ing available linguistic resources for Bangla, Javanese, Khmer,
Nepali, Sinhala, and Sundanese. The data will be made avail-
able under free and a flexible license. (2) providing a recipe for
utilizing these resources through freely available TTS tools.

3. Available Resources and Tools
In this section, we describe the resources that we are open sourc-
ing in details and also discuss a few tools that we will use in our
voice building recipe in the next section.

3.1. Linguistic resources

Typically, the bare minimum types of data required to build a
new TTS voice are (i) audio data (with associated transcript) (ii)
a pronunciation lexicon and (iii) a phonology definition. We are
making all these resources available for all 6 languages men-
tioned earlier. Unless mentioned otherwise, all the data have
been released under the Creative Commons Attribution 4.0 in-
ternational license (CC BY 4.0) [7].

3.1.1. Audio data

This set of data contains audio-transcript pairs for each lan-
guage. Each entry consists of an audio file and a (normal-
ized) text transcript of the audio. Audio recordings are in RIFF
WAVE format. The accompanying line_index.tsv file has

1https://github.com/firojalam/Katha-Bangla-TTS and
http://ucsc.cmb.ac.lk/ltrl/projects/si/textonly_old.htm

The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages
29-31 August 2018, Gurugram, India

66 10.21437/SLTU.2018-14

http://www.isca-speech.org/archive/SLTU_2018/abstracts/Keshan1.html


Language Gender Speaker count Number of audio files Total Duration (hours) Location
Bangla M 6 1819 2:56:18 http://www.openslr.org/37/

Javanese F 20 2864 3:31:13 http://www.openslr.org/41/M 21 2958 3:28:13
Khmer F 17 2906 3:58:00 http://www.openslr.org/42/
Nepali F 19 2064 2:47:45 http://www.openslr.org/43/
Sinhala F 13 2064 3:22:49 http://www.openslr.org/30/

Sundanese F 21 2401 3:12:21 http://www.openslr.org/44/M 22 1812 2:10:22
Table 1: A catalogue showing information about recorded audio files in different languages and genders.

Language Number of lexicon entries
Bangla 69277
Javanese 54322
Khmer 70671
Nepali 66119
Sinhala 52573
Sundanese 42816

Table 2: Number of lexicon entries for each language.

the normalized transcript of the recorded audio along with the
ID of the corresponding audio file. Table 1 shows the properties
and location of the audio corpus of each language.

The audio data were collected from a group of volunteers
in each language. The volunteers were between the ages of 20
and 35. They were asked to read short sentences, each of which
contains 5 - 20 words. The texts used for recording were either
extracted from wikipedia, general websites, or were declarative
sentences created by native speakers of the target languages.
The recording was conducted in quiet environments: either a
sound studio or a quiet room with a soundproof booth. More-
over, all audio files have passed through a QC process to ensure
good audio quality, absence of background noise, and match
between recorded audio and text transcript.

3.1.2. Pronunciation lexicon

A pronunciation lexicon is a map from words to their pronunci-
ations written in a certain convention (e.g., IPA) [8]. Lexicons
are important in a TTS system because they allow the system
to turn training text or input text into the underlying pronunci-
ations (e.g., sequences of phoneme symbols). The system can
then synthesize the voice based on the resulting pronunciations.

These lexicon files can be found in Google Internation-
alization team’s language resources repository [9] for each
language. For example: the Javanese lexicon can be accessed
at https://github.com/googlei18n/language-
resources/blob/master/jv/data/lexicon.tsv.
Other lexicons can be found in their respective language’s
folder. Table 2 lists the amounts of lexicon entries we have
made available for each language.

We created these pronunciation lexicons by working with
native speaker linguists to create guidelines for phonemic tran-
scriptions. Then, we utilized teams of linguists (or trained na-
tive speakers) to manually transcribe words based on the guide-
lines. Every word entry has also gone through a QC process
to ensure correctness. Words in these lexicon were obtained by
crawling wikipedia pages and websites in these languages. We
aggregated and ranked the words according to their frequencies

of occurrences. The linguists then transcribed the top words in
the lists.

3.1.3. Phonology

The phonology definition of a language defines the set of
phonemes and their properties. For example, it lists all possible
consonants, vowels, and indicates properties such as place of
articulation, nasality, and voicing properties. Phonology defi-
nitions are important for voice building because they provide
features and clues for voice building algorithms to accurately
learn an acoustic model for the language. A phonology defi-
nition for each language is available at the language resources
Github repository [9]. For example, the phonology file for
Javanese is at https://github.com/googlei18n/
language-resources/blob/master/jv/festvox/
phonology.json.

3.2. Voice building tools

In the subsequent section, we will present a recipe for build-
ing a TTS voice. The underlying voice building tools used are
Festival [3] and Merlin [10].

Festival [3, 11] is a popular TTS engine used by many re-
searchers. Festival provides routines to build parametric voices
using its clustergen algorithm. It also contains some useful pre-
processing sub-components that other engines rely on.

Merlin is a TTS engine which uses neural networks to build
voices. It relies on parts of Festival to preprocess input data
(e.g., to generate features).

Setting up either Festival and Merlin for voice building and
maintaining such systems are not trivial tasks. As a result, we
presented, in an earlier work, Voice Builder, a framework that
simplifies voice building process by wrapping both Festival and
Merlin in an easy-to-use web frontend [12]. Voice Builder is
also an open source tool that can be used by any interested re-
searchers to build voices and manage experiments. Currently,
Voice Builder is configured with both Festival and Merlin as
underlying voice building engines2.

4. Step-by-step voice building process
Now we will provide detailed instructions on how to build a
TTS voice from the data we described in the previous section.
We will use Voice Builder as a tool for building the voice, in-
stead of interacting directly with voice building engines like
Festival or Merlin. As a prerequisite, please download language
resources (LR) repository from [9]. This repository contains
some useful scripts that we will utilize in this section.

2Readers interested in voice building tool boxes may also check
out [13, 14].

67



Figure 1: A screenshot of a page for creating a voice in Voice Builder. Note that all data paths used in the form are GCS paths.

Voice Builder is a web-based tool that simplifies voice
building process by abstracting away low-level interactions with
voice engines (such as Festival or Merlin). Behind the scene,
Voice Builder utilizes TTS engines (wrapped in Docker con-
tainer) on Google Cloud Platform (GCP). The use of GCP,
which is a publicly accessible platform, removes a lot of tech-
nical burdens from the users. However, before we can use it for
building a voice, we need to make the data accessible by Voice
Builder. This is achieved by uploading the data to Google cloud
storage (GCS) [15]. We will now present a step-by-step process
for preparing the data and uploading them to GCS.

1. Lexicon: This contains all the words and their transcrip-
tions. They are typically formatted as TSV, because this
format is simple and easy to understandable. The first
column of the TSV file is the word (i.e., spelling) and
the second column is the pronunciation (e.g., in IPA).
The syllable boundaries are marked with "." in the pro-
nunciation. For example,
අංකනය /a ŋ . k ə . n̪ ə . j ə/
In order for the lexicon to be used by Festival or Merlin,
it needs to be in the Festival lexicon format. We have
included lexicon in both the TSV and Festival format
in our open source repository. However, if any user
would like to make modifications to the lexicon, editing
the TSV file is probably easier. The edited file can
then be converted into the Festival format by using
festival_utils/festival_lexicon_from_tsv.py,
which can be found in LR. For example, running
$ cat si/data/lexicon.tsv | python
festival_utils/festival_lexicon_from
_tsv.py > si/festvox/lexicon.scm

will convert the Sinhala TSV lexicon into the Festival
format (lexicon.scm).

2. Audio data: These are the recordings that will be used
for training a voice model. Each file should be in the

RIFF WAVE format. Then, the folder containing all the
audio files should be compressed in the tar format. For
example, to compress all the audio file in folder "audio"
into an archive named "audio.tar", run
$ tar -cf audio.tar audio

3. Audio and transcript: This is the mapping between audio
files and their corresponding text transcripts. It is stored
in a TSV file where the first column is the audio file name
(without the ".wav" extension) and the second column is
the corresponding (segmented) text. For example,
sin_2241_0397568785 ෙම ාව අභය
In our data sets, each audio file name also encodes the
speaker ID. In the above example, 2241 is the speaker
ID, and 0397568785 is a random string associated with
that audio entry. Thus, all audio files recorded from
this same speaker will have the prefix sin_2241. This
mapping file needs to be in the Festival format for
voice building. Again, we have made the mapping files
available in both formats in our repository. If needed,
the TSV file can be converted to the Festival format
using festival_utils/prepare_prompts.py,
which can be found in LR as well. For example, running
$ cat si/data/line_index.tsv | python
festival_utils/prepare_prompts.py >
si/festvox/txt.done.scm

will convert the TSV mapping file into a mapping file in
Festival-compatible format.

4. Phonology: This contains the phoneme inventory of the
language. This file is in JSON format, which is described
in details here:
https://github.com/googlei18n/
language-resources/blob/master/docs/
JSON_PHONOLOGY.md3

3Going over the format of this file is beyond the scope of this paper.

68



This JSON file can be used directly by the voice building
process.

Once all the data are in the right format, we simply need to
upload them onto a Google cloud storage folder (also known
as a "bucket"). We will use the gsutil command line tool
to upload the data. To download this tool, which is packaged
as "Cloud SDK", and get started, please follow the instruction
at https://cloud.google.com/storage/docs/
quickstart-gsutil. Once you finish this step, you
should have Cloud SDK installed on your local machine and
have created a project on Google Cloud. The next step is to
create a new storage bucket. This can be done by running

$ gsutil mb gs://<bucket>/
where <bucket> is an arbitrary bucket name. Once done,

we can upload data onto this bucket with the following com-
mand:

$ gsutil cp <file> gs://<bucket>/<path>
This command will upload <file> from a local machine

onto GCS bucket <bucket> at <path> relative to the root of
the bucket. For example, to upload a lexicon file in Sinhala onto
my_bucket at path si/lexicon, run

$ gsutil cp si/festvox/lexicon.scm
gs://my_bucket/si/lexicon.scm

All uploaded files need to be made publicly accessible (so
that Voice Builder can access them). The following command
can be used to make a file in a bucket public:

$ gsutil acl ch -u AllUsers:R
gs://<bucket>/<path>

Once all the above data are in Google cloud stor-
age, we can simply go to Voice Builder demo’s "create
voice" page at http://tinyurl.com/voice-builder
4. We then need to fill in the paths to the resources
that have been uploaded to GCS. Each GCS path has the
format gs://<bucket>/<path>/<to>/<file>. Fig-
ure 1 shows some example paths in a bucket called
voice-builder-public-data. Currently, Voice Builder
supports 2 options for voice building engine; Festival or Mer-
lin. Once an engine is selected and the rest of the form filled out,
you can simply click the "create voice" button at the bottom of
the page. This will initiate a "job" that trains a voice model
based on the data and parameters in the form. Figure 1 shows a
screenshot of the "create voice" page in Voice Builder. Notice
the field called "Engine params" on the second row of the form.
This field allows users to adjust parameters to be passed to the
underlying voice building engine. Users may leave the value of
this field unchanged or experiment with other values for better
results. Please consult the manual of the respective engine for
complete explanation of the options.

The "jobs" page of Voice Builder lists all the jobs in the
system and indicates their statuses. Once training is completed,
you can click on the job ID to visit the page for that job. On this
page, you can click a button to deploy the trained voice model
for audio synthesis. After a few seconds, once the model is fully
deployed, you can enter arbitrary text in the target language into
the text box at the bottom of this page and click a button to
synthesize the voice.

4The use of computing resources on the demo is
free. If any users want to run their own instance
of Voice Builder, please follow the instructions at
https://github.com/google/voice-builder.
The pricing of GCP resources can be found at
https://cloud.google.com/pricing.

5. Data quality
The audio data sets released as part of this paper are all multi-
speaker. We have used Google’s internal TTS system to build
voices from these data. In fact, these voices have been made
available through services such as Google Translate [16]. We
have also evaluated the quality of these voices by measuring the
Mean Opinion Score (MOS), which ranges from 1 (unnatural
speech) to 5 (natural speech) [17]. Table 3 shows the MOS
of these voices, which were built using Google’s proprietary
algorithm similar to that described in [5]. All voices listed here
are monolingual, multi-speaker voices.

Language Mean opinion score
Bangla (M) 3.403 ± 0.098
Javanese (F) 3.998 ± 0.103
Khmer (F) 3.512 ± 0.144
Nepali (F) 3.705 ± 0.139
Sinhala (F) 3.285 ± 0.161
Sundanese (F) 3.669 ± 0.097

Table 3: Mean opinion score for a voice of each language. The
genders of the tested voices are indicated in parentheses.

It is important to note that different voice building tools
may produce voices with different quality and characteristics,
even from the same training data set. Moreover, each voice
building engine contains a number of training parameters that
can be tweaked for different results. We encourage interested
researchers to experiment with our open source data to pro-
duce voices that fit their use cases. Our data here show that
the resources discussed in this paper are more than sufficient
for building intelligible and good quality voices for these lan-
guages. In our other work, we have explored combining the
Javanese and Sundanese data sets together with an Indonesian
corpus to create an even higher quality voice for Javanese and
Sundanese [18].

6. Conclusions
In this paper, we aim to address some challenges in the area
of TTS research for low-resourced languages. We presented
data sets of recorded audio in 6 low-resourced languages and
linguistic resources necessary to build TTS voices in these lan-
guages. Moreover, we describe a relatively simple method for
utilizing the presented data to create a TTS voice through a web
application called Voice Builder. By using Voice Builder, a lot
of technical complexities are abstracted away from the voice
building process, allowing TTS research and experimentation
to be more accessible to a wider set of audience. We hope that
this work will invite more interests in natural language process-
ing research on low-resourced languages.

7. Acknowledgements
We would like to thank all the volunteers that have contributed
their time and donated their voices to the collection.

8. References
[1] R. Weerasinghe, A. Wasala, V. Welgama, and K. Gamage,

“Festival-si: A sinhala text-to-speech system,” in Text, Speech
and Dialogue, 10th International Conference, TSD 2007, Pilsen,
Czech Republic, September 3-7, 2007, Proceedings, 2007, pp.
472–479.

69



[2] F. Alam, S. M. Habib, and M. Khan, “Bangla text to speech us-
ing festival,” in Conference on Human Language Technology for
Development (HLTD 2011), Alexandria, Egypt, 2011, pp. 02–05.

[3] A. W. Black and P. A. Taylor, “The Festival Speech Syn-
thesis System: System documentation,” Human Commun-
ciation Research Centre, University of Edinburgh, Scot-
land, UK, Tech. Rep. HCRC/TR-83, 1997, avaliable at
http://www.cstr.ed.ac.uk/projects/festival.html.

[4] A. J. Hunt and A. W. Black, “Unit selection in a concatenative
speech synthesis system using a large speech database,” in
Proceedings of the Acoustics, Speech, and Signal Processing,
1996. On Conference Proceedings., 1996 IEEE International
Conference - Volume 01, ser. ICASSP ’96. Washington, DC,
USA: IEEE Computer Society, 1996, pp. 373–376. [Online].
Available: http://dx.doi.org/10.1109/ICASSP.1996.541110

[5] A. Gutkin, L. Ha, M. Jansche, O. Kjartansson, K. Pipatsrisawat,
and R. Sproat, “Building statistical parametric multi-speaker syn-
thesis for bangladeshi bangla,” in SLTU-2016 5th Workshop on
Spoken Language Technologies for Under-resourced languages,
09-12 May 2016, Yogyakarta, Indonesia; Procedia Computer Sci-
ence, 2016, pp. 194–200.

[6] S. C. Pammi, M. C. Oliva, and M. Schrder, “Multilingual voice
creation toolkit for the mary tts platform,” in Proceedings of the
Seventh International Conference on Language Resources and
Evaluation (LREC’10). ELRA, 5 2010.

[7] “Creative commons attribution 4.0 international license,”
https://creativecommons.org/licenses/by/4.0.

[8] A. Brown, “International phonetic alphabet,” The Encyclopedia of
Applied Linguistics, 2013.

[9] “Google internationalization language resources,”
https://github.com/googlei18n/language-resources.

[10] Z. Wu, O. Watts, and S. King, Merlin: An Open Source Neural
Network Speech Synthesis System. ISCA, September 2016, pp.
218–223.

[11] P. A. Taylor, A. Black, and R. Caley, “The architecture of the
festival speech synthesis system,” in The Third ESCA Workshop in
Speech Synthesis, Jenolan Caves, Australia, 1998, pp. 147–151.

[12] P. D. Silva, T. Wattanavekin, T. Hao, and K. Pipatsrisawat, “Voice
builder: A tool for building text-to-speech voices,” in Proceedings
of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), may 2018.

[13] T. Schultz, A. W. Black, S. Badaskar, M. Hornyak, and
J. Kominek, “SPICE: Web-based tools for rapid language adap-
tation,” in INTERSPEECH, 2007.

[14] A. Conkie, T. Okken, Y.-J. Kim, and G. Di Fabbrizio, “Building
text-to-speech voices in the cloud.” in LREC, 2012.

[15] “Google cloud storage,” https://cloud.google.com/storage/.

[16] “Google translate,” https://translate.google.com.

[17] I. Rec, “P. 800.1, mean opinion score (mos) terminology,” Inter-
national Telecommunication Union, Geneva, 2006.

[18] J. A. E. Wibawa, S. Sarin, C. F. Li, K. Pipatsrisawat, K. Sodimana,
O. Kjartansson, A. Gutkin, M. Jansche, and L. Ha, “Building
open javanese and sundanese corpora for multilingual text-to-
speech,” in Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018), 7-12 May
2018, Miyazaki, Japan, 2018, pp. 1610–1614. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2018/pdf/8888.pdf

70


