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Abstract

It has been shown that learning audiovisual features can lead to improved speech recognition
performance over audio-only features, especially for noisy speech. However, in many common
applications, the visual features are partially or entirely missing, e.g. the speaker might move
off screen. Multi-modal models need to be robust: missing video frames should not degrade
the performance of an audiovisual model to be worse than that of a single-modality audio-
only model. While there have been many attempts at building robust models, there is little
consensus on how robustness should be evaluated. To address this, we introduce a framework
that allows claims about robustness to be evaluated in a precise and testable way. We
also conduct a systematic empirical study of the robustness of common audiovisual speech
recognition architectures on a range of acoustic noise conditions and test suites. Finally,
we show that an architecture-agnostic solution based on cascades can consistently achieve
robustness to missing video, even in settings where existing techniques for robustness like
dropout fall short.

1 Introduction

Learning from multiple modalities using large-scale datasets has increasingly been shown to produce stronger
representations over those learned from a single modality. Such approaches have led to state-of-the-art
performance on numerous tasks in computer vision, natural language processing, and speech recognition
(Radford et al., 2021; Ramesh et al., 2021; Yuan et al., 2021; Shi et al., 2022). As multi-modal learning
becomes more popular, it is paramount that it should be developed and deployed in a trustworthy manner.
This means that multi-modal systems have to be architected in ways that not just leverage features from
additional modalities when they are present, but are also robust to missing features from these modalities
when they are absent.

In this paper, we study the problem of building audiovisual automatic speech recognition (ASR) models that
are robust to missing video. This problem is decidedly asymmetric: only robustness to missing video, and not
audio, is desired. This is because state-of-the-art lip-reading models still are not performant enough for many
practical ASR applications, which makes only the audio, and not video, indispensable (Serdyuk et al., 2021).
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Table 1: Examples of prior work in AV ASR. The second column is a model trained and tested on AV, the
third column trained on AV and tested on AO, and the fourth column trained on AO and tested on AO. A
robust model should show ascending numbers from left to right. ‘−’ means that this information was not
provided by the prior work.

Prior Work Metric(MAV , TestAV ) Metric(MAV , TestAO) Metric(MAO, TestAO) Robust

Chung et al. (2017) 13.9 WER 17.7 WER − −
Zhou et al. (2019) 9.07 CER − 10.33 CER −
Shi et al. (2022) − 1.3 WER 1.5 WER −
Makino et al. (2019) 20.5 WER 24.0 WER 21.5 WER 7

Zhang et al. (2019) 26.2 PER 71.8 PER 35.8 PER 7

Our Work 26.12 WER 31.08 WER 33.54 WER 3

Audiovisual (AV) models have consistently achieved ASR performance superior to audio-only (AO) ones
(Afouras et al., 2018; Petridis et al., 2018; Ma et al., 2021b), with especially dramatic gains for noisy or
overlapping speech (Chung et al., 2017; Abdelaziz et al., 2017; Rose et al., 2021). But it is common for the
video of the speaker to be partially or entirely missing in typical ASR applications like providing closed
captions for online meetings. For example, the speaker might move off screen, the camera can be turned off,
the speaker will occasionally be occluded by other on-screen objects or changes in lighting conditions, etc.

If missing modalities can degrade the performance of a multi-modal model to be worse than that of a single-
modality model, then the whole raison d’être for multi-modal learning in the first place becomes questionable.
This motivates our goal to build a robust audiovisual model that accords with the following intuition:
Intuition 1. A model is robust to missing video if additional video information at either training or test
time can only help, and not hurt, its performance.

The missing modality problem has received significant attention in the multi-modal learning community.
Specifically, in the domain of audiovisual learning, recent years have seen determined efforts to build robust
models for tasks including but not limited to: speech recognition (Makino et al., 2019; Zhang et al., 2019;
Zhou et al., 2019), expression recognition (Parthasarathy & Sundaram, 2020), event localization (Xuan et al.,
2020), voice activity detection (Tao, 2018; Hou et al., 2021), video classification (Nagrani et al., 2021), and
speech enhancement (Gogate et al., 2021). Other studies of robustness in multi-modal learning include
Morgado et al. (2021) and Han et al. (2022).

Despite the intense interest in the missing modality problem in the audiovisual and ASR literature, there
has surprisingly been no consensus on how Intuition 1 ought to be translated into concrete, testable claims.
For example, Chung et al. (2017); Parthasarathy & Sundaram (2020); Xuan et al. (2020) show that when
trained on AV data, their models do better when tested on AV compared to AO data. Afouras et al. (2018);
Zhou et al. (2019); Xu et al. (2020); Ma et al. (2021b) show instead that their proposed methods yield
better performance when trained and tested on AV data compared to when trained and tested on AO data.
And Ngiam et al. (2011); Shi et al. (2022) show that training on AV instead of AO data yields better test
performance on AO. All these different tests capture disjoint aspects of model robustness that are neither
equivalent to nor a superset of one another. By testing only one of these aspects, existing work fails to
ascertain if their models are truly robust. In fact, on the rare occasion that multiple aspects of robustness
are tested, they are found to be robust with respect to one test, but not another (cf. rows 4 and 5 of Table 1).
Moreover, it is unclear that even the combination of the above-mentioned tests suffices to ensure that a model
is robust enough to be deployed in a real-world production environment.

1.1 Our Contributions

In response to this uncertainty, we make the following three salient contributions.

a) Robustness Framework Existing robustness criteria in the literature are inadequate because they
try to reduce robustness to a single numerical comparison. In practice however, there are distinct aspects of
robustness that individual ad-hoc comparisons fail to capture. To address this, we propose a mathematical
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Figure 1: a) An audiovisual model trained with the RNN-T loss. b) A cascaded audiovisual model. The
dashed lines indicate different routes the input can take: the AO path, which goes through the audio model,
and the AV path, which goes through the audiovisual model.

framework based on order theory that defines what it means for a model to be robust to missing video under
a wide variety of settings including missing video at training, testing, or even partially missing video. Our
framework is motivated by the key observation that settings with varying amounts of video information can
be put in a partial order. A robust model is one that respects this order: as the amount of video information
increases, the performance of a robust model should increase as well. Even though there may be an exponential
number of test conditions (since each video frame can either be present or absent), we provide useful
simplifications that allow for practical simulations of distinct scenarios of missing video. This is critical because
for the same quantity of missing video frames, the manner in which the frames are dropped can significantly
affect the degradation caused by the missing video. For example, in the case of AV ASR, dropping every second
video frame causes only a slight degradation compared to dropping half the video frames in a contiguous
segment. By showing how claims about robustness can be made precise and explicitly testable, our framework is
a contribution not just to the AV ASR literature, but to the audiovisual and multi-modal learning ones as well.

b) Empirical Results for Existing Robustness Techniques on Different Architectures We con-
duct a comprehensive empirical study of the robustness of common audiovisual speech recognition architec-
tures in the literature. Existing work recognizes that the solution to achieving robustness to missing video at
test time is to expose the model to a similar condition at training time (to close the distribution gap between
training and test), and advocates for a dropout-based approach (Chung et al., 2017; Makino et al., 2019;
Zhang et al., 2019). Randomly dropping the video or an individual video frame at training time can be under-
stood as an implicit ensemble method that allows a single model to sample from 2 or 2number of frames possible
missing video settings, and learn from all of them. However, the previous works of Makino et al. (2019) and
Zhang et al. (2019) showed that training with dropout caused a big degradation on an AO test set for LSTMs
and feedforward sequential memory networks respectively (cf. rows 4 and 5 of Table 1). We replicate Makino
et al. (2019)’s findings for LSTMs on a noisy 0db AO test set: training an 8 layer LSTM on AO resulted in
46.38 WER, but on the same test set, training the same model on AV actually resulted in 51.53 WER, which
is an 11% increase over training on AO. Using video dropout only partially rectifies the problem, yielding
48.13 WER, which is still a 3.8% increase over training on AO. These results violate Intuition 1, since the addi-
tion of video information at training time, whether dropout is used or not, actually resulted in worse test per-
formance on AO. Surprisingly, we found that unlike prior architectures in the literature, conformers can attain
robustness with the use of dropout. This is a fortuitous and notable empirical finding, because state-of-the-
art architectures in both AO and AV ASR are based on conformers (Gulati et al., 2020; Ma et al., 2021a;b).

c) Cascaded Audiovisual Models In general, a principled and architecture-agnostic approach to
robustness is needed. It may not always be practical to use conformers due to their exorbitant memory
requirements. Besides the choice of architecture, the success of dropout in producing a robust model also
seems to hinge on ad-hoc empirical factors like noise conditions or the quality of features in the training and
test datasets.
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Fortunately, the asymmetry of our problem (only robustness to missing video, and not missing audio, is
desired) presents a unique opportunity. When the video is absent, a simple way to guarantee the robustness
of an AV model is to have it produce the same predictions as an AO model. But when the video is present,
the model can improve its predictions by fusing the acoustic representations with the visual ones. This central
insight motivates our proposal of a cascaded audiovisual model: stack an AV model on top of an AO model,
and route inputs via the AO path or the AV path (cf. Figure 1b). There is a wealth of literature that points
to the architecture-agnostic nature of cascades: LSTMs and Conformers for ASR in Narayanan et al. (2021),
LSTMs and Transformers for ASR in Shi et al. (2020), and ViT, EfficientNet, ResNet, MobileNetV2, and X3D
for computer vision in Wang et al. (2020). We confirm that this finding also applies to the robustness problem
by conducting comprehensive experiments spanning the vast majority of architectures used in AV ASR: using
LSTMs and Conformers (with Transformers omitted because they are roughly convolution-free conformers)
for the encoder, as well as both concatenation-based and attention-based audiovisual fusion methods. The
proposed cascaded model was found to be robust under a wide variety of architectural combinations (for
example when the base encoder and cascaded encoder were of different architectures) on a range of test sets
and noise conditions, even when existing techniques like dropout fail to achieve robustness. While cascades
are not new, the proposal to use them as a solution for robustness is novel and significant given that prior to
our work, variants of dropout have been the only proposed technique for robustness, even when it had already
been noted in Makino et al. (2019) for example that dropout did not achieve robustness in some settings.

Besides being conceptually simple and architecture-independent, cascaded models also enjoy numerous
other advantages: they can be trained in one pass, are applicable to streamable ASR models, and provide
interpretable representations for the different modalities. The simplicity of cascades belies the complexity of
the representation learning they do. We observed that jointly training both the AO and AV parts of the
cascaded model yielded superior performance on both AO and AV test sets compared to first training the
AO part, freezing its weights, and then training the cascaded AV part (even though the latter takes twice as
much training time). Interestingly, we also saw that robustness was consistently achieved by cascading the
entire video, but not cascading a partial collection of individual video frames, even though the test suites
mostly contained partially, not entirely, missing video. Given the relative scarcity of high quality AV training
data compared to AO, cascading an AV model over a frozen AO model is an embarrassingly simple recipe
for turning an arbitrary pre-trained AO model into a robust AV model, thus opening up the wide gamut of
existing AO ASR literature to the promise of audiovisual learning.

1.2 Organization for the Rest of the Paper

The remainder of the paper is organized as follows: Section 2 provides an overview of audiovisual speech
recognition. Section 3 introduces dropout and cascades. Section 4 reviews prior claims to robustness in the
literature, and defines a new mathematical framework for reasoning about robustness. Section 5 presents
our experimental setup, and Section 6 presents the results of those experiments. Section 7 acknowledges the
limitations of our work. Finally, Section 8 concludes the paper.

2 Audiovisual Speech Recognition Methodology

Audiovisual speech recognition is the task of transcribing an audiovisual clip of speech, also known as an
utterance, into text. Formally, we define an audiovisual speech recognition modelM : A,V→ Y as a function
that consumes an audio input of waveforms or spectrograms and a video input of mouth or face tracks, and
produces a natural language transcript of what was said. The audio input a ∈ A is a sequence of na acoustic
frames of dimension dA that is represented by a real-valued tensor in Rna,dA . The video input v ∈ V is a
sequence of nv visual frames of dimension dV that is represented by a real-valued tensor in Rnv,dV . The
text output ŷ ∈ Y is a sequence of ny one-hot vectors of dimension dY (vocabulary size) that is represented
by a real-valued tensor in Rny,dY . Our formulation is general, because all existing AO ASR models can be
considered as special cases of AV ASR models that do not use the video input.

For a given data point (a, v), we can assume na = nv, because synchronizing the audio and video features
is a necessary pre-processing step for AV ASR (Chung et al., 2017; Afouras et al., 2018; Makino et al.,
2019). The two modalities a and v are typically combined on a frame level to form input sequence x,
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i.e. ∀i ∈ [1, na] : xi = Fuse(ai, vi), with concatenation (CAT) being the most common method of fusion in the
literature and cross-modal attention (CM) being the alternative (Wei et al., 2020).

2.1 Training: RNN-T

The RNN-T loss has become a popular approach for training deep ASR models, because it is streamable
unlike sequence-to-sequence losses, and allows the model to produce output tokens conditionally dependent
on the history of previous tokens unlike CTC or the cross-entropy loss. It can be written as follows.

LRNN-T =
∑

ŷ∈ARNN-T(x,y)

T +U∏
i=1

P (ŷi|x1 . . . xti , y0 . . . yui−1), (1)

where the alignments ARNN-T(x, y) refer to the set of all possible sequences of T blanks and U labels.

An audiovisual speech model is generally factored into two separate components: a language model (also
called the decoder) and an audiovisual model (also called the encoder). The RNN-T loss is then computed
from these two components using a joiner (cf. Figure 1a). Given input sequence x, the probability of the
transcript y can be calculated as follows.

P (y|x) = Joiner(LM(y),Encoder(a, v)),
Encoder(a, v) = AVM(Fuse(a, v)).

(2)

We refer the interested reader to Graves (2012); He et al. (2019) for more information on the RNN-T loss.

For our study on robustness, we assume that we have a parallel corpus of AV data, i.e. both the audio and
video are present in every training data point. If the modelM is given full access to the training data, we
refer to the trained model asMAV . IfM is given access to only the audio portion of the data, we refer to
the trained model asMAO, and call its test performance the AO Baseline of the model.

2.2 Testing: Word Error Rate

The most common metric for evaluating ASR performance is the word error rate. For a given labeled data
point (a, v, y) and model output ŷ =M(a, v), the word error rate of ŷ is the ratio of substitutions, deletions,
and insertions in ŷ to the number of words in y: WER(ŷ, y) := S+D+I

W . The word error rate of a modelM
over a given test distribution Test is WER(M,Test) := E(a,v,y)∼Test[WER(M(a, v), y)].

3 Techniques for Robustness

The encoder in Equation (2) can be modified to expose the model to missing video during training time, so
as to prepare it to handle missing video at test time.

3.1 Existing Work: Dropout

Makino et al. (2019) proposed to randomly drop the entire video utterance (Dropout Utt), while Zhang et al.
(2019) proposed to randomly drop each video frame (Dropout Frame). Dropout can be implemented by
sampling Bernoulli random variables and replacing v in Equation (2) with v′ at training time. For Dropout
Utt, a Bernoulli is sampled per utterance, while for Dropout Frame, a Bernoulli is sampled per frame.

Utt: v′i := zvi, z ∼ Bernoulli(p). (3)
Frame: v′i := zivi, zi ∼ Bernoulli(p). (4)

There are also proposals to apply dropout simultaneously on both the audio and video features at the
utterance level (AV Dropout Utt) (Chung et al., 2017; Shi et al., 2022).

(a′i, v′i) := 1z=0(ai, vi) + 1z=1(ai, 0) + 1z=2(0, vi), z ∼ Multinomial(p,q,r). (5)
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While dropout can make a model robust, we observed in the literature and on our own experiments that
it can be sensitive to the choice of architecture or the specific test sets used. This is because training on a
mixture of AV and AO inputs does not guarantee that the architecture is able to automatically disentangle
the AV and AO representations.

3.2 Proposed Method: Cascades

Instead of putting this burden on the model’s architecture, we introduce an architecture-agnostic method
that can benefit from the video information when it is there, and gracefully degrade to the audio-only case
when it is not. The basic idea is to split the model explicitly into an acoustic model (AM) and an audiovisual
model (AVM), and cascade the AVM on top of the AM (c.f. Figure 1b). For each frame of the input, the
model routes it to the AV path if the video frame is present, and to the AO path if not.

Cascade(a, v)i =
{
AM(ai) if vi = 0,
AVM(Fuse(AM(ai), vi)) otherwise.

(6)

Suppose that the cascaded model is trained in two passes (Two-Pass). On the first pass, no video information
is made available, i.e. all inputs are routed to the AO path. On the second pass, the entire model except for the
AVM is frozen, and all the video information is made available, i.e. inputs are routed to the AV path. Because
the parts of the model that activate when it sees AO data are frozen, the cascaded model is guaranteed to
never perform worse than its AO baseline regardless of its specific architecture. In fact, as we will show in our
experiments, two passes are not needed, and we can train a robust model in one pass by stochastically routing
the inputs between the AO and AV paths. Like dropout, the stochastic selection of routes is done by randomly
dropping either the video (Cascade Utt) or the video frames (Cascade Frame). Unlike dropout, cascades use
the AVM if and only if the video is present, thus explicitly disentangling the AV from the AO representations.

4 Robustness Framework

We propose the use of order theory (Davey & Priestley, 2002) as a suitable mathematical language for
evaluating robustness in a rigorous way. By abstracting away absolute numbers, order theory allows claims
about robustness to be formalized as statements about the relative ranking of a given model’s performance
under different conditions.

4.1 Technical Preliminaries

To begin, we state the definition of a poset, and show how we can make comparisons between pairs of real
vectors, vector-valued random variables, and test distributions.
Definition 4.1. A poset is a set P equipped with a binary relation ≤ that is i) reflexive: ∀p ∈ P, p ≤ p,
ii) anti-symmetric: ∀p1, p2 ∈ P, p1 ≤ p2 and p2 ≤ p1 =⇒ p1 = p2, and iii) transitive: ∀p1, p2, p3 ∈ P, p1 ≤
p2 and p2 ≤ p3 =⇒ p1 ≤ p3.
Definition 4.2. For real vectors a and b, a ≤ b if all the elements in a are less than or equals to all the
elements in b, i.e. ∀i ∈ [1, n], ai ≤ bi.
Definition 4.3. For vector-valued random variables A and B, A ≤ B if E[A] ≤ E[B].

To model missing video frames, we can encode them using a (randomly distributed) binary mask p. The
comparison between two test distributions can then be reduced to comparing the missing video probabilities
for each frame.
Definition 4.4. For a test distribution Test = (A, V, Y ), and a pair of real vectors (or vector-valued random
variables) p1, p2, (A, p1 · V, Y ) ≤ (A, p2 · V, Y ) if p1 ≤ p2.
Proposition 4.5. A poset of test distributions can be constructed from an underlying poset P as follows:
C(P) := {(A, p · V, Y )}p∈P .
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4.2 Prior Work

After a careful survey of the AV (ASR) literature, we found that there are at least three distinct claims made
about AV models, as exemplified by the first three rows of Table 1. We explain why they are not sufficient
claims to robustness.

For a test distribution (A, V, Y ), let TestAV := (A, V, Y ) denote testing in the presence of the entire video,
and TestAO := (A, 0, Y ) denote testing in its absence. The first claim is that Metric(MAV ,TestAV ) ≤
Metric(MAV ,TestAO), e.g. Chung et al. (2017); Parthasarathy & Sundaram (2020); Xuan et al. (2020).
Notice that this can be true if only for the trivial reason that testingMAV on out-of-distribution data TestAO

leads to worse generalization. The second claim is that Metric(MAV ,TestAV ) ≤ Metric(MAO,TestAO),
e.g. Afouras et al. (2018); Zhou et al. (2019); Xu et al. (2020); Ma et al. (2021b). This is not a sufficient claim
to robustness, because it can be true even if the model suffers a catastrophic degradation in performance
when trained on AV but tested on AO, as is the case for example in rows 4 and 5 of Table 1. The third claim
is that Metric(MAV ,TestAO) ≤ Metric(MAO,TestAO), e.g. Ngiam et al. (2011); Shi et al. (2022). This claim
does not articulate the possibility of improved performance if the video modality was present at test time.

One way to formalize robustness might be to combine the above three claims into Metric(MAV ,TestAV ) ≤
Metric(MAV ,TestAO) ≤ Metric(MAO,TestAO). But this is also not an adequate definition that captures
real-world settings where the visual modality is only partly missing, i.e. some video frames are dropped, but
not all of them. In what follows, we present a comprehensive framework for evaluating robustness, and show
that the combination of the three claims is a special case of robustness to Tutt.

4.3 Definition of Robustness

Intuition 1 requires that an audiovisual model not do worse than an audio-only model, given additional visual
information at training or test time. This motivates the following definition of robustness.

Definition 4.6. A modelM is robust to a poset of test distributions T if it has both
1) Train-Time Robustness: ∀T ∈ T ,WER(MAV , T ) ≤WER(MAO, T ), and
2) Test-Time Robustness: ∀Ti, Tj ∈ T , Ti ≤ Tj =⇒ WER(MAV , Ti) ≤WER(MAV , Tj).

Because each of the two properties is defined with respect to some set of testing conditions, it follows that
robustness is not a universal property of the model, but rather a statement about its performance on a given
test suite. This key feature of our definition allows it to be reified into concrete, empirically testable claims
on specific test sets.

An important detail of our definition is that there is an asymmetry: train-time robustness involves a coarse
comparison between justMAV andMAO, while test-time robustness allows for very fine-grained comparisons
depending on the size of the poset. This reflects both theoretical and practical requirements. At training
time, methods like dropout intentionally discard some video information for the purpose of simulating test
time conditions, but at test time, it is imperative that all the available video information is used. Thus, it
is not meaningful to distinguish between training methods that use different amounts of video information
(e.g. dropout with p = 0.5 instead of p = 0.25), but absolutely essential to distinguish between the performance
of a model tested with half of the video frames missing versus a quarter of the frames missing. Furthermore,
training a model is significantly more computationally demanding than running inference, so it is necessary
that the number of comparisons needed to evaluate train-time robustness be a lot smaller than what is needed
to evaluate test-time robustness.

Our definition also implies the following corollary, which shows why the two properties are not merely
necessary, but also jointly sufficient by spanning the entire space of training and test conditions.

Corollary 4.7. Let M be a model robust to T . Then, ∀Ti, Tj ∈ T , Ti ≤ Tj =⇒ WER(MAV , Ti) ≤
WER(MAO, Tj).
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4.4 Test Suites of Missing Video

We show how our proposed definition can be used to ascertain model robustness under distinct settings of
missing video. Let n be the number of video frames in a speech utterance. The naive approach is to test all
combinations of the presence or absence of every video frame.
Test Suite 4.8. Tframe := C({0, 1}n).

But this is expensive to run, due to the exponential number of test distributions. Luckily, we can dramatically
reduce the number of tests by focusing on pragmatic scenarios common to AV ASR like randomly dropped
video, video dropped in a contiguous way, and video dropped at a constant rate. We use a running example
of transcribing an online meeting to motivate and illustrate the following test suites.

The most common cause of missing video in online meetings is when the user turns off their camera.
Test Suite 4.9. Tutt := C({0n, 1n}).

We can generalize Tutt to TBerUtt to capture the scenario where the user turns their camera on with probability r.
Test Suite 4.10. Let BerUtt(r) be a vector-valued random variable parameterized by a scalar r ∈ [0, 1].

P (BerUtt(r) = 1n) = r,

P (BerUtt(r) = 0n) = 1− r.
(7)

TberUtt(r) := C({BerUtt(r)}r∈R). In our experiments, R = {0, 1
4 ,

1
2 ,

3
4 , 1}.

Another cause of missing video in online meetings is an unreliable internet connection. The more unreliable
it is, the more likely that internet packets for individual video frames will be dropped. We can simulate this
condition using i.i.d. Bernoulli random variables for each frame.
Test Suite 4.11. Let BerFrame(s) be a vector-valued random variable parameterized by a scalar s ∈ [0, 1].

∀i ∈ [1, n], P (BerFrame(s)i = 1) = s,

P (BerFrame(s)i = 0) = 1− s.
(8)

TberFrame(S) := C({BerFrame(s)}s∈S). In our experiments, S = {0, 1
4 ,

1
2 ,

3
4 , 1}.

Video frames can also be dropped in a contiguous segment from the start, in the middle, or at the end,
depending on when the user decides to move off screen and when they re-enter. We can simulate different
amounts of missing video in each case with a deterministic binary mask.
Test Suite 4.12. Let αa:b denote a binary vector where the ith element is 0 iff i ∈ [a · n + 1, b · n].
Tcon(A,B) := C({αa:b}(a,b)∈(A,B)). In our experiments, Tstart := Tcon({(0, 0), (0, 1

4 ), (0, 1
2 ), (0, 3

4 ), (0, 1)}),
Tmid := Tcon({( 1

2 ,
1
2 ), ( 3

8 ,
5
8 ), ( 1

4 ,
3
4 ), ( 1

8 ,
7
8 ), (0, 1)}), Tend := Tcon({(0, 1), ( 1

4 , 1), ( 1
2 , 1), ( 3

4 , 1), (1, 1)}).

If the hardware has competing demands for its compute, it might decode the video at a smaller frame rate,
which leads to video frames being dropped at a constant rate.
Test Suite 4.13. Let βk denote a binary vector where the ith element is 0 iff i is a multiple of 1

k . Trate(K) :=
C({βk}k∈K). In our experiments, K = {0, 1

128 ,
1

32 ,
1
8 ,

1
2 , 1}.

Finally, we can unify all these test suites.
Test Suite 4.14. Tall := TberUtt ∪ TberFrame ∪ Tstart ∪ Tmid ∪ Tend ∪ Trate.

This list of test suites (visualized in Figure 2) is not exhaustive, but serves as a proof of concept for how
extensible our framework is — by changing the poset of test distributions, we change the kind of robustness
that we are testing. Our proposed test suites are not only qualitatively different, they also cover both easy and
hard cases for ASR. For example, dropping every second frame makes for an easy test suite, while dropping a
contiguous segment of half the frames makes for a challenging one. This is intuitive because for a given word,
having partial visual context for it makes the ASR task significantly easier than having no visual context.
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Figure 2: Dropping 50% of the frames under different test suites.

5 Experimental Setup

Audiovisual Features The acoustic features are computed as log-scaled mel spectrograms sampled
at 16kHz using a Hann window of size 25ms and step 10ms, with every three consecutive spectrograms
stacked into one audio frame with dimension 240. At training time, we apply multi-style training for data
augmentation (Cui et al., 2015). The visual features are computed by extracting mouth tracks from the video,
re-sampling them at the frequency of the acoustic features (to ensure that both modalities have the same
sequence length), cropping them to 32x32, and encoding them using a VGG into video frames of dimension
256. Because the visual features are extracted using an independent face tracker like in Afouras et al. (2018);
Makino et al. (2019), the AV ASR model knows whether the video frame is missing or not. The VGG is not
pre-trained or frozen, and its parameters are learned during the training process. Our models use a sequence
length of up to n = 512, which corresponds to approximately 15 seconds of audiovisual speech.

Training Data We closely adhere to the process outlined by Makino et al. (2019) to create a large-scale
dataset containing 100, 000 hours of AV data from public YouTube videos. This is done by mining segments
of videos where the force-aligned user uploaded transcript matches a production quality ASR system with
high confidence. Then, SyncNet (Chung & Zisserman, 2016) is applied as a filtering step to ensure that the
video track also matches the audio track with high confidence. Unlike Makino et al. (2019), we synchronize
the frame rate of the video to match the audio, instead of vice versa, to ensure that we do not affect the AO
baseline. As explained in Section 2.1, we train our models under two settings: MAO andMAV .

Test Data As discussed in Section 4.3, robustness should be treated not as a universal property of a model,
but as an empirical claim about its performance on a particular test set. We benchmark our models on a
separate test set of YouTube videos that contains 550 hours of professionally transcribed audiovisual clips
(27, 353 utterances and 342, 507 words), under varying amounts of artificially added babble noise (clean, 20db,
10db, 0db) from the NoiseX corpus (Varga & Steeneken, 1993). As explained in Section 4.4, we evaluate
our models on six test suites: TberUtt, TberFrame, Tstart, Tmid, Tend, Trate. Both the training and test data were
collected by following the Google AI principles (goo).

Statistical Methodology Our study of robustness focuses on the relative ranking between the WER
results of a given model under different test conditions, rather than the absolute WER numbers. That said, in
practice, comparisons between any two results have to take into account statistical variance and uncertainty.
To this end, we closely follow the prior AV ASR methodology of Makino et al. (2019) in assembling a large-
scale audiovisual dataset for training and calculating confidence intervals for the test WER. If either of two
results falls within the other’s 95% confidence interval, we consider them equivalent, otherwise, we consider
one result better than the other.

Methods for Robustness We compare between the following methods: Audio Baseline, Vanilla, Vanilla
(25L), Cascade Utt, Dropout Utt, Cascade Frame, Dropout Frame, AV Dropout Utt, and Two-Pass. While
Section 3 contains a self-contained description for most of these methods, we re-iterate them here for the
reader’s convenience.

Audio Baseline: The model is trained on audio-only inputs.
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Vanilla: The model is trained on audio-visual inputs.

Vanilla (25L): Same as the Vanilla model, but with 25 layers.

Cascade Utt: The model randomly drops the entire video. Audio-only inputs are routed to the audio encoder,
while audio-visual inputs are routed to the audio-visual encoder.

Dropout Utt: The model randomly drops the entire video. Inputs with missing video are consumed by the
model directly.

Cascade Frame: The model randomly drops each video frame. Audio-only inputs are routed to the audio
encoder, while audio-visual inputs are routed to the audio-visual encoder.

Dropout Frame: The model randomly drops each video frame. Inputs with missing video are consumed by
the model directly.

AV Dropout Utt: The model randomly drops the entire video. The model also randomly drops the entire
audio. Inputs with missing audio or video are consumed by the model directly.

Two-Pass: Same architecture as the Cascade Utt and Cascade Frame models, but the model is trained in
two passes. On the first pass, audio-only inputs are consumed, and all model weights are trainable. On the
second pass, audio-visual inputs are consumed, but only the audio-visual encoder is trainable.

Architectural Configurations All models use a two-layer bidirectional LSTM with hidden dimension
2048 for the decoder, and a one-layer MLP with hidden dimension 640 for the joiner. The decoder uses an
English character-based vocabulary, with an embedding dimension of 128 and a beam width of size 8. The
architectural differences between the different models reside in the encoder.

Conformer CAT: The encoder is a conformer that uses concatenation to fuse the audiovisual features. For
cascaded models, both the base and the cascaded encoder are conformers.

Conformer CM: The encoder is a conformer that uses cross-modal attention, specifically the one used in
Afouras et al. (2018), to fuse the audiovisual features. For cascaded models, both the base and the cascaded
encoder are conformers.

Con-LSTM CAT: This is only used in the context of the cascaded model, with a conformer as the base
encoder and an LSTM as the cascaded encoder. Concatenation is used to fuse the audiovisual features.

LSTM CAT: The encoder is an LSTM that uses concatenation to fuse the audiovisual features. For cascaded
models, both the base and the cascaded encoder are LSTMs.

LSTM-CON CAT: This is only used in the context of the cascaded model, with an LSTM as the base encoder
and a conformer as the cascaded encoder. Concatenation is used to fuse the audiovisual features.

The conformer encoders are configured with 17 layers, full context attention, model dimension 512, 8 attention
heads, convolutional kernel size 32, no dropout (this refers to regular neural network dropout instead of video
dropout), and group normalization with 32 groups in the place of layer normalization. The Cascade Utt,
Cascade Frame, and Two-Pass models use 17 conformer layers for the base AM and 8 conformer layers for
the cascaded AVM. The Vanilla (25L) model uses 25 conformer layers instead of 17.

The LSTM encoders are configured with 8 bidirectional layers, model dimension 512 (for each direction), and
weight normalization. The Cascade Utt model uses 8 LSTM layers for the base AM and 4 LSTM layers for
the cascaded AVM.

Optimization All our models are trained in exactly the same way: Adam with β1 = 0.9, β2 = 0.97, batch
size 4096, and learning rate 0.001 for a total of 500k steps with linear warmup in the first 10k steps and an
exponential decay to the smaller learning rate of 0.0001 from steps 300k to 400k. Two-Pass uses the same
optimization setup for both training passes.
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6 Results

To begin, we walk the reader through examples in Table 2 to show how we establish the robustness of a
model. Cascade Utt is robust because the WER increases monotonically as more frames are dropped (Test-
Time Robustness), while always staying below its AO baseline of 33.54 (Train-Time Robustness). On the
other hand, the vanilla model is not robust, because when tested on the setting where all the frames are
dropped, its WER of 35.51 exceeds its AO baseline, thus violating Train-Time Robustness. Dropout Frame is
not robust, because it obtains lower WERs of 27.11 and 26.51, compared to 27.58, by dropping more frames
at test time, which violates Test-Time Robustness.

Vanilla AV ASR Models are Not Robust The vanilla conformer and LSTM models were found to
not be robust under most settings tested (cf. Table 3). Figure 3 shows the WER of a vanilla model increasing
as the number of missing video frames at test time increases, eventually doing worse than its AO baseline.
This underscores why the study of robustness is necessary: we would like our AV models to always do at
least as well as the AO models regardless of video availability at test time.

Type of Missing Video Affects Performance For the same quantity of missing video, the manner in
which the frames are dropped can significantly affect how quickly the performance of a model degrades. In
Figure 3, we observe a relationship between WER and amount of dropped frames that is linear for TberUtt,
Tstart, Tmid, Tend and convex for TberF rame, Trate. In other words, the model is fairly tolerant of frames being
randomly dropped or dropped at a constant rate, but not when dropped in a contiguous segment. This
accords with the intuition from our discussion in Section 4.4.

Tuning Sampling Hyper-Parameters For the utterance methods, we ran a hyper-parameter search
over p ∈ {0.25, 0.5, 0.75}. In every setting tested, we found that p = 0.25 was optimal for Cascade Utt, and
p = 0.5 was optimal for Dropout Utt, i.e. it was never the case that setting an alternative p led to robustness
if this did not. This finding supports the motivation for the asymmetry in our definition of robustness in
Section 4.3: it is not pertinent that p = 0.25, p = 0.5 were trained on less video information than p = 0.75,
but noteworthy that they were better able to withstand the loss of video information at test time. For the
frame methods, we searched p ∈ {0.1, 0.2}, and found p = 0.1 to be optimal for both Cascade Frame and
Dropout Frame. For AV Dropout Utt, we found p = 1

2 , q = 1
4 , r = 1

4 , which is used by Shi et al. (2022), to be
optimal over p = 1

3 , q = 1
3 , r = 1

3 , which is used by Chung et al. (2017).

Cascade Utt is Consistently Robust Like Makino et al. (2019), we saw that Dropout Utt can degrade
the performance of an LSTM CAT to be worse than its AO baseline. This degradation is especially pronounced
for Conformer CM (cf. Figure 4). Across all the architectural configurations, four noise conditions, and six
test suites, Cascade Utt was the only technique found to be consistently robust (cf. Table 3). This finding
held even when the base and cascaded encoder are of different architectures, like Con-LSTM CAT and LSTM-
Con Cat, which points to the architecture-agnostic nature of cascaded models.

Dropout Utt Performs Well on Conformer CAT The main caveat to Cascade Utt is that while
always robust, it does not always produce the lowest absolute WER. In Figure 4, we see that when tested on
full AV in the 0db setting, Cascade Utt actually performs worse than Dropout Utt and the vanilla model
for the concatenation models. This finding emphasizes that the evaluation of robustness, which consists
of relative comparisons for a fixed model, is independent from the evaluation of absolute WER. It is thus
fortuitous that Dropout Utt is both robust and has lower WER than the vanilla conformer CAT, which is a
state-of-the-art architecture for AV ASR (Ma et al., 2021a;b).

Frame Methods Underperform Utterance Methods In general, the frame methods are not as
robust as the utterance methods. This can perhaps be expected because training augmentations often do
not generalize to unseen test corruptions (Mintun et al., 2021). For example, in Table 2, Cascade Frame
underperforms its AO baseline. This might be because even if the probability of dropping each of 512 frames
is high (90%), the model is nevertheless rarely exposed to an empty video at training time (0.9512 = 10−24).

Cascade Utt Achieves its Model Capacity Cascade Utt was found to have the same or strictly lower
WER than Two-Pass for all test suites on all quantities of missing video tested. This means that independent
of the capacity of the cascaded model to achieve robustness, it is also important to consider how we optimize
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it. Not only is it not necessary to achieve robustness by training in two passes, doing it in only one pass
(i.e. using half the resources) can actually result in better absolute WER performance.

We train the cascaded model with just AO and AV data respectively to measure the capacity of the AM
and AVM sub-models. In Figure 5, we note that Cascade Utt is able to achieve the capacity of both sub-
models, and segue between them as frames are dropped during test time. For conformer CAT, a 17 layer
AM cascaded with an 8 layer AVM performs equivalently on full AV data at test time to a vanilla 25 layer
AVM at all noise conditions except 0db. This implies that unlike adversarial robustness, which is gained at a
necessary cost to model size or performance on clean data (Bubeck & Sellke, 2021), robustness to missing
video can be achieved via cascades without using any extra resources or trading off test performance on AV.

Table 2: Robustness to Trate for 0db. Columns three to seven represent the amount of dropped video frames.
The WER results in bold cause the model to be considered non-robust.

Architecture Method 0 1
32

1
8

1
2 1 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 24.95± 0.35 25.08± 0.35 25.90± 0.35 35.51± 0.43 7
Conformer CAT Cascade Utt 26.12± 0.36 26.25± 0.36 26.72± 0.37 28.73± 0.39 31.08± 0.40 3
Conformer CAT Dropout Utt 24.33± 0.34 24.36± 0.34 24.49± 0.34 26.66± 0.36 31.67± 0.40 3
Conformer CAT Cascade Frame 28.04± 0.38 28.08± 0.38 28.23± 0.39 30.14± 0.42 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 27.11± 0.36 26.51± 0.36 27.56± 0.38 32.54± 0.41 7
Conformer CAT AV Dropout Utt 23.64± 0.33 23.63± 0.33 23.80± 0.33 25.36± 0.35 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 30.11± 0.42 30.47± 0.43 31.91± 0.43 33.54± 0.43 3
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Figure 3: The X-marked lines show the WER of a vanilla 17 layer concatenation-based conformer model
trained on AV, and tested on 10db with different test suites. The dashed line denote the performance of the
same model trained on AO, i.e. its AO baseline. The vanilla AV model performs worse as more video frames
are dropped at test time, eventually doing worse than its AO baseline.
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Figure 4: The X-marked, square-marked, diamond-marked, and dashed lines respectively show the WERs for
the vanilla model, Dropout Utt, Cascade Utt, and the AO baseline tested on 0db using TberUtt across three
architectures.
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Table 3: Robustness to Tall across different experimental settings. Cascade Utt is the only method found to
be consistently robust across all settings tested.

Architecture, Method clean 20db 10db 0db

Conformer CAT, Vanilla 7 7 7 7
Conformer CAT, Cascade Utt 3 3 3 3
Conformer CAT, Dropout Utt 3 3 3 3
Conformer CAT, Cascade Frame 3 3 3 7
Conformer CAT, Dropout Frame 3 3 3 7
Conformer CAT, AV Dropout Utt 3 7 3 3
Conformer CAT, Two-Pass 3 3 3 3
Con-LSTM CAT, Cascade Utt 3 3 3 3
LSTM CAT, Vanilla 3 3 7 7
LSTM CAT, Cascade Utt 3 3 3 3
LSTM CAT, Dropout Utt 3 3 3 7
LSTM-Con CAT, Cascade Utt 3 3 3 3
Conformer CM, Vanilla 7 7 7 7
Conformer CM, Cascade Utt 3 3 3 3
Conformer CM, Dropout Utt 7 7 7 7
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Figure 5: The X-marked and diamond-marked lines respectively show the WER of a vanilla 25 layer conformer
AVM and a 25 layer cascaded conformer model (17 AM + 8 AVM layers) tested on 10db. Both models use
concatenation for audiovisual fusion. The top and bottom dashed lines respectively denote the performance
of the cascaded model when all its inputs are forcefully routed to the AO and the AV paths during both
training and testing.

7 Limitations of Our Work

There are several limitations of our work that should be improved and addressed in future work. First,
the proposed robustness framework only makes comparisons between the relative performance of a model
under different test settings. This ignores the absolute WER performance of a given model, which is another
important, although orthogonal, evaluation metric. Second, the framework makes binary evaluations: a
model is either robust or not robust. A more general framework might be able to allow for more fine-grained
evaluations that makes it easier to quantify and compare the robustness of a set of given models. A possible
solution is to count the number of test suites under which a given model is robust. Third, the current work
only studies robustness to missing video and not other common video corruptions like jitter and blur. Fourth,
the cascade methods require knowledge that the video frame is missing in order to route the inputs, while
the dropout methods do not. Because the mouth tracks are extracted with an independent face tracker (as
explained in Section 5), this information is made known to the AV ASR model. A possible solution is to
integrate the face tracker into an end-to-end system so that the model has to now also make decisions about
whether the video frame is missing or not. Please see Appendix D for an extended discussion of this issue.

8 Conclusion

In this paper, we developed the first principled framework for evaluating robustness to missing video for
audiovisual speech recognition. By providing a rigorous definition for robustness, our work fills a longstanding
gap in the literature by making it easy for claims about robustness to be specified in an empirically testable
way. Our extensive empirical experiments also show that cascaded models are a reliable method to achieve
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robustness under a wide variety of architectural configurations and test suites, including in settings where
existing techniques like dropout fall short. We hope that our work will spur the development of more robust
models and techniques in the AV ASR and multi-modal learning communities.
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Appendix
A Overview

The appendix is organized as follows: Appendix B is a broader impact statement. Appendix C states the
source of the numbers in Table 1. Appendix D provides an in-depth discussion regarding the assumption
in our work that the AV ASR model possesses knowledge that the video frames are missing. Appendix E
documents our results in the main paper in a more comprehensive manner. In particular, we plot the graphs
of our main experiments shown in part in Figures 3 to 5 in their expanded form, and provided further
analysis. We also document the absolute WER numbers and their confidence intervals across our extensive
experimental settings, in a similar format to that of Table 2 in the main paper. Appendix F shows the results
of additional experiments on the TED LRS3 dataset. In the Supplementary materials, we have attached an
example script written in tensorflow code to show how our robustness test suites can be generated.

B Broader Impact Statement

By the nature of the dataset collection process, the performance of the model with under-represented groups is
not being measured and that optimizing for the specific benchmark metrics proposed here may have unknown
effects (either positive or negative) on the performance of models within such groups.

C About Table 1

The first row comes from Table 5 in Chung et al. (2017). The second row comes from Table 2 in Zhou et al.
(2019). The third row comes from Table 4 in Shi et al. (2022). The fourth row comes from Tables 2 and 3 in
Makino et al. (2019). The fifth row comes from Tables 1 and 2 in Zhang et al. (2019).

D Knowledge of Missing Video Frames

In our paper, we assume that the AV ASR model knows whether a given video frame is missing. This begs
the question: since we know that there is missing video, why not just trivially swap to an audio-only model
in that case? A naive ensemble containing an audio-only model and an audio-visual model would be robust
to missing video by construction. However, there are several issues with this approach. First, the naive
ensemble would be significantly more computationally demanding than having a cascaded model in terms of
compute, memory, and disk. Second, the naive ensemble would not perform as well in the situation when
there is partial video information available, since the audio model operates independently of the video model.
It is not feasible to build an ensemble of 2n models where n is the number of frames to account for every
missing video scenario. Third, a naive ensemble that does not share decoder state between the audio and
audio-visual model would not be compatible with the streaming scenario. The proposed cascaded model can
be used in the streaming scenario, because it shares decoder state via the stochastic routing of inputs.
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E Extended Results
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Figure 6: Conformer CAT shown across four acoustic noise conditions and six different test suites. The X-
marked, square-marked, diamond-marked, and dashed lines respectively show the WER for the vanilla model,
Dropout Utt, Cascade Utt, and the AO baseline. The shaded area around each line denotes the model’s 95%
confidence interval.

Advantage of Vanilla Conformer CAT AV Models Varies Across Acoustic Noise Conditions
In Figure 6, we see that when all the frames are dropped, the vanilla model consistently underperforms its
AO baseline. However, the point at which this happens varies depending on how noisy the audio is. For
example, for TberUtt, we observe the overwhelming advantage of using the visual modality in the 0db and
10db setting, such that even with half the video frames available, the vanilla AV model would outperform its
AO baseline. By contrast, in the clean or 20db setting, the visual modality brings such a small advantage,
if any, that even with all the video frames available, the AV and AO models perform similarly within the
bounds of the confidence interval.

As in the results from the main paper, we can see that Cascade Utt is consistently robust, but Dropout Utt
is to be preferred for the Conformer CAT model since it has better WER performance.
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Figure 7: LSTM CAT shown across four acoustic noise conditions and six different test suites. The X-
marked, square-marked, diamond-marked, and dashed lines respectively show the WER for the vanilla model,
Dropout Utt, Cascade Utt, and the AO baseline. The shaded area around each line denotes the model’s 95%
confidence interval.

LSTM CAT AV Models Have a Bigger Advantage over their AO Baseline In Figure 7, we see
that unlike the Conformer CAT models, the vanilla LSTM AV models outperform their AO baseline at
all noise conditions. This suggests that the advantage from the visual modality is larger when the base
architecture is weaker. In other words, if the architecture is not as capable at learning good representations
from the acoustics alone, it is more likely that the visual modality will bring bigger improvements.

We see that for the LSTM CAT architecture, Cascade Utt is still consistently robust, but now also outperforms
Dropout Utt in terms of WER performance.
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Figure 8: Conformer CM shown across four acoustic noise conditions and six different test suites. The
X-marked, square-marked, diamond-marked, and dashed lines respectively show the WER for the vanilla
model, Dropout Utt, Cascade Utt, and the AO baseline. The shaded area around each line denotes the
model’s 95% confidence interval. For Tstart, Tmid, Tend, TberF rame, Trate, Dropout Utt does not have its WER
monotonically increase as more frames are dropped, indicating that it lacks Test-Time Robustness.

Dropout Utt is Catastrophic on Conformer CM In Figure 8, we notice that Dropout Utt performs
catastrophically in response to missing video. Perhaps, this is because the attention mechanism used does
not play nicely with the anomalous behavior introduced by blank video frames. The WER degradation also
does not scale monotonically with the number of dropped video frames, since we see that when the model
actually does better with all the frames dropped compared to 50% or 75% of the frames dropped.

For the Conformer CM architecture, Cascade Utt remains consistently robust across the different test suites
and acoustic noise conditions tested.
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In the pages that follow, we present comprehensive tables of WER numbers across the various different
experimental settings so that the reader can follow up on the details if interested.

Table 4: Robustness to TberUtt for clean. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 -
Conformer CAT Vanilla 17.37± 0.26 17.44± 0.26 17.51± 0.26 17.63± 0.26 17.72± 0.26 7
Conformer CAT Vanilla (25L) 17.33± 0.26 17.38± 0.26 17.42± 0.26 17.45± 0.26 17.51± 0.26 -
Conformer CAT Cascade Utt 17.34± 0.26 17.32± 0.26 17.38± 0.26 17.37± 0.26 17.37± 0.26 3
Conformer CAT Dropout Utt 17.19± 0.26 17.24± 0.26 17.29± 0.26 17.3± 0.26 17.36± 0.26 3
Conformer CAT Cascade Frame 17.18± 0.26 17.19± 0.26 17.22± 0.26 17.22± 0.26 17.25± 0.26 3
Conformer CAT Dropout Frame 17.43± 0.27 17.45± 0.27 17.44± 0.27 17.47± 0.27 17.48± 0.27 3
Conformer CAT AV Dropout Utt 17.35± 0.26 17.41± 0.26 17.42± 0.26 17.5± 0.26 17.5± 0.26 3
Conformer CAT Two-Pass 17.28± 0.26 17.27± 0.26 17.29± 0.26 17.28± 0.26 17.27± 0.26 3
Con-LSTM CAT Cascade Utt 17.25± 0.26 17.28± 0.26 17.28± 0.26 17.26± 0.26 17.3± 0.26 3
LSTM CAT Audio Baseline 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 -
LSTM CAT Vanilla 18.73± 0.27 19.2± 0.28 19.54± 0.28 19.98± 0.29 20.42± 0.29 3
LSTM CAT Cascade Utt 19.19± 0.27 19.55± 0.28 19.87± 0.28 20.22± 0.28 20.6± 0.29 3
LSTM CAT Dropout Utt 19.55± 0.28 19.81± 0.28 20.07± 0.28 20.32± 0.29 20.61± 0.29 3
LSTM-Con CAT Cascade Utt 18.22± 0.27 18.84± 0.27 19.48± 0.28 20.08± 0.28 20.64± 0.29 3
Conformer CM Audio Baseline 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 -
Conformer CM Vanilla 19.15± 0.28 38.44± 0.74 59.35± 0.86 78.51± 0.74 98.33± 0.05 7
Conformer CM Cascade Utt 17.45± 0.26 17.44± 0.26 17.41± 0.26 17.42± 0.26 17.37± 0.26 3
Conformer CM Dropout Utt 19.25± 0.28 19.47± 0.28 19.67± 0.29 19.94± 0.29 20.14± 0.29 7

Table 5: Robustness to TberFrame for clean. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 -
Conformer CAT Vanilla 17.37± 0.26 17.39± 0.26 17.41± 0.26 17.55± 0.26 17.72± 0.26 7
Conformer CAT Vanilla (25L) 17.33± 0.26 17.29± 0.26 17.34± 0.26 17.41± 0.26 17.51± 0.26 -
Conformer CAT Cascade Utt 17.34± 0.26 17.29± 0.26 17.3± 0.26 17.35± 0.26 17.37± 0.26 3
Conformer CAT Dropout Utt 17.19± 0.26 17.19± 0.26 17.21± 0.26 17.31± 0.26 17.36± 0.26 3
Conformer CAT Cascade Frame 17.18± 0.26 17.15± 0.26 17.21± 0.26 17.22± 0.26 17.25± 0.26 3
Conformer CAT Dropout Frame 17.43± 0.27 17.39± 0.26 17.39± 0.27 17.43± 0.27 17.48± 0.27 3
Conformer CAT AV Dropout Utt 17.35± 0.26 17.37± 0.26 17.42± 0.26 17.49± 0.26 17.5± 0.26 3
Conformer CAT Two-Pass 17.28± 0.26 17.22± 0.26 17.25± 0.26 17.26± 0.26 17.27± 0.26 3
Con-LSTM CAT Cascade Utt 17.25± 0.26 17.26± 0.26 17.29± 0.26 17.29± 0.26 17.3± 0.26 3
LSTM CAT Audio Baseline 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 -
LSTM CAT Vanilla 18.73± 0.27 18.91± 0.27 19.28± 0.28 19.84± 0.28 20.42± 0.29 3
LSTM CAT Cascade Utt 19.19± 0.27 19.62± 0.28 20.05± 0.28 20.34± 0.29 20.6± 0.29 3
LSTM CAT Dropout Utt 19.55± 0.28 19.84± 0.28 20.2± 0.29 20.46± 0.29 20.61± 0.29 3
LSTM-Con CAT Cascade Utt 18.22± 0.27 18.58± 0.27 19.22± 0.27 19.9± 0.28 20.64± 0.29 3
Conformer CM Audio Baseline 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 -
Conformer CM Vanilla 19.15± 0.28 19.77± 0.28 20.65± 0.3 23.56± 0.33 98.33± 0.05 7
Conformer CM Cascade Utt 17.45± 0.26 17.44± 0.26 17.4± 0.26 17.39± 0.26 17.37± 0.26 3
Conformer CM Dropout Utt 19.25± 0.28 23.2± 0.33 28.66± 0.39 47.17± 0.52 20.14± 0.29 7

22



Published in Transactions on Machine Learning Research (08/2022)

Table 6: Robustness to Tstart for clean. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 -
Conformer CAT Vanilla 17.37± 0.26 17.41± 0.26 17.51± 0.26 17.65± 0.26 17.72± 0.26 7
Conformer CAT Vanilla (25L) 17.33± 0.26 17.32± 0.26 17.44± 0.26 17.43± 0.26 17.51± 0.26 -
Conformer CAT Cascade Utt 17.34± 0.26 17.35± 0.26 17.39± 0.26 17.4± 0.26 17.37± 0.26 3
Conformer CAT Dropout Utt 17.19± 0.26 17.26± 0.26 17.26± 0.26 17.28± 0.26 17.36± 0.26 3
Conformer CAT Cascade Frame 17.18± 0.26 17.16± 0.26 17.2± 0.26 17.33± 0.26 17.25± 0.26 3
Conformer CAT Dropout Frame 17.43± 0.27 17.41± 0.27 17.43± 0.26 17.46± 0.27 17.48± 0.27 3
Conformer CAT AV Dropout Utt 17.35± 0.26 17.43± 0.26 17.46± 0.26 17.48± 0.26 17.5± 0.26 3
Conformer CAT Two-Pass 17.28± 0.26 17.32± 0.26 17.31± 0.26 17.3± 0.26 17.27± 0.26 3
Con-LSTM CAT Cascade Utt 17.25± 0.26 17.25± 0.26 17.25± 0.26 17.27± 0.26 17.3± 0.26 3
LSTM CAT Audio Baseline 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 -
LSTM CAT Vanilla 18.73± 0.27 19.08± 0.28 19.58± 0.28 19.96± 0.29 20.42± 0.29 3
LSTM CAT Cascade Utt 19.19± 0.27 19.65± 0.28 20.0± 0.28 20.37± 0.28 20.6± 0.29 3
LSTM CAT Dropout Utt 19.55± 0.28 19.85± 0.28 20.15± 0.28 20.41± 0.29 20.61± 0.29 3
LSTM-Con CAT Cascade Utt 18.22± 0.27 18.93± 0.27 19.58± 0.28 20.22± 0.29 20.64± 0.29 3
Conformer CM Audio Baseline 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 -
Conformer CM Vanilla 19.15± 0.28 19.64± 0.28 20.5± 0.29 24.1± 0.34 98.33± 0.05 7
Conformer CM Cascade Utt 17.45± 0.26 17.47± 0.26 17.45± 0.26 17.4± 0.26 17.37± 0.26 3
Conformer CM Dropout Utt 19.25± 0.28 22.7± 0.32 30.19± 0.41 48.8± 0.55 20.14± 0.29 7

Table 7: Robustness to Tmid for clean. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 -
Conformer CAT Vanilla 17.37± 0.26 17.43± 0.26 17.52± 0.26 17.61± 0.26 17.72± 0.26 7
Conformer CAT Vanilla (25L) 17.33± 0.26 17.35± 0.26 17.45± 0.26 17.48± 0.26 17.51± 0.26 -
Conformer CAT Cascade Utt 17.34± 0.26 17.37± 0.26 17.39± 0.26 17.37± 0.26 17.37± 0.26 3
Conformer CAT Dropout Utt 17.19± 0.26 17.22± 0.26 17.28± 0.26 17.32± 0.26 17.36± 0.26 3
Conformer CAT Cascade Frame 17.18± 0.26 17.2± 0.26 17.24± 0.26 17.33± 0.26 17.25± 0.26 3
Conformer CAT Dropout Frame 17.43± 0.27 17.43± 0.27 17.45± 0.27 17.48± 0.27 17.48± 0.27 3
Conformer CAT AV Dropout Utt 17.35± 0.26 17.42± 0.26 17.52± 0.26 17.51± 0.26 17.5± 0.26 3
Conformer CAT Two-Pass 17.28± 0.26 17.24± 0.26 17.28± 0.26 17.27± 0.26 17.27± 0.26 3
Con-LSTM CAT Cascade Utt 17.25± 0.26 17.25± 0.26 17.27± 0.26 17.31± 0.26 17.3± 0.26 3
LSTM CAT Audio Baseline 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 -
LSTM CAT Vanilla 18.73± 0.27 19.13± 0.28 19.57± 0.28 19.96± 0.28 20.42± 0.29 3
LSTM CAT Cascade Utt 19.19± 0.27 19.6± 0.28 20.0± 0.28 20.34± 0.28 20.6± 0.29 3
LSTM CAT Dropout Utt 19.55± 0.28 19.87± 0.28 20.17± 0.28 20.45± 0.29 20.61± 0.29 3
LSTM-Con CAT Cascade Utt 18.22± 0.27 18.76± 0.27 19.45± 0.28 20.11± 0.28 20.64± 0.29 3
Conformer CM Audio Baseline 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 -
Conformer CM Vanilla 19.15± 0.28 19.7± 0.29 20.65± 0.3 24.9± 0.35 98.33± 0.05 7
Conformer CM Cascade Utt 17.45± 0.26 17.42± 0.26 17.4± 0.26 17.38± 0.26 17.37± 0.26 3
Conformer CM Dropout Utt 19.25± 0.28 23.45± 0.33 32.0± 0.41 50.91± 0.53 20.14± 0.29 7

Table 8: Robustness to Tend for clean. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 17.27± 0.26 -
Conformer CAT Vanilla 17.37± 0.26 17.46± 0.26 17.56± 0.26 17.63± 0.26 17.72± 0.26 7
Conformer CAT Vanilla (25L) 17.33± 0.26 17.34± 0.26 17.36± 0.26 17.46± 0.26 17.51± 0.26 -
Conformer CAT Cascade Utt 17.34± 0.26 17.38± 0.26 17.35± 0.26 17.36± 0.26 17.37± 0.26 3
Conformer CAT Dropout Utt 17.19± 0.26 17.25± 0.26 17.32± 0.26 17.33± 0.26 17.36± 0.26 3
Conformer CAT Cascade Frame 17.18± 0.26 17.24± 0.26 17.29± 0.26 17.35± 0.26 17.25± 0.26 3
Conformer CAT Dropout Frame 17.43± 0.27 17.4± 0.27 17.45± 0.27 17.49± 0.27 17.48± 0.27 3
Conformer CAT AV Dropout Utt 17.35± 0.26 17.42± 0.26 17.46± 0.26 17.53± 0.26 17.5± 0.26 3
Conformer CAT Two-Pass 17.28± 0.26 17.24± 0.26 17.25± 0.26 17.25± 0.26 17.27± 0.26 3
Con-LSTM CAT Cascade Utt 17.25± 0.26 17.29± 0.26 17.29± 0.26 17.31± 0.26 17.3± 0.26 3
LSTM CAT Audio Baseline 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 20.56± 0.29 -
LSTM CAT Vanilla 18.73± 0.27 19.16± 0.28 19.59± 0.28 19.94± 0.28 20.42± 0.29 3
LSTM CAT Cascade Utt 19.19± 0.27 19.54± 0.28 19.88± 0.28 20.31± 0.28 20.6± 0.29 3
LSTM CAT Dropout Utt 19.55± 0.28 19.82± 0.28 20.14± 0.28 20.42± 0.29 20.61± 0.29 3
LSTM-Con CAT Cascade Utt 18.22± 0.27 18.66± 0.27 19.3± 0.27 19.96± 0.28 20.64± 0.29 3
Conformer CM Audio Baseline 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 17.34± 0.26 -
Conformer CM Vanilla 19.15± 0.28 19.64± 0.28 20.38± 0.29 23.79± 0.34 98.33± 0.05 7
Conformer CM Cascade Utt 17.45± 0.26 17.44± 0.26 17.4± 0.26 17.36± 0.26 17.37± 0.26 3
Conformer CM Dropout Utt 19.25± 0.28 22.75± 0.32 29.96± 0.39 48.67± 0.51 20.14± 0.29 7
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Table 9: Robustness to Trate for clean. Columns three to eight represent the amount of dropped video frames.
Architecture Method 0 1

128
1

32
1
8

1
2 1 Robust

Conformer CAT Audio Baseline 17.27 ± 0.26 17.27 ± 0.26 17.27 ± 0.26 17.27 ± 0.26 17.27 ± 0.26 17.27 ± 0.26 -
Conformer CAT Vanilla 17.37 ± 0.26 17.37 ± 0.26 17.38 ± 0.26 17.35 ± 0.26 17.39 ± 0.26 17.72 ± 0.26 7
Conformer CAT Vanilla (25L) 17.33 ± 0.26 17.32 ± 0.26 17.3 ± 0.26 17.29 ± 0.26 17.35 ± 0.26 17.51 ± 0.26 -
Conformer CAT Cascade Utt 17.34 ± 0.26 17.34 ± 0.26 17.33 ± 0.26 17.33 ± 0.26 17.32 ± 0.26 17.37 ± 0.26 3
Conformer CAT Dropout Utt 17.19 ± 0.26 17.19 ± 0.26 17.18 ± 0.26 17.15 ± 0.26 17.18 ± 0.26 17.36 ± 0.26 3
Conformer CAT Cascade Frame 17.18 ± 0.26 17.17 ± 0.26 17.2 ± 0.26 17.19 ± 0.26 17.23 ± 0.26 17.25 ± 0.26 3
Conformer CAT Dropout Frame 17.43 ± 0.27 17.43 ± 0.27 17.44 ± 0.27 17.37 ± 0.26 17.42 ± 0.26 17.48 ± 0.27 3
Conformer CAT AV Dropout Utt 17.35 ± 0.26 17.36 ± 0.26 17.34 ± 0.26 17.33 ± 0.26 17.43 ± 0.26 17.5 ± 0.26 3
Conformer CAT Two-Pass 17.28 ± 0.26 17.29 ± 0.26 17.27 ± 0.26 17.25 ± 0.26 17.23 ± 0.26 17.27 ± 0.26 3
Con-LSTM CAT Cascade Utt 17.25 ± 0.26 17.25 ± 0.26 17.26 ± 0.26 17.29 ± 0.26 17.31 ± 0.26 17.3 ± 0.26 3
LSTM CAT Audio Baseline 20.56 ± 0.29 20.56 ± 0.29 20.56 ± 0.29 20.56 ± 0.29 20.56 ± 0.29 20.56 ± 0.29 -
LSTM CAT Vanilla 18.73 ± 0.27 18.71 ± 0.27 18.74 ± 0.27 18.77 ± 0.27 19.19 ± 0.28 20.42 ± 0.29 3
LSTM CAT Cascade Utt 19.19 ± 0.27 19.2 ± 0.27 19.22 ± 0.27 19.4 ± 0.27 19.98 ± 0.28 20.6 ± 0.29 3
LSTM CAT Dropout Utt 19.55 ± 0.28 19.56 ± 0.28 19.6 ± 0.28 19.72 ± 0.28 20.12 ± 0.28 20.61 ± 0.29 3
LSTM-Con CAT Cascade Utt 18.22 ± 0.27 18.22 ± 0.27 18.24 ± 0.27 18.29 ± 0.27 19.03 ± 0.27 20.64 ± 0.29 3
Conformer CM Audio Baseline 17.34 ± 0.26 17.34 ± 0.26 17.34 ± 0.26 17.34 ± 0.26 17.34 ± 0.26 17.34 ± 0.26 -
Conformer CM Vanilla 19.15 ± 0.28 19.13 ± 0.28 19.2 ± 0.28 19.43 ± 0.28 20.72 ± 0.3 98.33 ± 0.05 7
Conformer CM Cascade Utt 17.45 ± 0.26 17.45 ± 0.26 17.45 ± 0.26 17.42 ± 0.26 17.42 ± 0.26 17.37 ± 0.26 3
Conformer CM Dropout Utt 19.25 ± 0.28 19.27 ± 0.28 19.55 ± 0.28 21.1 ± 0.3 27.0 ± 0.37 20.14 ± 0.29 7

Table 10: Robustness to TberUtt for 20db. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 -
Conformer CAT Vanilla 17.55± 0.26 17.64± 0.26 17.74± 0.26 17.83± 0.27 17.9± 0.27 7
Conformer CAT Vanilla (25L) 17.48± 0.26 17.54± 0.26 17.63± 0.26 17.72± 0.26 17.79± 0.26 -
Conformer CAT Cascade Utt 17.48± 0.26 17.49± 0.26 17.54± 0.26 17.57± 0.26 17.59± 0.26 3
Conformer CAT Dropout Utt 17.33± 0.26 17.4± 0.26 17.47± 0.26 17.51± 0.26 17.57± 0.26 3
Conformer CAT Cascade Frame 17.35± 0.26 17.4± 0.26 17.38± 0.26 17.45± 0.26 17.45± 0.26 3
Conformer CAT Dropout Frame 17.62± 0.27 17.63± 0.27 17.65± 0.27 17.67± 0.27 17.68± 0.27 3
Conformer CAT AV Dropout Utt 17.52± 0.26 17.57± 0.26 17.68± 0.26 17.71± 0.26 17.78± 0.26 7
Conformer CAT Two-Pass 17.5± 0.27 17.51± 0.26 17.51± 0.27 17.48± 0.26 17.47± 0.26 3
Con-LSTM CAT Cascade Utt 17.48± 0.26 17.51± 0.26 17.51± 0.26 17.53± 0.26 17.54± 0.26 3
LSTM CAT Audio Baseline 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 -
LSTM CAT Vanilla 18.99± 0.27 19.51± 0.28 20.04± 0.29 20.52± 0.29 21.01± 0.3 3
LSTM CAT Cascade Utt 19.47± 0.28 19.88± 0.28 20.24± 0.28 20.71± 0.29 21.09± 0.29 3
LSTM CAT Dropout Utt 19.85± 0.28 20.2± 0.29 20.54± 0.29 20.81± 0.29 21.14± 0.29 3
LSTM-Con CAT Cascade Utt 18.48± 0.27 19.13± 0.28 19.81± 0.28 20.48± 0.29 21.11± 0.29 3
Conformer CM Audio Baseline 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 -
Conformer CM Vanilla 19.48± 0.28 39.15± 0.77 58.97± 0.86 79.16± 0.73 98.3± 0.05 7
Conformer CM Cascade Utt 17.67± 0.26 17.64± 0.26 17.63± 0.26 17.63± 0.26 17.59± 0.26 3
Conformer CM Dropout Utt 19.43± 0.28 19.65± 0.28 19.9± 0.29 20.13± 0.29 20.39± 0.3 7

Table 11: Robustness to TberFrame for 20db. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 -
Conformer CAT Vanilla 17.55± 0.26 17.54± 0.26 17.63± 0.26 17.78± 0.26 17.9± 0.27 7
Conformer CAT Vanilla (25L) 17.48± 0.26 17.5± 0.26 17.56± 0.26 17.64± 0.26 17.79± 0.26 -
Conformer CAT Cascade Utt 17.48± 0.26 17.49± 0.26 17.53± 0.26 17.55± 0.26 17.59± 0.26 3
Conformer CAT Dropout Utt 17.33± 0.26 17.32± 0.26 17.39± 0.26 17.48± 0.26 17.57± 0.26 3
Conformer CAT Cascade Frame 17.35± 0.26 17.33± 0.26 17.36± 0.26 17.38± 0.26 17.45± 0.26 3
Conformer CAT Dropout Frame 17.62± 0.27 17.59± 0.27 17.62± 0.27 17.66± 0.27 17.68± 0.27 3
Conformer CAT AV Dropout Utt 17.52± 0.26 17.53± 0.26 17.58± 0.26 17.72± 0.26 17.78± 0.26 7
Conformer CAT Two-Pass 17.5± 0.27 17.47± 0.26 17.49± 0.26 17.5± 0.26 17.47± 0.26 3
Con-LSTM CAT Cascade Utt 17.48± 0.26 17.53± 0.26 17.54± 0.26 17.56± 0.26 17.54± 0.26 3
LSTM CAT Audio Baseline 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 -
LSTM CAT Vanilla 18.99± 0.27 19.21± 0.28 19.69± 0.28 20.34± 0.29 21.01± 0.3 3
LSTM CAT Cascade Utt 19.47± 0.28 19.92± 0.28 20.45± 0.29 20.77± 0.29 21.09± 0.29 3
LSTM CAT Dropout Utt 19.85± 0.28 20.22± 0.28 20.58± 0.29 20.9± 0.29 21.14± 0.29 3
LSTM-Con CAT Cascade Utt 18.48± 0.27 18.93± 0.27 19.52± 0.28 20.32± 0.29 21.11± 0.29 3
Conformer CM Audio Baseline 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 -
Conformer CM Vanilla 19.48± 0.28 20.27± 0.29 21.06± 0.3 24.36± 0.34 98.3± 0.05 7
Conformer CM Cascade Utt 17.67± 0.26 17.62± 0.26 17.62± 0.26 17.6± 0.26 17.59± 0.26 3
Conformer CM Dropout Utt 19.43± 0.28 23.65± 0.33 29.21± 0.39 48.13± 0.53 20.39± 0.3 7
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Table 12: Robustness to Tstart for 20db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 -
Conformer CAT Vanilla 17.55± 0.26 17.62± 0.26 17.76± 0.26 17.87± 0.26 17.9± 0.27 7
Conformer CAT Vanilla (25L) 17.48± 0.26 17.5± 0.26 17.64± 0.26 17.69± 0.26 17.79± 0.26 -
Conformer CAT Cascade Utt 17.48± 0.26 17.5± 0.26 17.57± 0.26 17.59± 0.26 17.59± 0.26 3
Conformer CAT Dropout Utt 17.33± 0.26 17.4± 0.26 17.45± 0.26 17.49± 0.26 17.57± 0.26 3
Conformer CAT Cascade Frame 17.35± 0.26 17.3± 0.26 17.37± 0.26 17.52± 0.26 17.45± 0.26 3
Conformer CAT Dropout Frame 17.62± 0.27 17.61± 0.27 17.62± 0.27 17.68± 0.27 17.68± 0.27 3
Conformer CAT AV Dropout Utt 17.52± 0.26 17.58± 0.26 17.67± 0.26 17.7± 0.26 17.78± 0.26 7
Conformer CAT Two-Pass 17.5± 0.27 17.5± 0.26 17.52± 0.26 17.52± 0.26 17.47± 0.26 3
Con-LSTM CAT Cascade Utt 17.48± 0.26 17.48± 0.26 17.51± 0.26 17.52± 0.26 17.54± 0.26 3
LSTM CAT Audio Baseline 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 -
LSTM CAT Vanilla 18.99± 0.27 19.43± 0.28 19.98± 0.29 20.44± 0.29 21.01± 0.3 3
LSTM CAT Cascade Utt 19.47± 0.28 20.0± 0.28 20.42± 0.29 20.85± 0.29 21.09± 0.29 3
LSTM CAT Dropout Utt 19.85± 0.28 20.22± 0.29 20.61± 0.29 20.9± 0.29 21.14± 0.29 3
LSTM-Con CAT Cascade Utt 18.48± 0.27 19.24± 0.28 19.93± 0.28 20.62± 0.29 21.11± 0.29 3
Conformer CM Audio Baseline 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 -
Conformer CM Vanilla 19.48± 0.28 20.1± 0.29 21.0± 0.3 24.85± 0.35 98.3± 0.05 7
Conformer CM Cascade Utt 17.67± 0.26 17.68± 0.26 17.64± 0.26 17.63± 0.26 17.59± 0.26 3
Conformer CM Dropout Utt 19.43± 0.28 23.07± 0.32 30.48± 0.41 49.47± 0.55 20.39± 0.3 7

Table 13: Robustness to Tmid for 20db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 -
Conformer CAT Vanilla 17.55± 0.26 17.63± 0.26 17.71± 0.26 17.84± 0.26 17.9± 0.27 7
Conformer CAT Vanilla (25L) 17.48± 0.26 17.53± 0.26 17.62± 0.26 17.71± 0.26 17.79± 0.26 -
Conformer CAT Cascade Utt 17.48± 0.26 17.52± 0.26 17.56± 0.26 17.54± 0.26 17.59± 0.26 3
Conformer CAT Dropout Utt 17.33± 0.26 17.39± 0.26 17.47± 0.26 17.53± 0.26 17.57± 0.26 3
Conformer CAT Cascade Frame 17.35± 0.26 17.36± 0.26 17.41± 0.26 17.53± 0.26 17.45± 0.26 3
Conformer CAT Dropout Frame 17.62± 0.27 17.62± 0.27 17.63± 0.27 17.69± 0.27 17.68± 0.27 3
Conformer CAT AV Dropout Utt 17.52± 0.26 17.59± 0.26 17.7± 0.26 17.76± 0.26 17.78± 0.26 7
Conformer CAT Two-Pass 17.5± 0.27 17.48± 0.26 17.51± 0.26 17.51± 0.26 17.47± 0.26 3
Con-LSTM CAT Cascade Utt 17.48± 0.26 17.49± 0.26 17.49± 0.26 17.52± 0.26 17.54± 0.26 3
LSTM CAT Audio Baseline 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 -
LSTM CAT Vanilla 18.99± 0.27 19.5± 0.28 20.01± 0.29 20.49± 0.29 21.01± 0.3 3
LSTM CAT Cascade Utt 19.47± 0.28 19.97± 0.28 20.4± 0.29 20.83± 0.29 21.09± 0.29 3
LSTM CAT Dropout Utt 19.85± 0.28 20.21± 0.28 20.61± 0.29 20.95± 0.29 21.14± 0.29 3
LSTM-Con CAT Cascade Utt 18.48± 0.27 19.11± 0.27 19.83± 0.28 20.53± 0.29 21.11± 0.29 3
Conformer CM Audio Baseline 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 -
Conformer CM Vanilla 19.48± 0.28 20.11± 0.29 21.22± 0.3 25.62± 0.36 98.3± 0.05 7
Conformer CM Cascade Utt 17.67± 0.26 17.62± 0.26 17.61± 0.26 17.59± 0.26 17.59± 0.26 3
Conformer CM Dropout Utt 19.43± 0.28 23.81± 0.33 32.54± 0.41 51.38± 0.53 20.39± 0.3 7

Table 14: Robustness to Tend for 20db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 17.47± 0.26 -
Conformer CAT Vanilla 17.55± 0.26 17.65± 0.26 17.75± 0.26 17.91± 0.26 17.9± 0.27 7
Conformer CAT Vanilla (25L) 17.48± 0.26 17.53± 0.26 17.65± 0.26 17.68± 0.26 17.79± 0.26 -
Conformer CAT Cascade Utt 17.48± 0.26 17.52± 0.26 17.51± 0.26 17.54± 0.26 17.59± 0.26 3
Conformer CAT Dropout Utt 17.33± 0.26 17.38± 0.26 17.45± 0.26 17.53± 0.26 17.57± 0.26 3
Conformer CAT Cascade Frame 17.35± 0.26 17.38± 0.26 17.47± 0.26 17.56± 0.26 17.45± 0.26 3
Conformer CAT Dropout Frame 17.62± 0.27 17.6± 0.27 17.68± 0.27 17.72± 0.27 17.68± 0.27 3
Conformer CAT AV Dropout Utt 17.52± 0.26 17.61± 0.26 17.69± 0.26 17.76± 0.26 17.78± 0.26 7
Conformer CAT Two-Pass 17.5± 0.27 17.45± 0.26 17.45± 0.26 17.51± 0.26 17.47± 0.26 3
Con-LSTM CAT Cascade Utt 17.48± 0.26 17.52± 0.26 17.53± 0.26 17.55± 0.26 17.54± 0.26 3
LSTM CAT Audio Baseline 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 21.04± 0.29 -
LSTM CAT Vanilla 18.99± 0.27 19.52± 0.28 20.05± 0.28 20.49± 0.29 21.01± 0.3 3
LSTM CAT Cascade Utt 19.47± 0.28 19.88± 0.28 20.27± 0.28 20.75± 0.29 21.09± 0.29 3
LSTM CAT Dropout Utt 19.85± 0.28 20.22± 0.28 20.55± 0.29 20.87± 0.29 21.14± 0.29 3
LSTM-Con CAT Cascade Utt 18.48± 0.27 19.02± 0.27 19.66± 0.28 20.44± 0.28 21.11± 0.29 3
Conformer CM Audio Baseline 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 17.6± 0.26 -
Conformer CM Vanilla 19.48± 0.28 20.05± 0.29 20.93± 0.3 24.49± 0.34 98.3± 0.05 7
Conformer CM Cascade Utt 17.67± 0.26 17.67± 0.26 17.62± 0.26 17.6± 0.26 17.59± 0.26 3
Conformer CM Dropout Utt 19.43± 0.28 23.1± 0.32 30.47± 0.39 49.24± 0.51 20.39± 0.3 7
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Table 15: Robustness to Trate for 20db. Columns three to eight represent the amount of dropped video frames.
Architecture Method 0 1

128
1

32
1
8

1
2 1 Robust

Conformer CAT Audio Baseline 17.47 ± 0.26 17.47 ± 0.26 17.47 ± 0.26 17.47 ± 0.26 17.47 ± 0.26 17.47 ± 0.26 -
Conformer CAT Vanilla 17.55 ± 0.26 17.55 ± 0.26 17.54 ± 0.26 17.53 ± 0.26 17.59 ± 0.26 17.9 ± 0.27 7
Conformer CAT Vanilla (25L) 17.48 ± 0.26 17.47 ± 0.26 17.49 ± 0.26 17.45 ± 0.26 17.53 ± 0.26 17.79 ± 0.26 -
Conformer CAT Cascade Utt 17.48 ± 0.26 17.48 ± 0.26 17.45 ± 0.26 17.5 ± 0.26 17.51 ± 0.26 17.59 ± 0.26 3
Conformer CAT Dropout Utt 17.33 ± 0.26 17.31 ± 0.26 17.33 ± 0.26 17.3 ± 0.26 17.36 ± 0.26 17.57 ± 0.26 3
Conformer CAT Cascade Frame 17.35 ± 0.26 17.35 ± 0.26 17.33 ± 0.26 17.36 ± 0.26 17.37 ± 0.26 17.45 ± 0.26 3
Conformer CAT Dropout Frame 17.62 ± 0.27 17.62 ± 0.27 17.6 ± 0.27 17.57 ± 0.27 17.62 ± 0.27 17.68 ± 0.27 3
Conformer CAT AV Dropout Utt 17.52 ± 0.26 17.5 ± 0.26 17.53 ± 0.26 17.51 ± 0.26 17.64 ± 0.26 17.78 ± 0.26 7
Conformer CAT Two-Pass 17.5 ± 0.27 17.49 ± 0.27 17.49 ± 0.27 17.45 ± 0.26 17.44 ± 0.26 17.47 ± 0.26 3
Con-LSTM CAT Cascade Utt 17.48 ± 0.26 17.48 ± 0.26 17.48 ± 0.26 17.5 ± 0.26 17.54 ± 0.26 17.54 ± 0.26 3
LSTM CAT Audio Baseline 21.04 ± 0.29 21.04 ± 0.29 21.04 ± 0.29 21.04 ± 0.29 21.04 ± 0.29 21.04 ± 0.29 -
LSTM CAT Vanilla 18.99 ± 0.27 18.99 ± 0.27 19.02 ± 0.28 19.09 ± 0.28 19.56 ± 0.28 21.01 ± 0.3 3
LSTM CAT Cascade Utt 19.47 ± 0.28 19.48 ± 0.28 19.53 ± 0.28 19.7 ± 0.28 20.4 ± 0.29 21.09 ± 0.29 3
LSTM CAT Dropout Utt 19.85 ± 0.28 19.86 ± 0.28 19.86 ± 0.28 20.0 ± 0.28 20.58 ± 0.29 21.14 ± 0.29 3
LSTM-Con CAT Cascade Utt 18.48 ± 0.27 18.46 ± 0.27 18.49 ± 0.27 18.61 ± 0.27 19.4 ± 0.27 21.11 ± 0.29 3
Conformer CM Audio Baseline 17.6 ± 0.26 17.6 ± 0.26 17.6 ± 0.26 17.6 ± 0.26 17.6 ± 0.26 17.6 ± 0.26 -
Conformer CM Vanilla 19.48 ± 0.28 19.48 ± 0.28 19.57 ± 0.28 19.85 ± 0.29 21.27 ± 0.3 98.3 ± 0.05 7
Conformer CM Cascade Utt 17.67 ± 0.26 17.67 ± 0.26 17.64 ± 0.26 17.59 ± 0.26 17.62 ± 0.26 17.59 ± 0.26 3
Conformer CM Dropout Utt 19.43 ± 0.28 19.46 ± 0.28 19.78 ± 0.29 21.34 ± 0.3 27.68 ± 0.37 20.39 ± 0.3 7

Table 16: Robustness to TberUtt for 10db. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 -
Conformer CAT Vanilla 18.46± 0.27 18.75± 0.28 19.07± 0.28 19.34± 0.28 19.7± 0.29 7
Conformer CAT Vanilla (25L) 18.45± 0.27 18.71± 0.28 19.01± 0.28 19.21± 0.28 19.51± 0.28 -
Conformer CAT Cascade Utt 18.47± 0.27 18.56± 0.27 18.66± 0.27 18.73± 0.27 18.84± 0.27 3
Conformer CAT Dropout Utt 18.23± 0.27 18.39± 0.27 18.56± 0.27 18.74± 0.27 18.91± 0.28 3
Conformer CAT Cascade Frame 18.41± 0.27 18.55± 0.27 18.67± 0.27 18.75± 0.27 18.91± 0.28 3
Conformer CAT Dropout Frame 18.74± 0.28 18.86± 0.28 18.99± 0.28 19.06± 0.28 19.19± 0.28 3
Conformer CAT AV Dropout Utt 18.29± 0.27 18.51± 0.27 18.8± 0.27 19.0± 0.28 19.25± 0.28 3
Conformer CAT Two-Pass 18.83± 0.28 18.9± 0.28 18.89± 0.28 19.0± 0.28 19.05± 0.28 3
Con-LSTM CAT Cascade Utt 18.54± 0.27 18.64± 0.28 18.74± 0.28 18.78± 0.28 18.86± 0.28 3
LSTM CAT Audio Baseline 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 -
LSTM CAT Vanilla 20.61± 0.29 21.61± 0.3 22.73± 0.32 23.7± 0.32 24.83± 0.33 7
LSTM CAT Cascade Utt 21.27± 0.29 21.93± 0.3 22.64± 0.31 23.35± 0.31 24.05± 0.32 3
LSTM CAT Dropout Utt 21.64± 0.3 22.28± 0.3 22.98± 0.31 23.73± 0.32 24.36± 0.32 3
LSTM-Con CAT Cascade Utt 19.86± 0.29 20.88± 0.3 21.98± 0.3 23.03± 0.31 24.08± 0.32 3
Conformer CM Audio Baseline 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 -
Conformer CM Vanilla 21.79± 0.31 41.3± 0.77 60.07± 0.85 79.49± 0.71 98.31± 0.05 7
Conformer CM Cascade Utt 18.71± 0.27 18.76± 0.27 18.83± 0.27 18.87± 0.27 18.9± 0.27 3
Conformer CM Dropout Utt 21.15± 0.3 21.65± 0.31 22.07± 0.32 22.47± 0.32 22.95± 0.33 7

Table 17: Robustness to TberFrame for 10db. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 -
Conformer CAT Vanilla 18.46± 0.27 18.51± 0.27 18.69± 0.27 19.0± 0.28 19.7± 0.29 7
Conformer CAT Vanilla (25L) 18.45± 0.27 18.51± 0.27 18.68± 0.28 19.01± 0.28 19.51± 0.28 -
Conformer CAT Cascade Utt 18.47± 0.27 18.51± 0.27 18.63± 0.27 18.8± 0.27 18.84± 0.27 3
Conformer CAT Dropout Utt 18.23± 0.27 18.19± 0.27 18.33± 0.27 18.6± 0.27 18.91± 0.28 3
Conformer CAT Cascade Frame 18.41± 0.27 18.39± 0.27 18.55± 0.27 18.66± 0.28 18.91± 0.28 3
Conformer CAT Dropout Frame 18.74± 0.28 18.65± 0.28 18.82± 0.28 19.11± 0.28 19.19± 0.28 3
Conformer CAT AV Dropout Utt 18.29± 0.27 18.37± 0.27 18.53± 0.27 18.88± 0.28 19.25± 0.28 3
Conformer CAT Two-Pass 18.83± 0.28 18.84± 0.28 18.92± 0.28 19.07± 0.28 19.05± 0.28 3
Con-LSTM CAT Cascade Utt 18.54± 0.27 18.66± 0.28 18.76± 0.28 18.83± 0.28 18.86± 0.28 3
LSTM CAT Audio Baseline 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 -
LSTM CAT Vanilla 20.61± 0.29 21.12± 0.3 22.03± 0.31 23.47± 0.32 24.83± 0.33 7
LSTM CAT Cascade Utt 21.27± 0.29 22.2± 0.3 22.97± 0.31 23.66± 0.32 24.05± 0.32 3
LSTM CAT Dropout Utt 21.64± 0.3 22.4± 0.31 23.19± 0.31 23.95± 0.32 24.36± 0.32 3
LSTM-Con CAT Cascade Utt 19.86± 0.29 20.66± 0.29 21.75± 0.3 23.0± 0.31 24.08± 0.32 3
Conformer CM Audio Baseline 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 -
Conformer CM Vanilla 21.79± 0.31 23.32± 0.33 25.0± 0.34 29.84± 0.39 98.31± 0.05 7
Conformer CM Cascade Utt 18.71± 0.27 18.77± 0.27 18.89± 0.28 18.93± 0.28 18.9± 0.27 3
Conformer CM Dropout Utt 21.15± 0.3 27.76± 0.37 35.48± 0.44 55.64± 0.53 22.95± 0.33 7
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Table 18: Robustness to Tstart for 10db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 -
Conformer CAT Vanilla 18.46± 0.27 18.67± 0.27 18.99± 0.28 19.31± 0.28 19.7± 0.29 7
Conformer CAT Vanilla (25L) 18.45± 0.27 18.63± 0.28 18.92± 0.28 19.21± 0.28 19.51± 0.28 -
Conformer CAT Cascade Utt 18.47± 0.27 18.6± 0.27 18.68± 0.27 18.8± 0.27 18.84± 0.27 3
Conformer CAT Dropout Utt 18.23± 0.27 18.39± 0.27 18.54± 0.27 18.7± 0.27 18.91± 0.28 3
Conformer CAT Cascade Frame 18.41± 0.27 18.45± 0.27 18.58± 0.27 18.82± 0.28 18.91± 0.28 3
Conformer CAT Dropout Frame 18.74± 0.28 18.82± 0.28 18.93± 0.28 19.16± 0.28 19.19± 0.28 3
Conformer CAT AV Dropout Utt 18.29± 0.27 18.49± 0.27 18.74± 0.27 19.03± 0.28 19.25± 0.28 3
Conformer CAT Two-Pass 18.83± 0.28 18.94± 0.28 19.01± 0.28 19.07± 0.28 19.05± 0.28 3
Con-LSTM CAT Cascade Utt 18.54± 0.27 18.63± 0.27 18.68± 0.28 18.77± 0.28 18.86± 0.28 3
LSTM CAT Audio Baseline 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 -
LSTM CAT Vanilla 20.61± 0.29 21.58± 0.3 22.68± 0.31 23.7± 0.32 24.83± 0.33 7
LSTM CAT Cascade Utt 21.27± 0.29 22.07± 0.3 22.84± 0.31 23.53± 0.32 24.05± 0.32 3
LSTM CAT Dropout Utt 21.64± 0.3 22.38± 0.31 23.1± 0.31 23.86± 0.32 24.36± 0.32 3
LSTM-Con CAT Cascade Utt 19.86± 0.29 21.04± 0.29 22.13± 0.3 23.25± 0.31 24.08± 0.32 3
Conformer CM Audio Baseline 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 -
Conformer CM Vanilla 21.79± 0.31 23.02± 0.32 24.87± 0.34 30.24± 0.4 98.31± 0.05 7
Conformer CM Cascade Utt 18.71± 0.27 18.78± 0.27 18.89± 0.28 18.91± 0.28 18.9± 0.27 3
Conformer CM Dropout Utt 21.15± 0.3 26.22± 0.36 35.04± 0.44 54.45± 0.54 22.95± 0.33 7

Table 19: Robustness to Tmid for 10db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 -
Conformer CAT Vanilla 18.46± 0.27 18.67± 0.27 18.98± 0.28 19.38± 0.28 19.7± 0.29 7
Conformer CAT Vanilla (25L) 18.45± 0.27 18.61± 0.27 18.93± 0.28 19.2± 0.28 19.51± 0.28 -
Conformer CAT Cascade Utt 18.47± 0.27 18.56± 0.27 18.69± 0.27 18.79± 0.27 18.84± 0.27 3
Conformer CAT Dropout Utt 18.23± 0.27 18.38± 0.27 18.57± 0.27 18.78± 0.28 18.91± 0.28 3
Conformer CAT Cascade Frame 18.41± 0.27 18.45± 0.27 18.58± 0.27 18.87± 0.28 18.91± 0.28 3
Conformer CAT Dropout Frame 18.74± 0.28 18.78± 0.28 18.97± 0.28 19.17± 0.28 19.19± 0.28 3
Conformer CAT AV Dropout Utt 18.29± 0.27 18.49± 0.27 18.81± 0.28 19.05± 0.28 19.25± 0.28 3
Conformer CAT Two-Pass 18.83± 0.28 18.88± 0.28 18.99± 0.28 19.07± 0.28 19.05± 0.28 3
Con-LSTM CAT Cascade Utt 18.54± 0.27 18.63± 0.28 18.71± 0.28 18.8± 0.28 18.86± 0.28 3
LSTM CAT Audio Baseline 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 -
LSTM CAT Vanilla 20.61± 0.29 21.67± 0.3 22.82± 0.31 23.81± 0.32 24.83± 0.33 7
LSTM CAT Cascade Utt 21.27± 0.29 22.1± 0.3 22.89± 0.31 23.61± 0.31 24.05± 0.32 3
LSTM CAT Dropout Utt 21.64± 0.3 22.5± 0.31 23.28± 0.31 23.99± 0.32 24.36± 0.32 3
LSTM-Con CAT Cascade Utt 19.86± 0.29 20.99± 0.29 22.09± 0.3 23.19± 0.31 24.08± 0.32 3
Conformer CM Audio Baseline 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 -
Conformer CM Vanilla 21.79± 0.31 23.29± 0.32 25.1± 0.34 31.25± 0.42 98.31± 0.05 7
Conformer CM Cascade Utt 18.71± 0.27 18.76± 0.27 18.83± 0.28 18.89± 0.28 18.9± 0.27 3
Conformer CM Dropout Utt 21.15± 0.3 27.38± 0.37 37.39± 0.45 56.38± 0.53 22.95± 0.33 7

Table 20: Robustness to Tend for 10db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 19.05± 0.28 -
Conformer CAT Vanilla 18.46± 0.27 18.78± 0.27 19.1± 0.28 19.41± 0.28 19.7± 0.29 7
Conformer CAT Vanilla (25L) 18.45± 0.27 18.74± 0.27 18.98± 0.28 19.24± 0.28 19.51± 0.28 -
Conformer CAT Cascade Utt 18.47± 0.27 18.61± 0.27 18.7± 0.27 18.8± 0.27 18.84± 0.27 3
Conformer CAT Dropout Utt 18.23± 0.27 18.48± 0.27 18.63± 0.27 18.78± 0.28 18.91± 0.28 3
Conformer CAT Cascade Frame 18.41± 0.27 18.55± 0.27 18.72± 0.27 18.97± 0.28 18.91± 0.28 3
Conformer CAT Dropout Frame 18.74± 0.28 18.79± 0.28 18.99± 0.28 19.16± 0.28 19.19± 0.28 3
Conformer CAT AV Dropout Utt 18.29± 0.27 18.62± 0.27 18.87± 0.27 19.09± 0.28 19.25± 0.28 3
Conformer CAT Two-Pass 18.83± 0.28 18.84± 0.28 18.92± 0.28 19.03± 0.28 19.05± 0.28 3
Con-LSTM CAT Cascade Utt 18.54± 0.27 18.64± 0.28 18.73± 0.28 18.79± 0.28 18.86± 0.28 3
LSTM CAT Audio Baseline 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 24.09± 0.32 -
LSTM CAT Vanilla 20.61± 0.29 21.8± 0.3 22.96± 0.31 23.8± 0.32 24.83± 0.33 7
LSTM CAT Cascade Utt 21.27± 0.29 22.08± 0.3 22.83± 0.31 23.53± 0.31 24.05± 0.32 3
LSTM CAT Dropout Utt 21.64± 0.3 22.41± 0.3 23.25± 0.31 23.92± 0.32 24.36± 0.32 3
LSTM-Con CAT Cascade Utt 19.86± 0.29 20.8± 0.29 21.97± 0.3 23.03± 0.31 24.08± 0.32 3
Conformer CM Audio Baseline 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 18.92± 0.28 -
Conformer CM Vanilla 21.79± 0.31 23.21± 0.32 24.99± 0.34 29.99± 0.4 98.31± 0.05 7
Conformer CM Cascade Utt 18.71± 0.27 18.76± 0.27 18.84± 0.28 18.9± 0.28 18.9± 0.27 3
Conformer CM Dropout Utt 21.15± 0.3 26.62± 0.35 35.14± 0.42 54.16± 0.51 22.95± 0.33 7
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Table 21: Robustness to Trate for 10db. Columns three to eight represent the amount of dropped video frames.
Architecture Method 0 1

128
1

32
1
8

1
2 1 Robust

Conformer CAT Audio Baseline 19.05 ± 0.28 19.05 ± 0.28 19.05 ± 0.28 19.05 ± 0.28 19.05 ± 0.28 19.05 ± 0.28 -
Conformer CAT Vanilla 18.46 ± 0.27 18.45 ± 0.27 18.45 ± 0.27 18.44 ± 0.27 18.64 ± 0.27 19.7 ± 0.29 7
Conformer CAT Vanilla (25L) 18.45 ± 0.27 18.44 ± 0.27 18.46 ± 0.27 18.44 ± 0.27 18.74 ± 0.28 19.51 ± 0.28 -
Conformer CAT Cascade Utt 18.47 ± 0.27 18.47 ± 0.27 18.47 ± 0.27 18.49 ± 0.27 18.62 ± 0.27 18.84 ± 0.27 3
Conformer CAT Dropout Utt 18.23 ± 0.27 18.25 ± 0.27 18.23 ± 0.27 18.2 ± 0.27 18.34 ± 0.27 18.91 ± 0.28 3
Conformer CAT Cascade Frame 18.41 ± 0.27 18.41 ± 0.27 18.39 ± 0.27 18.34 ± 0.27 18.5 ± 0.27 18.91 ± 0.28 3
Conformer CAT Dropout Frame 18.74 ± 0.28 18.75 ± 0.28 18.72 ± 0.28 18.59 ± 0.28 18.76 ± 0.28 19.19 ± 0.28 3
Conformer CAT AV Dropout Utt 18.29 ± 0.27 18.28 ± 0.27 18.3 ± 0.27 18.31 ± 0.27 18.56 ± 0.27 19.25 ± 0.28 3
Conformer CAT Two-Pass 18.83 ± 0.28 18.83 ± 0.28 18.84 ± 0.28 18.81 ± 0.28 18.93 ± 0.28 19.05 ± 0.28 3
Con-LSTM CAT Cascade Utt 18.54 ± 0.27 18.53 ± 0.27 18.55 ± 0.27 18.61 ± 0.28 18.78 ± 0.28 18.86 ± 0.28 3
LSTM CAT Audio Baseline 24.09 ± 0.32 24.09 ± 0.32 24.09 ± 0.32 24.09 ± 0.32 24.09 ± 0.32 24.09 ± 0.32 -
LSTM CAT Vanilla 20.61 ± 0.29 20.63 ± 0.29 20.65 ± 0.29 20.86 ± 0.29 21.82 ± 0.3 24.83 ± 0.33 7
LSTM CAT Cascade Utt 21.27 ± 0.29 21.25 ± 0.29 21.36 ± 0.29 21.64 ± 0.3 22.92 ± 0.31 24.05 ± 0.32 3
LSTM CAT Dropout Utt 21.64 ± 0.3 21.64 ± 0.3 21.69 ± 0.3 21.91 ± 0.3 23.18 ± 0.31 24.36 ± 0.32 3
LSTM-Con CAT Cascade Utt 19.86 ± 0.29 19.86 ± 0.28 19.97 ± 0.29 20.17 ± 0.29 21.54 ± 0.3 24.08 ± 0.32 3
Conformer CM Audio Baseline 18.92 ± 0.28 18.92 ± 0.28 18.92 ± 0.28 18.92 ± 0.28 18.92 ± 0.28 18.92 ± 0.28 -
Conformer CM Vanilla 21.79 ± 0.31 21.79 ± 0.31 21.92 ± 0.31 22.51 ± 0.32 25.35 ± 0.35 98.31 ± 0.05 7
Conformer CM Cascade Utt 18.71 ± 0.27 18.68 ± 0.27 18.7 ± 0.27 18.71 ± 0.27 18.89 ± 0.28 18.9 ± 0.27 3
Conformer CM Dropout Utt 21.15 ± 0.3 21.24 ± 0.3 21.81 ± 0.31 24.37 ± 0.34 33.56 ± 0.42 22.95 ± 0.33 7

Table 22: Robustness to TberUtt for 0db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 27.59± 0.38 30.22± 0.4 32.83± 0.41 35.51± 0.43 7
Conformer CAT Vanilla (25L) 24.75± 0.35 27.23± 0.38 29.8± 0.41 32.35± 0.42 34.88± 0.43 -
Conformer CAT Cascade Utt 26.12± 0.36 27.31± 0.38 28.58± 0.38 29.78± 0.39 31.08± 0.4 3
Conformer CAT Dropout Utt 24.33± 0.34 26.14± 0.36 27.94± 0.38 29.81± 0.39 31.67± 0.4 3
Conformer CAT Cascade Frame 28.04± 0.38 29.5± 0.4 31.08± 0.41 32.71± 0.43 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 28.83± 0.38 30.11± 0.39 31.23± 0.41 32.54± 0.41 3
Conformer CAT AV Dropout Utt 23.64± 0.33 26.13± 0.36 28.58± 0.38 31.05± 0.4 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 30.83± 0.42 31.78± 0.43 32.68± 0.43 33.54± 0.43 3
Con-LSTM CAT Cascade Utt 27.9± 0.39 28.81± 0.4 29.68± 0.4 30.53± 0.4 31.4± 0.41 3
LSTM CAT Audio Baseline 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 -
LSTM CAT Vanilla 30.93± 0.39 36.45± 0.45 41.02± 0.48 46.55± 0.47 51.53± 0.45 7
LSTM CAT Cascade Utt 33.67± 0.4 36.92± 0.42 40.27± 0.45 43.23± 0.45 46.55± 0.44 3
LSTM CAT Dropout Utt 33.41± 0.4 37.06± 0.43 40.87± 0.45 44.44± 0.46 48.13± 0.44 7
LSTM-Con CAT Cascade Utt 29.37± 0.37 33.74± 0.42 37.79± 0.45 42.22± 0.45 46.55± 0.44 3
Conformer CM Audio Baseline 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 -
Conformer CM Vanilla 34.91± 0.43 51.42± 0.74 66.58± 0.78 82.34± 0.68 98.34± 0.05 7
Conformer CM Cascade Utt 27.89± 0.37 28.83± 0.38 29.7± 0.39 30.6± 0.4 31.56± 0.4 3
Conformer CM Dropout Utt 33.11± 0.43 36.12± 0.45 39.36± 0.47 42.43± 0.48 45.43± 0.47 7

Table 23: Robustness to TberFrame for 0db. Columns three to seven represent the amount of dropped video
frames.

Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 25.41± 0.35 26.61± 0.36 29.44± 0.38 35.51± 0.43 7
Conformer CAT Vanilla (25L) 24.75± 0.35 25.39± 0.36 26.8± 0.37 29.6± 0.39 34.88± 0.43 -
Conformer CAT Cascade Utt 26.12± 0.36 27.5± 0.37 29.07± 0.38 30.44± 0.39 31.08± 0.4 3
Conformer CAT Dropout Utt 24.33± 0.34 25.08± 0.35 26.48± 0.36 28.88± 0.38 31.67± 0.4 3
Conformer CAT Cascade Frame 28.04± 0.38 28.84± 0.4 30.17± 0.41 32.19± 0.43 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 26.74± 0.36 28.0± 0.38 30.23± 0.4 32.54± 0.41 7
Conformer CAT AV Dropout Utt 23.64± 0.33 24.28± 0.33 25.83± 0.35 29.2± 0.38 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 31.01± 0.43 32.1± 0.43 33.14± 0.43 33.54± 0.43 3
Con-LSTM CAT Cascade Utt 27.9± 0.39 29.59± 0.4 30.52± 0.4 31.15± 0.41 31.4± 0.41 3
LSTM CAT Audio Baseline 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 -
LSTM CAT Vanilla 30.93± 0.39 33.55± 0.41 38.28± 0.43 45.45± 0.46 51.53± 0.45 7
LSTM CAT Cascade Utt 33.67± 0.4 38.23± 0.42 42.3± 0.43 45.23± 0.44 46.55± 0.44 3
LSTM CAT Dropout Utt 33.41± 0.4 37.63± 0.42 42.18± 0.44 45.98± 0.45 48.13± 0.44 7
LSTM-Con CAT Cascade Utt 29.37± 0.37 33.23± 0.39 38.42± 0.42 43.39± 0.44 46.55± 0.44 3
Conformer CM Audio Baseline 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 -
Conformer CM Vanilla 34.91± 0.43 42.36± 0.47 49.48± 0.5 61.87± 0.51 98.34± 0.05 7
Conformer CM Cascade Utt 27.89± 0.37 29.23± 0.39 30.6± 0.4 31.41± 0.4 31.56± 0.4 3
Conformer CM Dropout Utt 33.11± 0.43 55.38± 0.52 67.77± 0.5 79.58± 0.46 45.43± 0.47 7
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Table 24: Robustness to Tstart for 0db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 26.68± 0.36 29.06± 0.37 32.07± 0.4 35.51± 0.43 7
Conformer CAT Vanilla (25L) 24.75± 0.35 26.58± 0.36 29.13± 0.38 31.97± 0.41 34.88± 0.43 -
Conformer CAT Cascade Utt 26.12± 0.36 27.49± 0.38 28.83± 0.38 30.16± 0.39 31.08± 0.4 3
Conformer CAT Dropout Utt 24.33± 0.34 25.93± 0.35 27.79± 0.37 29.79± 0.39 31.67± 0.4 3
Conformer CAT Cascade Frame 28.04± 0.38 29.24± 0.4 30.96± 0.42 33.01± 0.43 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 28.11± 0.37 29.55± 0.39 31.36± 0.41 32.54± 0.41 3
Conformer CAT AV Dropout Utt 23.64± 0.33 25.67± 0.34 28.27± 0.37 31.04± 0.39 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 30.99± 0.43 32.0± 0.43 33.01± 0.43 33.54± 0.43 3
Con-LSTM CAT Cascade Utt 27.9± 0.39 28.76± 0.39 29.64± 0.4 30.66± 0.41 31.4± 0.41 3
LSTM CAT Audio Baseline 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 -
LSTM CAT Vanilla 30.93± 0.39 35.95± 0.42 41.9± 0.45 47.03± 0.45 51.53± 0.45 7
LSTM CAT Cascade Utt 33.67± 0.4 37.38± 0.42 41.07± 0.43 44.41± 0.44 46.55± 0.44 3
LSTM CAT Dropout Utt 33.41± 0.4 37.26± 0.41 41.71± 0.43 45.45± 0.44 48.13± 0.44 7
LSTM-Con CAT Cascade Utt 29.37± 0.37 34.07± 0.4 38.71± 0.42 43.41± 0.44 46.55± 0.44 3
Conformer CM Audio Baseline 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 -
Conformer CM Vanilla 34.91± 0.43 41.37± 0.45 49.26± 0.48 61.27± 0.52 98.34± 0.05 7
Conformer CM Cascade Utt 27.89± 0.37 28.96± 0.39 29.97± 0.39 31.02± 0.4 31.56± 0.4 3
Conformer CM Dropout Utt 33.11± 0.43 48.2± 0.51 61.94± 0.52 75.46± 0.49 45.43± 0.47 7

Table 25: Robustness to Tmid for 0db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 26.95± 0.36 29.51± 0.38 32.5± 0.4 35.51± 0.43 7
Conformer CAT Vanilla (25L) 24.75± 0.35 26.84± 0.36 29.55± 0.38 32.27± 0.41 34.88± 0.43 -
Conformer CAT Cascade Utt 26.12± 0.36 27.74± 0.38 29.11± 0.38 30.32± 0.39 31.08± 0.4 3
Conformer CAT Dropout Utt 24.33± 0.34 26.24± 0.36 28.18± 0.37 30.22± 0.39 31.67± 0.4 3
Conformer CAT Cascade Frame 28.04± 0.38 29.26± 0.39 30.99± 0.41 33.03± 0.43 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 28.13± 0.37 29.82± 0.39 31.55± 0.4 32.54± 0.41 3
Conformer CAT AV Dropout Utt 23.64± 0.33 25.9± 0.34 28.63± 0.37 31.42± 0.39 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 31.17± 0.42 32.16± 0.43 33.13± 0.43 33.54± 0.43 3
Con-LSTM CAT Cascade Utt 27.9± 0.39 29.02± 0.39 29.99± 0.4 30.85± 0.41 31.4± 0.41 3
LSTM CAT Audio Baseline 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 -
LSTM CAT Vanilla 30.93± 0.39 36.53± 0.41 42.25± 0.43 47.31± 0.44 51.53± 0.45 7
LSTM CAT Cascade Utt 33.67± 0.4 37.95± 0.41 41.73± 0.43 44.84± 0.44 46.55± 0.44 3
LSTM CAT Dropout Utt 33.41± 0.4 38.01± 0.41 42.25± 0.43 45.93± 0.44 48.13± 0.44 7
LSTM-Con CAT Cascade Utt 29.37± 0.37 34.44± 0.39 39.16± 0.42 43.59± 0.43 46.55± 0.44 3
Conformer CM Audio Baseline 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 -
Conformer CM Vanilla 34.91± 0.43 42.26± 0.45 49.84± 0.48 62.43± 0.52 98.34± 0.05 7
Conformer CM Cascade Utt 27.89± 0.37 29.07± 0.39 30.17± 0.39 31.14± 0.4 31.56± 0.4 3
Conformer CM Dropout Utt 33.11± 0.43 50.73± 0.51 64.11± 0.51 75.94± 0.47 45.43± 0.47 7

Table 26: Robustness to Tend for 0db. Columns three to seven represent the amount of dropped video frames.
Architecture Method 0.0 0.25 0.5 0.75 1.0 Robust

Conformer CAT Audio Baseline 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 33.54± 0.43 -
Conformer CAT Vanilla 24.96± 0.35 27.36± 0.36 30.03± 0.38 32.67± 0.4 35.51± 0.43 7
Conformer CAT Vanilla (25L) 24.75± 0.35 27.27± 0.36 29.97± 0.38 32.51± 0.4 34.88± 0.43 -
Conformer CAT Cascade Utt 26.12± 0.36 27.77± 0.37 29.13± 0.38 30.26± 0.39 31.08± 0.4 3
Conformer CAT Dropout Utt 24.33± 0.34 26.5± 0.35 28.56± 0.37 30.33± 0.39 31.67± 0.4 3
Conformer CAT Cascade Frame 28.04± 0.38 29.46± 0.38 31.18± 0.4 33.04± 0.42 34.17± 0.44 7
Conformer CAT Dropout Frame 27.58± 0.37 28.26± 0.37 29.96± 0.39 31.64± 0.4 32.54± 0.41 3
Conformer CAT AV Dropout Utt 23.64± 0.33 26.3± 0.34 29.04± 0.36 31.57± 0.39 33.55± 0.41 3
Conformer CAT Two-Pass 30.06± 0.42 30.94± 0.42 31.93± 0.43 32.87± 0.43 33.54± 0.43 3
Con-LSTM CAT Cascade Utt 27.9± 0.39 29.01± 0.39 30.06± 0.4 30.88± 0.41 31.4± 0.41 3
LSTM CAT Audio Baseline 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 46.38± 0.44 -
LSTM CAT Vanilla 30.93± 0.39 36.39± 0.39 41.94± 0.41 46.81± 0.43 51.53± 0.45 7
LSTM CAT Cascade Utt 33.67± 0.4 37.11± 0.4 40.88± 0.42 44.33± 0.43 46.55± 0.44 3
LSTM CAT Dropout Utt 33.41± 0.4 37.4± 0.4 41.68± 0.42 45.49± 0.43 48.13± 0.44 7
LSTM-Con CAT Cascade Utt 29.37± 0.37 33.62± 0.38 38.41± 0.4 43.07± 0.43 46.55± 0.44 3
Conformer CM Audio Baseline 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 31.79± 0.42 -
Conformer CM Vanilla 34.91± 0.43 41.29± 0.43 48.96± 0.45 60.59± 0.5 98.34± 0.05 7
Conformer CM Cascade Utt 27.89± 0.37 29.06± 0.38 30.2± 0.39 31.05± 0.4 31.56± 0.4 3
Conformer CM Dropout Utt 33.11± 0.43 48.17± 0.47 61.14± 0.48 74.43± 0.46 45.43± 0.47 7
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Table 27: Robustness to Trate for 0db. Columns three to eight represent the amount of dropped video frames.
Architecture Method 0 1

128
1

32
1
8

1
2 1 Robust

Conformer CAT Audio Baseline 33.54 ± 0.43 33.54 ± 0.43 33.54 ± 0.43 33.54 ± 0.43 33.54 ± 0.43 33.54 ± 0.43 -
Conformer CAT Vanilla 24.96 ± 0.35 24.94 ± 0.35 24.95 ± 0.35 25.08 ± 0.35 25.9 ± 0.35 35.51 ± 0.43 7
Conformer CAT Vanilla (25L) 24.75 ± 0.35 24.76 ± 0.35 24.79 ± 0.35 24.91 ± 0.35 26.78 ± 0.37 34.88 ± 0.43 -
Conformer CAT Cascade Utt 26.12 ± 0.36 26.13 ± 0.36 26.25 ± 0.36 26.72 ± 0.37 28.73 ± 0.39 31.08 ± 0.4 3
Conformer CAT Dropout Utt 24.33 ± 0.34 24.35 ± 0.34 24.36 ± 0.34 24.49 ± 0.34 26.66 ± 0.36 31.67 ± 0.4 3
Conformer CAT Cascade Frame 28.04 ± 0.38 28.05 ± 0.38 28.08 ± 0.38 28.23 ± 0.39 30.14 ± 0.42 34.17 ± 0.44 7
Conformer CAT Dropout Frame 27.58 ± 0.37 27.47 ± 0.37 27.11 ± 0.36 26.51 ± 0.36 27.56 ± 0.38 32.54 ± 0.41 7
Conformer CAT AV Dropout Utt 23.64 ± 0.33 23.62 ± 0.33 23.63 ± 0.33 23.8 ± 0.33 25.36 ± 0.35 33.55 ± 0.41 3
Conformer CAT Two-Pass 30.06 ± 0.42 30.05 ± 0.42 30.11 ± 0.42 30.47 ± 0.43 31.91 ± 0.43 33.54 ± 0.43 3
Con-LSTM CAT Cascade Utt 27.9 ± 0.39 27.96 ± 0.39 28.11 ± 0.39 28.84 ± 0.39 30.7 ± 0.41 31.4 ± 0.41 3
LSTM CAT Audio Baseline 46.38 ± 0.44 46.38 ± 0.44 46.38 ± 0.44 46.38 ± 0.44 46.38 ± 0.44 46.38 ± 0.44 -
LSTM CAT Vanilla 30.93 ± 0.39 30.94 ± 0.39 31.16 ± 0.39 32.06 ± 0.4 37.19 ± 0.44 51.53 ± 0.45 7
LSTM CAT Cascade Utt 33.67 ± 0.4 33.71 ± 0.4 34.15 ± 0.4 35.9 ± 0.41 42.15 ± 0.44 46.55 ± 0.44 3
LSTM CAT Dropout Utt 33.41 ± 0.4 33.47 ± 0.4 33.78 ± 0.4 35.11 ± 0.41 41.79 ± 0.44 48.13 ± 0.44 7
LSTM-Con CAT Cascade Utt 29.37 ± 0.37 29.42 ± 0.37 29.72 ± 0.38 30.96 ± 0.38 37.42 ± 0.42 46.55 ± 0.44 3
Conformer CM Audio Baseline 31.79 ± 0.42 31.79 ± 0.42 31.79 ± 0.42 31.79 ± 0.42 31.79 ± 0.42 31.79 ± 0.42 -
Conformer CM Vanilla 34.91 ± 0.43 35.03 ± 0.43 35.68 ± 0.44 38.48 ± 0.45 51.29 ± 0.51 98.34 ± 0.05 7
Conformer CM Cascade Utt 27.89 ± 0.37 27.9 ± 0.37 27.98 ± 0.38 28.48 ± 0.38 30.99 ± 0.4 31.56 ± 0.4 3
Conformer CM Dropout Utt 33.11 ± 0.43 33.46 ± 0.42 35.82 ± 0.44 46.46 ± 0.51 68.24 ± 0.5 45.43 ± 0.47 7

30



Published in Transactions on Machine Learning Research (08/2022)

F Experiments on TED LRS3

We present additional results on the TED LRS3 dataset for just the Conformer CAT and LSTM CAT Cascade
Utt models. The architectural configurations are the same as the ones detailed in Section 5, with the exception
of differences in optimization. The models are trained with a constant learning rate of 0.0001 at batch size
512 for 35k steps. Like Afouras et al. (2018) and Ma et al. (2021b), we initialize our models from pre-trained
weights. This was done using the training data described in Section 5. Like in the main paper, we augment the
TED LRS3 test set with artificially added babble noise from the NoiseX corpus (Varga & Steeneken, 1993) at
different SNR levels: clean, 20db, 10db, 0db. Like in the main paper, all the Cascade Utt models were found to
be robust on all the test suites. To our knowledge, the 0.92 WER we are reporting on the clean TED LRS3 test
set by the Conformer CAT Cascade Utt model is also the best number that has been reported on this dataset.

Table 28: Robustness to TberUtt for Conformer and LSTM Cascade Utt models. Columns three to seven
represent the amount of dropped video frames.

Architecture Noise 0.0 0.25 0.5 0.75 1.0 AO Baseline Robust

Conformer CAT clean 0.92± 0.26 0.9± 0.25 0.99± 0.27 0.95± 0.26 1.01± 0.27 0.99± 0.26 3
LSTM CAT clean 1.8± 0.35 2.69± 0.47 3.32± 0.49 4.16± 0.58 4.9± 0.61 4.82± 0.61 3
Conformer CAT 20db 1.02± 0.26 1.0± 0.26 1.04± 0.26 1.03± 0.26 0.99± 0.26 1.11± 0.29 3
LSTM CAT 20db 1.8± 0.35 2.64± 0.45 3.26± 0.51 4.16± 0.57 5.25± 0.65 5.16± 0.64 3
Conformer CAT 10db 1.1± 0.27 1.13± 0.27 1.16± 0.28 1.11± 0.27 1.19± 0.28 1.41± 0.31 3
LSTM CAT 10db 2.11± 0.38 3.31± 0.52 4.62± 0.6 5.57± 0.68 6.79± 0.74 6.6± 0.73 3
Conformer CAT 0db 1.9± 0.36 2.53± 0.43 3.22± 0.5 3.91± 0.55 4.41± 0.58 4.41± 0.57 3
LSTM CAT 0db 4.32± 0.55 8.95± 0.99 14.41± 1.31 20.79± 1.44 25.04± 1.5 24.54± 1.45 3

Table 29: Robustness to TberFrame for Conformer and LSTM Cascade Utt models. Columns three to seven
represent the amount of dropped video frames.

Architecture Noise 0.0 0.25 0.5 0.75 1.0 AO Baseline Robust

Conformer CAT clean 0.92± 0.26 1.0± 0.26 1.0± 0.27 0.99± 0.27 1.01± 0.27 0.99± 0.26 3
LSTM CAT clean 1.8± 0.35 2.07± 0.36 2.85± 0.44 3.69± 0.49 4.9± 0.61 4.82± 0.61 3
Conformer CAT 20db 1.02± 0.26 0.95± 0.25 0.97± 0.26 1.03± 0.27 0.99± 0.26 1.11± 0.29 3
LSTM CAT 20db 1.8± 0.35 2.25± 0.39 2.92± 0.44 3.95± 0.52 5.25± 0.65 5.16± 0.64 3
Conformer CAT 10db 1.1± 0.27 1.12± 0.28 1.13± 0.27 1.27± 0.29 1.19± 0.28 1.41± 0.31 3
LSTM CAT 10db 2.11± 0.38 2.93± 0.45 3.66± 0.5 5.02± 0.64 6.79± 0.74 6.6± 0.73 3
Conformer CAT 0db 1.9± 0.36 2.32± 0.4 3.38± 0.51 4.0± 0.55 4.41± 0.58 4.41± 0.57 3
LSTM CAT 0db 4.32± 0.55 8.26± 0.82 12.93± 1.03 19.69± 1.3 25.04± 1.5 24.54± 1.45 3

Table 30: Robustness to Tstart for Conformer and LSTM Cascade Utt models. Columns three to seven
represent the amount of dropped video frames.

Architecture Noise 0.0 0.25 0.5 0.75 1.0 AO Baseline Robust

Conformer CAT clean 0.92± 0.26 0.93± 0.25 1.05± 0.27 1.06± 0.27 1.01± 0.27 0.99± 0.26 3
LSTM CAT clean 1.8± 0.35 3.04± 0.46 4.03± 0.53 4.6± 0.58 4.9± 0.61 4.82± 0.61 3
Conformer CAT 20db 1.02± 0.26 0.99± 0.26 1.04± 0.26 1.09± 0.27 0.99± 0.26 1.11± 0.29 3
LSTM CAT 20db 1.8± 0.35 3.1± 0.48 4.13± 0.56 5.01± 0.62 5.25± 0.65 5.16± 0.64 3
Conformer CAT 10db 1.1± 0.27 1.08± 0.27 1.15± 0.28 1.3± 0.29 1.19± 0.28 1.41± 0.31 3
LSTM CAT 10db 2.11± 0.38 3.61± 0.5 4.87± 0.6 6.31± 0.7 6.79± 0.74 6.6± 0.73 3
Conformer CAT 0db 1.9± 0.36 2.62± 0.43 3.32± 0.5 3.88± 0.56 4.41± 0.58 4.41± 0.57 3
LSTM CAT 0db 4.32± 0.55 9.76± 0.88 16.05± 1.19 22.26± 1.44 25.04± 1.5 24.54± 1.45 3
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Table 31: Robustness to Tmid for Conformer and LSTM Cascade Utt models. Columns three to seven
represent the amount of dropped video frames.

Architecture Noise 0.0 0.25 0.5 0.75 1.0 AO Baseline Robust

Conformer CAT clean 0.92± 0.26 1.04± 0.27 1.09± 0.28 1.04± 0.27 1.01± 0.27 0.99± 0.26 3
LSTM CAT clean 1.8± 0.35 2.63± 0.42 3.46± 0.49 4.37± 0.57 4.9± 0.61 4.82± 0.61 3
Conformer CAT 20db 1.02± 0.26 1.02± 0.26 1.08± 0.27 1.01± 0.26 0.99± 0.26 1.11± 0.29 3
LSTM CAT 20db 1.8± 0.35 2.52± 0.42 3.59± 0.5 4.58± 0.59 5.25± 0.65 5.16± 0.64 3
Conformer CAT 10db 1.1± 0.27 1.09± 0.27 1.28± 0.29 1.26± 0.28 1.19± 0.28 1.41± 0.31 3
LSTM CAT 10db 2.11± 0.38 3.28± 0.48 4.8± 0.6 6.0± 0.7 6.79± 0.74 6.6± 0.73 3
Conformer CAT 0db 1.9± 0.36 2.76± 0.45 3.26± 0.49 4.2± 0.58 4.41± 0.58 4.41± 0.57 3
LSTM CAT 0db 4.32± 0.55 10.57± 0.94 16.98± 1.23 22.22± 1.39 25.04± 1.5 24.54± 1.45 3

Table 32: Robustness to Tend for Conformer and LSTM Cascade Utt models. Columns three to seven
represent the amount of dropped video frames.

Architecture Noise 0.0 0.25 0.5 0.75 1.0 AO Baseline Robust

Conformer CAT clean 0.92± 0.26 1.02± 0.27 1.04± 0.28 1.06± 0.28 1.01± 0.27 0.99± 0.26 3
LSTM CAT clean 1.8± 0.35 1.92± 0.36 2.78± 0.43 3.74± 0.52 4.9± 0.61 4.82± 0.61 3
Conformer CAT 20db 1.02± 0.26 0.95± 0.26 1.01± 0.27 1.04± 0.27 0.99± 0.26 1.11± 0.29 3
LSTM CAT 20db 1.8± 0.35 2.0± 0.37 2.79± 0.45 3.96± 0.54 5.25± 0.65 5.16± 0.64 3
Conformer CAT 10db 1.1± 0.27 1.09± 0.27 1.11± 0.27 1.2± 0.28 1.19± 0.28 1.41± 0.31 3
LSTM CAT 10db 2.11± 0.38 2.33± 0.38 3.65± 0.52 5.31± 0.66 6.79± 0.74 6.6± 0.73 3
Conformer CAT 0db 1.9± 0.36 2.59± 0.42 3.39± 0.49 3.95± 0.54 4.41± 0.58 4.41± 0.57 3
LSTM CAT 0db 4.32± 0.55 7.76± 0.72 13.45± 1.01 20.08± 1.31 25.04± 1.5 24.54± 1.45 3

Table 33: Robustness to Trate for Conformer and LSTM Cascade Utt models. Columns three to eight represent
the amount of dropped video frames.

Architecture Noise 0 1
128

1
32

1
8

1
2 1 AO Baseline Robust

Conformer CAT clean 0.92 ± 0.26 0.92 ± 0.26 0.94 ± 0.26 0.94 ± 0.26 0.98 ± 0.26 1.01 ± 0.27 0.99 ± 0.26 3
LSTM CAT clean 1.8 ± 0.35 1.77 ± 0.35 1.76 ± 0.35 1.94 ± 0.36 2.47 ± 0.39 4.9 ± 0.61 4.82 ± 0.61 3
Conformer CAT 20db 1.02 ± 0.26 1.02 ± 0.26 1.0 ± 0.26 1.02 ± 0.26 1.01 ± 0.27 0.99 ± 0.26 1.11 ± 0.29 3
LSTM CAT 20db 1.8 ± 0.35 1.78 ± 0.35 1.76 ± 0.35 1.94 ± 0.36 2.59 ± 0.41 5.25 ± 0.65 5.16 ± 0.64 3
Conformer CAT 10db 1.1 ± 0.27 1.1 ± 0.27 1.11 ± 0.27 1.07 ± 0.27 1.08 ± 0.26 1.19 ± 0.28 1.41 ± 0.31 3
LSTM CAT 10db 2.11 ± 0.38 2.12 ± 0.38 2.15 ± 0.4 2.33 ± 0.4 3.1 ± 0.45 6.79 ± 0.74 6.6 ± 0.73 3
Conformer CAT 0db 1.9 ± 0.36 1.9 ± 0.36 1.95 ± 0.37 2.35 ± 0.41 2.91 ± 0.46 4.41 ± 0.58 4.41 ± 0.57 3
LSTM CAT 0db 4.32 ± 0.55 4.33 ± 0.55 4.77 ± 0.61 5.95 ± 0.67 11.93 ± 1.02 25.04 ± 1.5 24.54 ± 1.45 3
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