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Abstract—One of only two new transport protocols introduced
in the last 30 years is the Stream Control Transmission Protocol
(SCTP). SCTP enables capabilities like additional throughput
and fault tolerance for multihomed hosts. An SCTP implemen-
tation is included with the Linux kernel and another implemen-
tation called sctplib functions successfully in userspace on several
platforms but unfortunately neither of these implementations
have all of the latest features nor do they perform as well as the
FreeBSD kernel implementation of SCTP. We were motivated to
produce a portable implementation of the FreeBSD kernel SCTP
stack that operates in userspace of any system because of both our
desires to obtain a higher performance SCTP stack for Linux as
well as to exploit recent developments in hardware virtualization
and transport protocol onloading. Unlike any other userspace
transport implementation for TCP or SCTP, our userspace SCTP
stack simultaneously achieves similar throughput and latency as
the Linux kernel TCP stack, without compromising on any of the
transport’s features as well as maintaining true portability across
multiple operating systems and devices. We create a callback API
and implement a threshold to control its usage; our userspace
SCTP stack with these optimizations obtains higher throughput
than the Linux kernel implementation of SCTP. We describe our
userspace SCTP stack’s design and demonstrate how it gives
similar throughput and latency on Linux as the kernel TCP
implementation, with the benefits of the new features of SCTP.

I. INTRODUCTION

The exponential growth in the popularity of the Internet

has seen more services like commerce and telephony move to

IP-based networks. Many of these services require reliability

so now more than 90% of Internet traffic use TCP as the

reliable transport protocol. TCP did not provide the reliability

and control necessary for the implementation of telephony

over IP, so to overcome these deficiencies, the Stream Control

Transmission Protocol (SCTP) was standardized [1], [2], [3].

It provides the user with more control over internal features

and timers. SCTP also improves data integrity on the higher

bandwidth interconnects of modern times by providing a

stronger CRC32c checksum that avoids the false negatives

that occur with the weaker 16-bit TCP checksum [4]. SCTP

multi-streaming avoids head-of-line blocking amongst mes-

sages. Over multiple links, SCTP multi-homing allows for

seamless fail-over in the event of network failure and with

concurrent multipath transfer (CMT) [5], enables simultaneous

data transfer over multiple links. All of these features have

been available for SCTP for a decade where they have only

partially appeared over TCP and UDP with efforts to enable

multistreaming support at the application level [6], [7] as well

as efforts for standardizing TCP to add multipath support [8]

and a stronger CRC32c checksum [9].

Although the features of SCTP may be compelling, our

initial tests could only match the performance of TCP using

the FreeBSD kernel SCTP implementation. The FreeBSD

implementation of SCTP has the best performance and is

the most feature-rich SCTP implementation available, as it is

maintained by the authors of the transport’s RFCs in the IETF.

Other implementations of SCTP have fallen behind and they

are not as feature-rich nor are their performances as good.

The Linux SCTP stack [10] has been included in its default

kernel distribution since 2.4.23 in November 2003 but it does

not have all of the more recent SCTP RFCs nor has it been

fully optimized; the performance of Linux SCTP does not

perform as well as TCP. Siemens, the University of Essen,

and Münster University of Applied Sciences have released an

SCTP implementation called sctplib that runs in userspace but

it also does not provide adequate performance or complete

features [11]. The lack of availability of a high quality SCTP

implementation on more popular platforms is an impediment

to the wider spread adoption of SCTP.

Recently there are several developments that have made

revisiting userspace stacks of interest. First, there is a renewed

interest in protocol onload as protocol off-load devices ar-

guably were a point-in-time solution that are less general [12].

There has also been more recent work starting to question

whether transport protocols are too large to belong in the

kernel. Van Jacobson made the argument that cache use can

be improved with a user-level stack [13] on a multicore

host because a user-level stack would ensure the transport

processing is done on the same CPU as the application; this

changes the “end” of the end-to-end principle common in

network design from the host to the actual process or thread

on a specific core, as was similarly proposed by Siemon

[14]. Another development is that the newer generation of

network adapters have started to have more support for net-

work virtualization giving easier data paths to the NIC and

providing protection domains on the NIC [15]. In addition,

the latest NICs like the Intel 82599 also support an on-board

CRC32c checksum computation, useful for iSCSI as well

as SCTP, which eliminates a potential performance overhead

posed by SCTP’s stronger checksum. The combination of these

advantages make it an opportune time to re-visit the question

of how to make a fully-featured userspace SCTP stack.



The main contributions of our userspace SCTP stack are

both the software provided to the open-source community as

well as the optimizations described here that were able to

simultaneously achieve portability on a variety of platforms

and throughput and latency comparable to kernel transport

implementations over Gigabit Ethernet. We have taken the

feature-rich SCTP stack from FreeBSD and created the soft-

ware components necessary to execute at user-level using

standard techniques [16].1 We introduce novel callback and

threshold optimizations which result in a fully operational,

device-agnostic stack running over either UDP or raw sockets

that gives as good throughput and latency as kernel TCP

on Linux but with the fault tolerance of SCTP multihoming

and other benefits of SCTP. Our current implementation gives

a very flexible implementation of a full-featured SCTP that

can execute at the user-level on Linux, FreeBSD, Windows,

Mac OS X and portable devices like the iPhone.2 The core

parts of our user-level SCTP stack still share the exact code

as is compiled inside the FreeBSD kernel, thus we will be

able to continue to take advantage of continued improvements

and added features to the FreeBSD stack with our userspace

design. Although there have been several simple implementa-

tions of transport protocols in simulation or in userspace for

TCP [17], [18], [19], [20], none of these have had throughput

and latency similar to the kernel implementation while still

being full-featured, device-agnostic as well as portable across

multiple operating systems, as what we have accomplished

simultaneously for SCTP.

A major component of this work involved extracting the

SCTP stack from the FreeBSD kernel to run in userspace.

After giving an overview of related work in Section II, we

introduce the initial design of our userspace stack in Section

III. Following this, in Section IV we describe how we tuned

our initial design in order to produce the best performance

in a device-agnostic version of our userspace SCTP stack that

matches kernel TCP with the additional features of SCTP such

as the fault tolerance provided by SCTP multihoming. Finally,

we conclude in Section V and offer ideas for future work.

II. RELATED WORK

A. Other Userspace Stacks

Existing userspace stacks have not been able to achieve per-

formance close to the kernel implementation while remaining

feature-complete, as well as portable [19], [20], [18], [17],

[11]. If performance is obtained, it is not portable. If it is

portable, it is not performant. Our userspace stack provides

all of the features available for SCTP yet it maintains high

performance on different platforms.

Alpine [19] was a userspace TCP stack created in order to

ease the development of network protocol development. They

argue that by giving the developer the ability to make changes

in userspace, they can shorten the development cycle of

1The implementation work was done by Brad Penoff in collaboration with
Humaira Kamal, Michael Tüxen, and Irene Rüngeler.

2Our SCTP stack is available at http://sctp.fh-muenster.de/sctp-user-land-
stack.html .

network protocol changes by enabling easier instrumentation

and debugging. Many similar design issues are addressed in

Alpine as in our work; these include the handling of sporadic

control messages, their userspace implementation of timers,

as well as how their networking stack interfaces to the upper

and lower layers. Unlike our work, their design succeeds in

coexistence with a kernel stack however they do not have

performance as their primary focus; their bandwidth results

are 25% that of the kernel network stack. Alpine’s design was

said to be portable in theory but it has only been tested on

FreeBSD; a similar project called Daytona had nearly identical

objectives as Alpine only for Linux [20].

Simultaneous to our work, the TCP stack has been recently

extracted from the FreeBSD kernel [18]. This work is similar

to ours in the sense that it comes from the same kernel so

some of the times we had to extract services, e.g., socket

structures, and other times we had to reimplement services,

e.g., timers. However, it is different as well mostly because

their focus is on functionality and not performance. They target

lower bandwidth systems for use by virtualization, specifically

100 Mbps and wireless NICs. On the other hand, we target

Gigabit NICs and low-latency environments. Our userspace

stack achieves 23µs one-way latency while their work achieves

110µs one-way latency.

Solarflare [17] has created a full-featured, userspace TCP

stack that completely bypasses the kernel. Their unique im-

plementation achieves 15µs one-way latencies when used

together with their specialized, Ethernet-compliant hardware

[21]. While their userspace stack achieves lower latency than

ours, ours maintains system portability since it still uses the

drivers contained within the operating system; our approach

can therefore run on several different platforms. To the au-

thors’ knowledge, no userspace SCTP implementation has

been adapted to specific hardware to achieve < 20µs latency,

however our work could serve as a foundation for future work

to achieve this for SCTP as Solarflare has for TCP.

The sctplib is a user-level SCTP stack that executes on

most major platforms [11]. Its focus has never been perfor-

mance. The authors were able to apply lessons learned from

developing and using this stack, we applied lessons learned

to the userspace SCTP stack described in this paper, such as

experiences with portability and interaction with the kernel.

This stack is presently in bug maintenance mode and is not

being actively developed for newer RFCs. Our starting point

was the FreeBSD stack and our userspace stack has been

integrated such that our stack can be built by changing the

user directives and build parameters, so we therefore inherit

bug fixes and new features added to the actively maintained

FreeBSD kernel SCTP implementation.

B. SCTP Features Present over UDP or TCP

SCTP’s new features provide applications with additional

fault tolerance and therefore a potential for higher perfor-

mance. Portions of these features have been added elsewhere

at the application and transport layers. Some of the features



are still in the standardization process and have yet to provide

standard implementations.

SCTP multistreaming provides message ordering per stream

which is also present over UDP in the Structured Stream

Transport (SST) [7], but SST lacks other desired features

like multihoming support. Similarly but in the domain of

web browsing, Google’s SPDY [6] is an application layer

protocol who has shown 64% performance increases for web

browsing through the use of batching. This specification uses a

single TCP connection for funneling multiple HTTP requests

which typically use a TCP connection per request, having to

endure the costs of slow start. Increasingly large transfers over

HTTP have resulted in applications demonstrating head-of-line

blocking which SPDY avoids for TCP by implementing the

multistreaming feature which originally motivated the advent

of SCTP in telephony applications 12 years prior.

SCTP multihoming and the CMT extension allow endpoints

with multiple network cards to fully utilize all available

bandwidth for throughput and for additional fault tolerance.

Given the usefulness of this feature, standardization efforts

are underway in the IETF attempting to enable multipath

capabilities in TCP [8]. Standard multipath for TCP has not

appeared yet.

SCTP uses CRC32c as its checksum algorithm [22].

CRC32c used by the iSCSI storage standard as well for

additional data integrity. TCP uses an additive 16-bit checksum

which has been shown to accept one in 1 × 10
7 packets as

valid despite being corrupted [4]. The CRC32c strengthens

the message reliability by providing more protection by way

of a stronger algorithm. The CRC32c has been proposed to

add to TCP as well, but has not yet been accepted at the time

this paper was written [9].

III. SCTP USERSPACE STACK DESIGN

In order to create an SCTP stack that would perform better

on Linux, a survey of potential starting points was conducted.

The sctplib [11] already executes on Linux, however, for our

purposes, it lacked the throughput and latency measurements

that we wanted to achieve and also lacked the functionality that

is present in the full implementation of the SCTP standard as

it has lagged behind the RFCs. There are kernel versions of

SCTP available but the version of SCTP with the best perfor-

mance and that is the most feature-rich has been the FreeBSD

stack that was originally developed by Randall Stewart, a co-

inventor of SCTP. Linux has its own kernel implementation

however it has not been optimized nor consistently maintained.

The Java SDK supports SCTP but it utilizes the underlying

kernel implementation on the host operating system [23]. The

code used for the kernel FreeBSD SCTP stack has been used

for both a Mac OS X [24] and Windows [25] version of the

stack, which made it a good starting point for our work.

A representation of a kernel-based SCTP stack is shown

above Figure 1-(1). An application uses an SCTP stack in

the kernel by way of the Berkeley sockets API. Within the

SCTP/IP stack, the transport protocol implementation forms

a valid SCTP packet and passes it to the IP layer that then

Fig. 1. SCTP Implementation Possibilities

performs routing table lookups for outward-bound packets;

inward-bound packets are demultiplexed to the appropriate

tuple and eventually that application’s socket. Within the

kernel, SCTP/IP interacts with the NIC controller by way of

the device driver.

Under a kernel-based design, the host CPU processes the

transport protocol in the operating system kernel, makes

intermediate buffer copies, and also performs context switches

between userspace and kernel space. As network speeds in-

crease, these overheads cause an increased burden to the host

CPU. Networking-related CPU overheads for a kernel-based

TCP stack are measured to be 40% for transport protocol

processing, 20% for intermediate buffer copies, and 40% for

application context switching [26].

Additional copies can be avoided by using zero-copy be-

tween networking layers (e.g. TCP and IP) to bypass the

kernel [27], as is shown in Figure 1-(3). This design avoids

unnecessary context switches to/from kernel space because all

operations are done in userspace or by the device. Copying is

avoided by passing references in-between layers using either

a slab allocator between software layers, or to hardware by

way of a NIC API’s zero-copy read/write functionality.

The major design challenge is to find general ways to

reduce these overheads. Over the past years, several com-

panies like NetEffect took advantage of the inability of the

host OS to perform protocol processing for GigE and 10

GigE by TCP protocol offloading to the NIC card itself to

achieve both zero-copy and kernel bypass. Typically, TCP

offload devices are all-in-one solutions, although the Microsoft

Chimney Architecture [28] has attempted to standardize the

integration of TCP offload devices with the Windows operating

systems. Nevertheless, transport offload solutions were more

of a “point in time” solution [12] and more recently multicore

and virtualization technology makes it easier to provide kernel

bypass and more generic support on the NIC for protection and

abilities such as Large Segment Offload (LSO), which can be

used to achieve the performance gains of an offload device on

the chip itself.

The basic goal to achieve the best performance was to

attempt protocol onloading by moving the protocol stack to



Fig. 2. SCTP Stack Interfaces and Directions

userspace, as is illustrated in Figure 1-(2). Moving only the

transport protocol into userspace is intermediate to the overall

final goal of kernel bypass; no one has done full kernel bypass

for SCTP but it has been done in a device-specific manner for

TCP [17].

There is merit in moving only the transport protocol into

userspace, in addition to it being a path towards kernel bypass.

Moving only the transport protocol into userspace makes the

SCTP stack device-agnostic so it is more portable yet it is

a good feature-rich implementation of SCTP at the user-

level, as an alternative to the less tuned Linux SCTP stack

as well as the sctplib userspace stack [11]; this also makes it

possible to run SCTP on small, mobile devices such as cellular

phones that only allow userspace-level development. Here we

describe the design of our userspace stack that we use for

protocol onloading, comparing it to how the same code works

in the kernel. We first describe the lower-layer protocol (LLP)

interactions then the upper-layer protocol (ULP) interactions,

both pictured in Figure 2. Stack internal implementation issues

for our userspace SCTP stack are then shared before we

summarize our design.

A. LLP Interactions

As is shown beneath the SCTP stack in Figure 2, the SCTP

implementation needs to interact with the layer below it. SCTP

was originally specified over IP as its own transport as this was

seen to be the architecturally correct solution by the SIGTRAN

working group [3]. However UDP encapsulation [29] has been

specified in case SCTP traffic needs to pass across legacy

firewalls or if it needs to run on hosts that do not provide

direct access to the IP layer such as the iPhone. Our userspace

stack is capable of handling SCTP protocol data units (PDUs)

layered over IP or UDP/IP, so all LLP interactions respectively

occur using either a single raw IP socket that filters all SCTP

traffic or a single UDP socket bound to a known tunneling

port.

LLP Outbound – Throughout the stack, LLP outbound

(LO) interactions pass SCTP PDUs downward towards the

wire. When an application above SCTP sends data destined for

some remote application, an LO interaction occurs. Elsewhere,

the protocol generates LO interactions when it needs to pass

some necessary control information. This happens when, for

example, the protocol specification requires a Selective Ac-

knowledgment (SACK) to be sent to acknowledge the receipt

of data.3 All LO interactions in the stack call an IP OUTPUT

macro which in our userspace stack, we implement as a simple

sendmsg() call used with a raw socket for SCTP/IP or a

UDP socket for UDP encapsulation. Therefore, like the kernel

SCTP implementation, we presently make use of the kernel

IP layer for routing as well as interfacing with the NIC.

LLP Inbound – When packets arrive from the wire and

progress up into the SCTP stack in Figure 2, an LLP inbound

(LI) interaction occurs. LI interactions occur unpredictably,

however, it is important that the SCTP PDUs are handled

promptly as the internal protocol state of the association is

time-sensitive. In the kernel SCTP implementation, SCTP

PDUs enter the SCTP stack by way of the sctp_input()

method which is registered as a callback upon initialization of

the network stack. This callback is fired when an SCTP packet

arrives to the kernel IP implementation or to the assigned UDP

encapsulation port.

In a userspace SCTP implementation, no such callback is

registered as the kernel is operating within its own protection

domain. Nonetheless, there is still a need to react responsively

to LI interactions; in order to provide this, a thread is used to

poll for the asynchronous arrival of SCTP PDUs. We use the

portable pthread library to create a thread that polls with

a blocking recv() on each lower-layer socket and passes

the SCTP PDU into sctp_input(). We have one thread

that filters SCTP/IP packets by way of the raw socket and in

addition, we have another thread that filters UDP-encapsulated

SCTP packets on our UDP socket.

The main difference between our userspace stack and the

kernel stack is that LI interactions cross the kernel boundary

in our userspace version whereas for the kernel, the LLP

boundary is internal to the same protection domain inside the

kernel. When inside the same protection domain, a callback

mechanism can be used for asynchrony[30],4 as is the case

with the kernel SCTP implementation. On the other hand,

for our userspace SCTP implementation, we make use of the

kernel IP implementation which is in a different protection

domain so we cannot use a callback mechanism for LI

interactions to execute userspace code inside the kernel. Our

thread calls recv() which uses Berkeley sockets thereby

crossing into kernel space for the IP implementation. A wake-

up occurs to traverse this kernel-userspace boundary to notify

the blocking recv() call that an SCTP PDU has arrived and

been placed in the lower-layer socket buffer.

3In SCTP, Selective Acknowledgements are the mandatory acknowledge-
ment mechanism whereas in TCP, SACK is an alternative to cumulative
acknowledgements. SCTP needs a more expressive acknowledgement scheme
because data arrive out-of-order more commonly due to multihoming [3].

4We describe the design of our callback optimization for this userspace
SCTP stack in Section IV-A.



B. ULP Interactions

At the upper layer, much of the FreeBSD kernel code

that the userspace stack is based on assumes it is going

to use FreeBSD’s implementation of the Berkeley sockets

API. Within the SCTP stack itself, the structures used to

implement sockets in FreeBSD are intertwined throughout the

code. Many different socket-related functions and structures

are used extensively throughout the SCTP stack. In order for

the SCTP stack to operate in userspace as shown in Figure

1-(2), these socket structures were exposed to userspace. We

implement these socket structures and their related methods

that are used by the SCTP stack itself.

In Figure 1, ULP interactions to the various SCTP stack

implementations are represented by the dashed horizontal

line. In the methods we exposed to userspace, these ULP

interactions use locks to signal between the application and the

transport stack. When an application no longer has to block

on either a send or receive, a wake-up occurs via these locks

from the stack to the user.

ULP interactions happen between the userspace stack and

the application by way of our initial API which uses a

userspace_ prefix to the known Berkeley sockets API to

denote the name of the methods we implemented with the

semantic equivalent to their Berkeley socket counterparts. This

custom socket API is listed in Table I. The disadvantage

of using a different function name than the Berkeley socket

API is that this requires applications to be ported to use our

API directly. However, if applications were written using an

API implemented in middleware like the Message Passing

Interface (MPI), only the middleware implementation will

have to change to use our API; the MPI programs themselves

will retain their portability.

C. SCTP Implementation Internal

Inside the SCTP implementation itself, several other items

needed to be implemented for the userspace implementation

to operate on all platforms.

Memory Allocation – A transport protocol needs to avoid

excessive copying and to quickly allocate/deallocate memory

for SCTP PDUs. Inside of the kernel, PDUs are passed

between the transport layer and below to the wire without

an excessive number of copies; as the PDUs cross these layer

boundaries, using an internal structure maintains a reference

count and a pointer to the PDU’s memory. In the Linux kernel,

these memory management structures are called sk_buffs

whereas in FreeBSD-based systems, they exist within the

kernel known as mbufs These structures are initially allocated

in their respective kernel making use of a slab allocator to

avoid fragmentation. This is done through its object caching

strategy that is used when allocation and deallocation of

memory of the same type/size is happening frequently, as is

the case with mbufs within a networking stack. Chunks stay

in a per-CPU cache.

mbufs are used throughout the FreeBSD SCTP kernel stack

which our userspace SCTP implementation is based, so we re-

implemented mbufs and their support functions in userspace.

Our stack can be configured to provide mbuf allocation

using either malloc() from the heap or using the user-level

libumem slab allocator [31], the latter of which is the default

option for better performance on standard hosts whereas the

former is used for smaller devices and for easier debugging.

Timers – As with any transport protocol, there are a number

of timers needed to ensure reliable transmission as part of

SCTP’s state machine. A transport layer needs to keep track of

time, deciding when to make responses or queries. An example

of this is when establishing a connection. An INIT packet is

sent and if the INIT-ACK is not received within a timeout,

then the INIT needs to be resent. A more common example is

a DATA chunk; if it is not acknowledged by a SACK before

a timeout, this DATA chunk needs to be resent.

In our implementation, we provide the ability to schedule

and deschedule timed transport interactions using a callout

queue that runs in its own thread. This thread has an event

loop and it maintains all timed events, firing the appropriate

callbacks at their expiration times. If an event is not cancelled

by another thread before that event timer expires, then it is

serviced by the event loop when firing the associated callback

at the desired time. This same approach is used in the FreeBSD

kernel implementation.

The overhead of our timer implementation is minimal.

Timeout values for a transport protocol are typically on the

order of tens of milliseconds so we set our timer thread’s

event loop to only be awaken every 10 ms.5 This is very coarse

for a modern 2 GHz CPU to handle and therefore comes at

a very low cost since it can handle 2.10 × 10
7 instructions

elsewhere in 10 ms. When the thread awakes, it checks to see if

it must deliver any expired timers for specific events. However,

the majority of the time under standard operating conditions,

there are no expired timers as their conditions have been met

by packets received by the LLP thread. When conditions of

a timeout event are met from any thread in the stack, their

events are canceled and removed from the event loop, so even

when the timer thread awakes, it typically has very little to

do.

Platform Specific – Different operating systems have their

own peculiarities. One difference is Linux puts the IP length

into network byte order while other platforms do not. Another

difference is in FreeBSD and Mac OS X, the length of the

socket address structure, sin_len, is included in its length

calculations while in Linux, it is not.

A final example of a difference across platforms is atomic

operations. Because we have several threads operating on

the same common data, we needed to add a locking so-

lution. This was accomplished by creating an implementa-

tion for the ATOMICS macros used throughout the SCTP

implementation. For Mac OS X, we made use of the

OSAtomic interface where as for other platforms, we made

use of the atomics built-in to GCC versions 4.1+ named

__sync_fetch_and_{subtract,add}.

5A timer with a higher resolution could be used if there was a desire to set
the timeout values to a smaller numbers.



Function Description

userspace_socket Returns a userspace socket.

userspace_bind Binds a particular port and address set to a userspace socket.

userspace_listen Enables server-side capabilities of a socket.

userspace_accept Blocks until it returns a new userspace socket on a listening server.

userspace_connect Connects to a remote userspace socket.

userspace_sctp_sendmsg Sends data on a userspace socket.

userspace_sctp_recvmsg Receives data from a userspace socket.

sctp_setopt Allows the setting of socket options on a userspace socket.

TABLE I
SCTP USERSPACE CUSTOM SOCKET API FUNCTIONS

Fig. 3. Userspace SCTP Implementation Threads

D. Userspace Stack Project Properties

We now have a stack capable of running custom-built

applications using our userspace SCTP stack. The SCTP

portion of our stack runs entirely inside the same process as the

application using it. State for application socket mappings or

ports does not need to be communicated across the userspace-

kernel boundary. Each application has their own instance of

the complete stack, so there is no persistent state for default

transport configuration settings. Changing most values for an

application therefore requires a code change, however for

convenience we read commonly used settings such as UDP

encapsulation from an environment variable. Future designs

could similarly store the values in a configuration file or on a

persistent daemon.

Figure 3 summarizes the threads used in our userspace

stack. There are potentially five threads in total used to

implement our userspace SCTP, but potentially only four

depending on the choice of memory allocator as libumem

internally uses a thread and malloc()/free() do not.

Under standard operating conditions, the timer event manager

thread is inactive as well as is the receive thread that is not

being used, e.g. the raw IP receive thread if we our application

is running encapsulated over UDP.

Overall, this project provides a complete, full-featured

userspace SCTP stack operating on Linux and other operating

systems. Recently, this code has been contributed to the SCTP

community by having committed to the common repository for

the Windows, Mac OS X, and FreeBSD SCTP stack code. This

SCTP userspace stack itself was a major contribution as a tool

not only for use in this research but by the SCTP community as

a whole. With our changes and use of preprocessor directives,

we do not prevent the original code from working on their

respective kernel platforms, so long as they are configured

directly. Since it is put in this repository, going forward,

our userspace stack continues to inherit future updates to the

FreeBSD kernel stack.

The solutions presented here extracted the best kernel

implementation of SCTP from FreeBSD and provided the

necessary parts in order to make all of its features usable

across all network devices and platforms. Our userspace

SCTP stack is the first to implement CMT in userspace, a

feature which provides the simultaneous transfer of data in

environments with multiple network links. Techniques similar

to those presented so far have been achieved by others for

SCTP [11] and TCP [16], [17], [18], [19], [20], as Section II

describes. However, we show next in Section IV how our novel

optimizations achieve throughput and latency comparable to a

kernel implementation.

IV. USERSPACE STACK THROUGHPUT, LATENCY, AND

OPTIMIZATIONS

We describe and compare the performance of our userspace

SCTP stack over a single Gigabit NIC configuration. We show

its initial throughput results using a single-homed bandwidth

test over Gigabit Ethernet. Our tests are conducted between

two quad-core, dual socket (8 cores per node) Intel Xeon R

X5550, 64-bit machines, running at 2.67 GHz. All machines

have 12 GB of memory and two machines run Linux kernel

2.6.18-194.8.1.el5 while two ran the FreeBSD 9.0-CURRENT

r214412 kernel.

This section describes our initial results together with the

optimizations we designed and implemented to improve the

throughput and latency. We first introduce in Section IV-A

our callback API, an optimization that we designed for our

userspace stack to increase throughput. After this in Section

IV-B, we compare the results of the ported socket API to our

callback API. Next in Section IV-C, we compare our userspace

stack’s throughput running on FreeBSD to Linux. After that



in Section IV-D, we show the benefit that adding a threshold

can have in order to activate our send-side callback. Finally, in

Section IV-E, we show the lower latency we can get when our

userspace stack is no longer device-agnostic by showing that

we can modify the device driver in order to achieve within

2µs of one-way latency compared to the Linux kernel TCP.

A. Callback API

In the kernel implementations, ULP interactions cross the

kernel-userspace boundary, necessitating a wake-up operation

to alert blocking operations that they are complete. For com-

patibility with the original kernel code, we implemented a ULP

wake-up operation for the userspace stack, despite the fact that

ULP interactions do not cross protection domains since both

are in userspace. As a result, our initial userspace stack has

an extra wake-up operation because in the userspace stack,

there is a wake-up for the ULP interactions above the stack to

the application as well beneath the stack to the socket being

used for LLP interactions. Profiling confirmed that our initial

implementation of ULP sockets spent an excessive amount of

time acquiring locks.6

To avoid this extra wake-up within the socket implemen-

tation at the ULP boundary of our userspace stack, we

designed an alternative API whose purpose was to bypass

locking altogether since the application and transport stack

were already in the same protection domain, namely userspace.

We implemented a callback mechanism where all operations

are non-blocking, so either the send or receive will complete

immediately or the user can register a function that is fired as

soon as the socket call is no longer blocking. For a receive,

this callback is fired when the DATA chunk arrives. For a

send, this callback is fired when sent data is acknowledged

by the corresponding SACK packet, and space opens up in

the send socket buffer beyond some specified threshold; this

send-side threshold avoids wasting compute cycles by firing

the send-side callback unnecessarily when a send is not going

to succeed because a message is larger than the free space

in the send socket buffer at the time. The threshold gives

the transport protocol a hint to the application’s next desired

use, so it is therefore an example of a tighter integration of

application and transport protocol; its benefits are shown in

Section IV-D.

Recall from Figure 3 in the design description that there

are receive threads, one for SCTP/IP packets and another for

SCTP/UDP/IP packets. When one of these threads receives

a packet, the packet is processed within that receive thread;

in addition to doing the necessary processing required by

SCTP, the registered callback function from the application

is also executed in that same thread. This occurs without

requiring a signal to the application as is the case when

using costly locks contained within the socket structures. The

callback mechanism is an efficient technique for using the

userspace stack, compared to sockets. This approach is similar

6The exact results varied depending on the operating system of the test, as
will be presented in Section IV-C.
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Fig. 4. Socket API versus Callback API for Userspace SCTP on FreeBSD

to APIs provided by Infiniband and other Ethernots[32]. It

does not avoid locks altogether within the stack but it lessens

their use at the ULP boundary; the LLP wake-ups are still

necessary beneath our stack because we use the OS supplied

implementation of Berkeley raw sockets and UDP sockets.7

B. Socket API versus Callback API

Our original userspace SCTP results running on FreeBSD

are shown in Figure 4, with data points every 10 bytes. The

faint vertical lines are the packing boundaries for multiple

DATA chunks in one packet of MTU 1500, so naturally for

SCTP which is message-based, there is a drop just after these

boundaries when a packet cannot be efficiently packed.

The top two lines shown are the Linux kernel TCP curve as

well as the FreeBSD kernel SCTP results to a bandwidth test.

We repeat these two lines in Figures 4, 5, and 6 for reference.

Although not shown in this figure, the FreeBSD kernel had

the best throughput of all the SCTP implementations that we

tried, matching the theoretical best for message sizes of 340

bytes and higher. Linux kernel TCP and FreeBSD kernel SCTP

are equal for larger messages but as expected for bandwidth

results, TCP can do better for smaller messages because it

does not delimit the message boundaries in its stream of bytes.

TCP’s header is 20 bytes for all message sizes, while on the

other hand, SCTP uses a 16 byte common header and then has

a 12 byte header per DATA chunk. Small messages are CPU-

bound for SCTP to do this extra processing therefore their

throughput is less than TCP; the communication pipe can be

filled more easily for SCTP as the message size grows and the

CPU is no longer the bottleneck.

The lowest line in Figure 4 shows our bandwidth results

from our initial API which is similar to the Berkeley sockets

API, described in Section III. As one can see, this original

userspace design, which uses the full userspace port of the

FreeBSD socket structures, cannot achieve the bandwidth

levels that the kernel implementations can.

7A callback mechanism like ours could avoid the costs of wake-ups in a
kernel-based sockets implementation as well however, giving the application
hooks to execute their code in the kernel can be unsafe as their execution
would block the kernel from doing other more important tasks.
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Figure 4 shows that the decrease in locking in the callback

mechanism results in higher bandwidth benchmark results.8

This figure shows that the lowest bandwidth results are of the

original port that made use of the socket structures whereas the

curve using our new callback mechanism that avoids the locks

performed approximately 35% better than the socket API port.

However, both of these userspace approaches when measured

on FreeBSD are still worse than the kernel implementations.

Further optimizations were necessary, as we continue to de-

scribe below.

C. Linux versus FreeBSD

In Figure 4, we had conducted our tests in FreeBSD. Using

the same hardware, we tested our bandwidth results for Linux.

These results are shown in Figure 5. Figure 5 shows several

facts. To begin, the FreeBSD kernel SCTP implementation is

better than the Linux kernel SCTP implementation, however

both of these are better than the FreeBSD userspace results

making use of the callback API reported previously. Figure

5 shows the userspace stack with the callback mechanism on

Linux generally outperforms the kernel SCTP implementation

in Linux, particularly for messages < 475 bytes. These results

indicate that we could now achieve the desired throughput for

an SCTP stack in Linux by using our portable userspace SCTP

implementation.

In general, the results for our userspace stack were

better in Linux than in FreeBSD. We decided to profile

why this is the case. Using the valgrind callgrind

tool which works with both FreeBSD and Linux, we

found that the most time consuming functions are

pthread_mutex_unlock and pthread_mutex_lock,

where pthread_mutex_unlock is even called more

often and needs more time. However, we saw that with

Linux the impact of these functions was not as great

(5% versus 17%), so it was logical to conclude that the

implementations of pthreads are different on Linux and

FreeBSD. It also indicated to us that by using Linux on the

same hardware, we could obtain higher bandwidths with our

8The semantics of our callback mechanism are different than those provided
by the socket API, however our bandwidth application could easily adapt from
the socket API to the new semantics of our callback mechanism.
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userspace implementation as a result of the improvements

to the pthreads implementation or using an alternative to

pthreads such as coroutines that demonstrates consistent

performance portability across platforms.

D. Callback Threshold

We also implemented a send-side callback, however, our

bandwidth results still were not as high as a kernel implemen-

tation. To investigate, we performed bandwidth interoperability

tests between our userspace stack and the FreeBSD kernel

implementation, doing (1) kernel-send/userspace-receive fol-

lowed by (2) userspace-send/kernel-receive. The results were

uneven, indicating a bottleneck. The bandwidth for (1) was

higher than the bandwidth for (2). The send-side implemen-

tation of our userspace stack was therefore the bottleneck.

Not only is the send-side problematic because it has to deal

with SACK processing, but the send-side callback was firing

too frequently since our original send-side callback scheme

invoked the callback with each SACK.

In light of excessive firing of the send-side callback, we

modified our register_send_cb call so that the user can

now choose to provide a threshold such that the send-side

callback was only called when a user-specified amount of

free socket buffer space is present. The idea was, that if the

send-side callback is fired less often, we could improve the

throughput. The threshold is compared to the free space in

the socket send buffer. Typically this is the size of the next

messages that will be sent. We compare our new approach

with the original in Figure 6 and as is shown there, making

use of a threshold increased the bandwidth for some message

sizes up to 5%.

E. Driver Effects on Latency

Our initial latency tests showed that the latency of a kernel

implementation was much faster than our userspace SCTP

stack. We suspected that this was because the NIC’s device

driver coalesces interrupts by way of its automatic interrupt

modification (AIM) scheme. Coalescing would increase mes-

sage latency for small messages whereas for larger messages,

bandwidth would be the limiting factor. In the default driver,

AIM was enabled and there was no simple mechanism for

disabling it other than recompiling the driver.



OS and Transport Time (µs)

Kernel Linux TCP 21.48

Userspace FreeBSD SCTP CB w/o AIM 23.24
Userspace FreeBSD SCTP CB w/ AIM 25.2
Userspace Linux SCTP CB 30.5

Kernel Linux UDP 12.5
Kernel FreeBSD UDP w/o AIM 12.26
Kernel FreeBSD UDP w/ AIM 12

TABLE II
ONE-WAY LATENCY FOR 30 BYTE PAYLOAD

As a solution to this, a driver modification would be

necessary. So far, all of our modifications have been either

within the SCTP stack itself or adjusting the upper-layer

boundary to the stack. We implemented a simple patch for the

device driver to be able to adjust when AIM occurs. As shown

in Table II for 30-byte messages, this slight modification to

the FreeBSD driver can decrease the one-way latency of the

userspace SCTP stack to be on par with that of the Linux

kernel’s TCP implementation. Without modifying the lower-

layer of the userspace stack, we have the optimal combination

of portability with high performance, as shown in Figure 1-(2).

Future work involves integrating the lower-layer of the stack

to a particular device as Solarflare [17] has done for TCP and

is shown in Figure 1-(3); this will make our userspace stack

less portable but will result in further decreases in latency than

have been initially demonstrated here.

V. CONCLUSIONS

We have provided a tuned userspace implementation of

SCTP which enables SCTP’s additional features on most

major platforms, including Linux. Our results show that hav-

ing the transport protocol and the application in the same

protection domain can increase performance, as suggested by

Jacobson and Felderman[13]. By putting the transport stack

into userspace and implementing our novel technique which

supplies a callback triggered beyond a particular threshold, ap-

plications and the transport protocol have a tighter interaction.

The optimizations to our userspace SCTP stack demonstrate

higher throughput than the Linux kernel implementation of

SCTP even without device-specific modifications. Making

use of our callback mechanism, our SCTP userspace stack

was able to perform on par with the Linux kernel TCP

stack for large messages in bandwidth microbenchmarks. A

simple driver adjustment decreased the latency measurements

of our userspace SCTP stack for small messages by disabling

interrupt coalescing. Future device-specific optimizations such

as utilizing zero-copy to obtain full kernel bypass could yield

further performance gains for the userspace stack.

These are the opinions of the authors, not their affiliations.
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