
Voice Query Refinement

Cyril Allauzen1, Edward Benson2, Ciprian Chelba1,
Michael Riley1, Johan Schalkwyk1

1Google, Inc, 76 Ninth AV, NY, NY, USA
2MIT CSAIL, 32 Vassar ST, Cambridge, MA, USA

allauzen@google.com, eob@csail.mit.edu, ciprianchelba@google.com,

riley@google.com, johans@google.com

Abstract

We describe a system for the refinement of spoken search
queries. Given an initial query (Northern Italian

restaurants in New York), instead of requiring a
fully-specified followup query (Korean restaurants in

New York), a more natural, abbreviated update query
(Korean instead) may be spoken. The system consists of
a parsing step to identify the type and arguments of the refine-
ment, a candidate generation step to enumerate the possible re-
finements, and a model classification step to select the best re-
finement. We present results on test query refinements given
both to this system and to human judges that show the auto-
mated system outperforms the human judges on that data set.
Index terms: spoken dialog systems, voice search, query re-
finement

1. Introduction
Speech recognition technology is approaching a quality
sufficient to enable a wide variety of devices to incorpo-
rate spoken natural language interfaces. While these in-
terfaces are already appearing, they tend to be “one shot”
in nature: the user issues a single voice command or in-
put, to which the device responds. A step beyond these
initial deployments is conversational interfaces: the com-
puter having the ability to sustain a stateful natural lan-
guage conversation with the user about a particular topic.
Apple’s Siri interface has rudimentary capabilities in this
direction.

This paper examines a subset of the conversational
interface problem that we call input refinement. Input
refinement occurs whenever the user wishes to refine
or correct some previous utterance. We look specifi-
cally at query refinement, the act of taking some initial
query (e.g., Northern Italian restaurants
in New York) and modifying that query to obtain dif-
ferent results (e.g., Korean restaurants in New
York) in a search setting.

With a keyboard interface, query refinement is ex-
plicit: the user manually edits the initial query to pro-
duce the refined one, which is then sent in its entirety.

q1 “used books”
q2 “paperback”
q3 → used paperback books
q1 “sports clubs in Boston”
q2 “Cambridge not Boston?”
q3 → sports clubs in Cambridge
q1 “Northern Italian restaurant”
q2 “Korean instead”
q3 → Korean restaurant

Figure 1: Example spoken query refinements

With voice-based interfaces, however, we wish to allow
the user to express only the difference between the first
query and the new query, permitting a briefer and more
natural speech interface. Several examples of how this
system might work are shown in Figure 1.

The overall problem formulation is first described in
Section 2. The models used to predict the correct refined
query from the voice input are presented in Section 3 and
the data used to train and test the models are described in
Section 4. Experimental results are presented in Section
5 and a discussion of the results concludes in Section 6.

2. Problem Formulation
We define a query refinement as a triple 〈q1, q2, q3〉where
a user issues an initial query q1, then utters a refining
phrase q2 with the intent of producing query q3, as in the
examples in Figure 1. At serving time, the challenge is
producing an appropriate q3 given only 〈q1, q2〉.

We divide the problem into two basic steps: first
a parsing step to determine the type and arguments of
the refinement specified by q2 and then an editing step
that applies the refinement in the appropriate place in
q1 to generate q3. In the first example in Figure 1,
q2 specifies the word paperback is to be inserted,
in the second example the word Cambridge is to be
substituted for Boston, and in the third example the
word Korean is to be substituted but the text to be
replaced is not explicitly specified in q2. In general,
q2 can be classified into one of the refinement types

Northern Italian restaurant
Korean restaurant

(a)

Northern Italian restaurant
Nortern Korean restaurant

(b)

Northern Italian restaurant
Northern Italian Korean

(c)

Figure 2: Example candidate alignments. The top row is the initial query q1, while the bottom row are candidate refined queries q3.

T = {insert, delete, substitute, new} where new
means that q2 is a new search unrelated to the previous
query. Further in the substitution case, either the text to
be replaced is specified in q2 or not.

Thus the parsing step consists of converting the voice
input 〈q1, q2〉 into a parse (q1, s, τ, r) where s specifies
the the text to be inserted, deleted or substituted, τ ∈ T ,
and r is the text to be replaced when specified in q2 or
is ε otherwise. When r = ε, we may write the parse as
(q1, s, τ). How we perform the parsing step is described
in Section 3.1.

Given the result of the parsing step, the editing step
needs to be performed on q1 to produce q3. This itself
can be divided into two steps. First, all possible (or plau-
sible) edits are generated. A possible edit is specified by
an alignment between q1 and s and the refinement type.
This alignment can then be extended to one between q1
and a candidate q3 by preserving the unmatched words in
q1 in q3. For example, Figure 2 shows several possible
alignments for the third example in Figure 1. The italic
text shows how the substituted text s is matched in q1,
while the unmatched text in q1 is otherwise preserved to
form an alignment between q1 and a candidate q3. Note
a multi-word phrase may need to be aligned to a word or
another phrase (e.g., in Figure 2(a)). In Section 3.2, we
describe precisely how the candidate alignments are gen-
erated. In Section 3.3 we describe data-driven approaches
to scoring these edits to identify the best one.

3. Models
3.1. Query Parsing

As described in the previous section, the parsing step con-
verts the query pair 〈q1, q2〉 into a parse (q1, s, τ, r). We
will make the simplifying assumption that the parse can
be performed by a context-free grammar applied to q2.
See the discussion in Section 6 for more general settings.

A simple CFG grammar (Σ,N , Q,P) with ter-
minal symbols in Σ, non-terminal symbols N =
{Q, Ins,Del, Sub,New, S,R}, initial symbol Q and
productions P:

Q → Ins | Del | Sub | New
Ins → insert S | S
Del → delete S
Sub → S not R | S instead
New → search for S
S → Σ | ΣS / δ
R → Σ | ΣR / δ

cover the examples in Figure 1. Clearly, a parse tree of

q2 can be used to determine (q1, s, τ, r). In an ambigu-
ous case, the weighted rules (with weight δ) can be used
to penalize parses with fewer non-terminals, so the most
detailed parse can be selected. In our actual system, many
more productions are added to increase the grammar’s
converage.

If the parse determines that q2 is a new search, it is
issued. Otherwise, the editing step is performed on the
refinement as described in the next sections.

3.2. Candidate Generation

We now describe how alignments between query pairs
are generated. These alignments can be between words
or contiguous phrases up to a given length k (typically
k = 3 here). Formally, a k-gram alignment between two
strings x and y over an alphabet Σ is a sequence π =
a1 . . . al of alignment terms with

ai = (i[ai], o[ai]) ∈ Ak = (Σ≤k×Σ≤k)−{(ε, ε)} (1)

and such that i[π] = i[a1] . . . i[al] = x and o[π] =
o[a1] . . . o[al] = y. Given an edit cost function c :
Ak → R, the cost of an alignment π is defined as
c(π) =

∑l
i=1 c(ai). The edit distance between x and

y is the minimal cost of an alignment between x and y.
This is essentially the classical edit distance except we
allow edit operations on n-grams of order up to k. The
Levenshtein distance can be obtained by setting k = 1
and c(a) = 0 if i[a] = o[a] and c(a) = 1 otherwise.

An alignment rewriting ρ is a morphism mapping π =
a1 . . . al to ρ(π) = ρ(a1) . . . ρ(al). In the following we
will consider the substitution rewriting ρsub, the deletion
rewriting ρdel and the refinement rewriting ρref defined
as follows, for a ∈ Ak:

ρsub(a) =

{
(i[a], i[a]) if o[a] = ε

a otherwise, (2)

ρdel(a) =

{
(i[a], i[a]) if o[a] = ε
(i[a], ε) otherwise and (3)

ρref (a) =

{
(i[a], ε) if i[a] = o[a]
a otherwise. (4)

Given a parse (q1, s, τ, r), we generate a set of pos-
sible candidate alignments which are alignments π such
that i[π] = q1 and o[π] is a candidate for q3. Let us as-
sume that r = ε. We first compute a set Πe of possible
edits, that is k-gram alignments between q1 and s.

Πe = {π ∈ A∗k|i[π] = q1, o[π] = s, c(π) < λ, φ(π) < θ}
(5)

where c is an edit cost function and φ : A∗k → R is an
alignment-level scoring function. Both c and φ depend on
the type τ of refinement considered. We chose a function
φ that penalizes non-contiguous alignments. The thresh-
olding using c and φ is done to limit the number of align-
ments to consider.

The set Πc of candidate alignments is generated by
applying a rewriting r to each alignment in Πe:

Πc = {π|π = ρ(π′), π′ ∈ Πe}. (6)

The rewriting ρ used depends on τ : for τ = delete,
we use ρ = ρdel and for τ ∈ {insert, substitute},
we use ρ = ρsub. The case when τ = substitute and
r 6= ε is handled as follows. We first align q1 and r on one
side, and r and s on the other. We then apply a rewriting
similar to ρsub to the combined alignments.

In Figure 2(a), the alignment between q1 and s
is (Northern Italian, Korean)(restaurant, ε) and
the appplication of ρsub results in the candidate alignment
(Northern Italian, Korean)(restaurant, restaurant).
The set of candidate alignments is computed and
compactly represented using weighted finite-state
transducers.

3.3. Candidate Selection

Given a pair 〈q1, q2〉 and set of candidate alignments
Π = {π1, π2, . . . πn}, the next step is to decide which
candidate alignment is best.

3.3.1. Language Model-Based Selection

One approach is to measure how likely each candidate
q3 = o[πi] is to be a query irrespective of q1. For
example, in Figure 2, (a) Korean restaurant is
probably a much more likely query than (c) Northern
Italian Korean. A simple method to evaluate this
is to find the probability of each o[πi] according to an n-
gram language model Pr[q] trained on queries and select
arg maxi Pr[o[πi]]. The language model used in our ex-
periments was an interpolated 4-gram trained using Katz
backoff from the data sources described in Section 4 and
having 55 million n-grams.[1]

3.3.2. Refinement Model-Based Selection

The language model-based approach does not take advan-
tage of the information in the original query during candi-
date selection. For this, we will build a query refinement
model that uses the complete alignment information. As-
sume we have available a corpus of actual query refine-
ments 〈q1, q2, q3〉j that will serve as our training corpus.
For each 〈q1, q2〉j pair, generate candidate alignments Πj

as described in the previous sections. Those alignments
that correspond to q3 are labeled with 1 as correct, the
others are labeled with 0 as incorrect.

This is now a learning problem that can be ap-
proached in various ways: e.g. multiclass classification
or ranking. We take a simple approach of training a bi-
nary classifier on such data and then selecting the highest
scoring alignment from the classifier. In particular, we
train a maximum entropy model:

Pr[y|π] = Z(π)eθ·f(π), y ∈ {0, 1}

with feature function f on the alignment, feature
weights θ, and normalization Z(π). We then select
argmaxiPr[1|πi] as our best scoring candidate.

Various features are used on each alignment
π = a1 . . . al including a binary feature for each
observed phrase i[ai] and o[ai] and for each phrase
pair ai. Features for part-of-speech and category tags
and for word shape on each i[ai] and o[ai] and tag
pairs on each ai allow syntactic and semantic gen-
eralization. The part-of-speech tags (Korean:ADJ,
restaurant:Noun) are dictionary-derived, while the
category tags (Korean:{cuisine,nationality},
restaurant:{place,business}) are web-
derived using Hearst patterns [2]. We additionally
include binary features for the edit location (prefix,
suffix, infix) and edit terms.

4. Data
4.1. Language Model

The training data used for the language model in Section
3.3.1 was drawn from six anonymized and randomized
sources that include voice input text from Android, tran-
scribed and typed search queries, and SMS messages and
totaled over 2 billon words.[1].

4.2. Refinement Model

Ideally, we would use transcribed voice refinement logs
to train the refinement model in Section 3.3.2. That
would require 〈q1, q2〉 be logged and q3 be hand-
annotated or otherwise derived. However, no such data
is available without an existing voice-refinement system.

To bootstrap this process, web search query logs were
instead used to synthesize pseudo voice-refinement logs.
Assume we observe in our logs two consecutive typed
queries q1 and q3 from the same session such that the
edit distance between q1 and q3 is small. This might
have been a textual refinement and we can recover the
underlying s and τ . We compute the best contiguous
unigram alignment π between q1 and q3. We set τ =
insert if π ∈ {(ε, σ), (σ, σ) |σ∈Σ}∗ and τ = delete

if π ∈ {(σ, ε), (σ, σ) |σ ∈ Σ}∗. Otherwise, we set
τ = substitute. We can then recover s by apply-
ing the relevant alignment rewriting. For instance, if
τ ∈ {insert, substitute}, we apply the rewriting
ρref from Section 3.2 and set s to o[ρref (π)].

The training data for the refinement model was drawn
from anonymized typed search query logs for a single
day. To ensure no user-identifiable information is ex-
posed, all pairs, culled by the above process, containing a
query which occured in less then 50 distinct web sessions
that day were discarded. This resulted in approximately
100 thousand (q1, s, substitute) tuples and large num-
bers of deletions and insertions as well.

5. Results
Without true voice refinement data, it is not obvious how
to evaluate the parsing step in Section 3.1. In practice,
the user will simply have to stay within the grammar at
this point. However, it is possible to evaluate the editing
step by collecting a test set from Google’s logs similar
to but distinct from the training data used in Section 3.3.
As with that training data, the logs were used to iden-
tify typed query refinements and to simulate a voice re-
finement. The evaluation task is to correctly produce q3
given only the tuple (q1, s, τ, r). In our experiments we
only considered τ = substitute and r = ε since our
initial explorations showed that the deletions, insertions,
and substitutions where text to be replaced is specified
were much easier to solve. Our test set consisted of 690
such substitutions. A result was scored correct only if the
prediction exactly matched q3.

We used three human judges as the baseline since
no comparable systems for spoken query refinement was
available. For each data point, the human judges were
given the (q1, s, substitute) and a list of the four most
likely candidates produced by the candidate generation
step from Section 3.2. When the correct answer did not
appear in this list, we replaced the fourth slot with the
correct answer (giving the human judges the advantage
of a short list known to contain the correct answer). Each
judge was asked to select the best candidate among the
choices given, or select NONE if they did not feel any of
the choices were appropriate.

The results of the human and model performance on
the test set are shown in Figure 3. The columns are for
the three human judges, the language model-based sys-
tem (Section 3.3.1) and the refinement model-based sys-
tem (Section 3.3.2). The Full row shows the accuracy
on the full test set, and the 2Agree row is for the subset
containing only test samples for which two human judges
agree. The refinement model-based system outperforms
the language model-based system and all human judges.

6. Discussion
The manually-generated CFG for the parsing step in Sec-
tion 3.1 is clearly subject to coverage, accuracy and am-
biguity problems. Once actual voice refinement data
is collected from a live system, these problems can be
evaluated and addressed by improved grammars, learned

Judge 1 Judge 2 Judge 3 LM RM
Full 73.6 70.7 65.1 57.1 76.3
2Agree 74.9 72.2 66.5 57.6 76.9

Figure 3: Refinement percent accuracy for the language model
(LM), refinement model (RM) and three human judges perform-
ing the same task on the full dataset and a subset filtered by
2-way human agreement.

weights or productions and perhaps folding some or all
of the parsing step into the learned editing step.

Although the refinement-based system performed
better than the human judges, there are several reasons for
caution when extrapolating to actual voice refinements.
First, this system does relatively well when the human
judge doesn’t know anything about the query topic; this
would not normally happen in a real system. Second, the
typed logs-derived data have idiosyncrasies. For exam-
ple, users favor edits at the end of the input text, some
due to automatic query suggestions by the search engine.
In other cases, the users correct typographic errors. This
bias could be improved by filtering and eliminated by us-
ing actual voice-refinement logs once available.

7. Related Work
Past query refinement work has mostly been for typed
query applications. Some have focused on refinement
clustering and suggestion given a query [3, 4], using re-
finements to segment search sessions [5], and classifying
refinements into types (e.g., word reordering, substitu-
tion) [6, 7]. Other work shows that information-seeking
users choose an initial query and then refine it [8], is-
suing a new query only after several unsuccessful, often
non-systematic [9] refinement attempts.

8. References
[1] C. Allauzen and M. Riley, “Bayesian language model interpolation

for mobile speech input,” in Proc. of Interspeech, 2011, pp. 1429–
1432.

[2] M. Hearst, “Automatic acquisition of hyponyms from large text
corporaa,” in Proc. of COLING ’92, 1992, pp. 539–545.

[3] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy, “Clustering
query refinements by user intent,” WWW, 2010.

[4] S. Riezler and Y. Liu, “Query rewriting using monolingual statisti-
cal machine translation,” Computational Linguistics, vol. 36, no. 3,
Jan 2010.

[5] D. He, A. Göker, and D. Harper, “Combining evidence for au-
tomatic web session identification,” Information Processing and
Management: an International Journal, vol. 38, no. 5, 2002.

[6] J. Huang and E. Efthimiadis, “Analyzing and evaluating query re-
formulation strategies in web search logs,” CIKM, Jan 2009.

[7] M. Whittle, B. Eaglestone, N. Ford, V. Gillet, and A. Madden,
“Data mining of search engine logs,” Journal of the American Soci-
ety for Information Science and Technology, vol. 58, no. 14, 2007.

[8] A. Aula, R. M. Khan, and Z. Guan, “How does search behavior
change as search becomes more difficult?” CHI, 2010.

[9] A. Aula and K. Nordhausen, “Modeling successful performance in
web searching,” Journal of the American Society for Information
Science and Technology, vol. 57, no. 12, Jan 2006.

