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Abstract Graph matching is an essential problem in com-
puter vision that has been successfully applied to 2D and 3D
feature matching and object recognition. Despite its impor-
tance, little has been published on learning the parameters
that control graph matching, even though learning has been
shown to be vital for improving the matching rate. In this
paper we show how to perform parameter learning in an un-
supervised fashion, that is when no correct correspondences
between graphs are given during training. Our experiments
reveal that unsupervised learning compares favorably to the
supervised case, both in terms of efficiency and quality,
while avoiding the tedious manual labeling of ground truth
correspondences. We verify experimentally that our learning
method can improve the performance of several state-of-the
art graph matching algorithms. We also show that a similar
method can be successfully applied to parameter learning
for graphical models and demonstrate its effectiveness em-
pirically.
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1 Introduction

While there are many papers on solving the graph match-
ing problem efficiently (Berg et al. 2005; Leordeanu and
Hebert 2005; Leordeanu et al. 2009; Cour et al. 2006;
Gold and Rangarajan 1996; Schellewald and Schnorr 2005;
Carcassoni and Hancock 2002; Umeyama 1988; Zass and
Shashua 2008; Duchenne et al. 2009) very few propose
a solution for learning the optimal set of parameters for
graph matching in the context of computer vision appli-
cations (Caetano et al. 2007; Leordeanu and Hebert 2008;
Caetano et al. 2009). As shown in previous work, learning
the parameters is important for improving the matching per-
formance.

In this paper we show how to efficiently perform unsu-
pervised parameter learning for graph matching. A prelimi-
nary version of this work appears in Leordeanu and Hebert
(2009). Unsupervised learning for matching is important in
practice, since manual labeling of correspondences can be
quite time consuming. The same basic algorithm can be
used in the supervised or semi-supervised cases with min-
imal modification, if all or some of the ground truth matches
are available. We also show empirically that our learning al-
gorithm is robust to the presence of outliers. Our learning
algorithm is inspired from the properties of spectral match-
ing (Leordeanu and Hebert 2005), but it can be successfully
used for improving the performance of other state-of-the-art
matching algorithms (Sect. 5.3).

In earlier work (Leordeanu and Hebert 2005; Leordeanu
et al. 2009), we presented algorithms for finding correspon-
dences between two sets of features mainly based on the
second-order relationships between them. The reason why
spectral matching (Leordeanu and Hebert 2005) works effi-
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ciently is because the pairwise geometric scores favor cor-
rect assignments much more than incorrect ones. Accidental
assignments are rare, So strong pairwise scores between in-
correct assignments are unlikely, while such strong scores
between most correct ones are very likely. Of course, this is
a qualitative, intuitive explanation based on the assumption
that the scores are well designed and meaningful. Therefore,
an important issue is how to learn the parameters that control
the pairwise scores, which will make the algorithm work at
its optimal level in the task of matching a specific object type
or shape. The key question is: how can we automatically find
the optimal parameters during training, particularly without
knowing any ground-truth correspondences in the training
set?

One would ideally like to keep the pairwise scores be-
tween correct assignments high while lowering as much as
possible the pairwise scores between incorrect ones. But
how can we quantify this goal, and more importantly, how
can we learn these scores automatically? This is the issue
that we discuss in this paper, showing that it is possible to
learn the pairwise scores in an unsupervised way, that is,
without knowing the correct assignments during training.
We demonstrate experimentally that we can learn meaning-
ful pairwise scores even in the presence of outliers or in
cases when the training set is corrupted with pairs of fea-
tures for which there is no such set of correct assignments
(for example, when trying to find correspondences between
a motorbike and a car).

In earlier work (Leordeanu and Hebert 2006), we pre-
sented an algorithm for MAP inference for Markov Random
Fields, inspired from spectral graph matching (Leordeanu
and Hebert 2005). Since graph matching and MAP infer-
ence can both be formulated as similar integer quadratic pro-
grams, it is not surprising that similar algorithms can address
both problems, as shown in (Leordeanu and Hebert 2005;
Leordeanu and Hebert 2006; Cour and Shi 2007; Leordeanu
et al. 2009). Here we further explore the connection between
graph matching and MAP inference by also introducing a
method for learning the parameters that optimize the MAP
inference problem, inspired from the learning method for
graph matching. In the case of graph matching, our learning
method is the first to learn the parameters of the higher-order
(pairwise) terms in both supervised and unsupervised fash-
ions. Here we present a method for learning the parameters
that is not probabilistic and whose only goal is to find the
parameters that optimize the performance of the inference
algorithm, which is related to Szummer et al. (2008) and
Max-Margin Markov Networks Taskar et al. (2004). More-
over, we show that for some problems, such as image de-
noising, we can learn these parameters in a completely un-
supervised manner, similar to our unsupervised learning ap-
proach to graph matching.

2 Problem Formulation

The graph matching problem consists of finding the indica-
tor vector x* that maximizes a quadratic score function:

x* =argmax(x’ Mx) st.Ax=1, xe{0,1}". (1)

Here x is an indicator vector such that x;, = 1 if feature
i from one image/object (or graph) is matched to feature
a from the other image/object (or graph) and zero other-
wise. Usually, Ax =1, x € {0, 1}™ enforces one-to-one con-
straints on x such that one feature from one image can be
matched to at most one other feature from the other image.
In our work M is a matrix with positive elements contain-
ing the pairwise score functions, such that M;,; j, measures
how well the pair of features (i, j) from one image agrees
in terms of geometry and appearance (e.g., difference in lo-
cal appearance descriptors, pairwise distances, angles, etc.)
with a pair of candidate matches (a, b) from the other. The
local appearance terms of candidate correspondences can be
stored on the diagonal of M; in practice we noticed that in-
cluding them in the pairwise scores M;,; j», and leaving ze-
ros on the diagonal gives better results; M, j, is basically
a function that is defined by a certain parameter vector w.
The type of pairwise scores M;,; j; that we use in our exper-
iments is:

Miq: jb =exp (=W i jb), )

where w is a vector of weights/parameters (to be learned)
and g;4; j» is a vector (usually containing non-negative er-
rors/deformations) describing the changes in geometry and
appearance when matching the pair of features (i, j) to the
pair of features (a, b).

The MAP inference problem can have a similar formula-
tion as an integer quadratic program (Leordeanu and Hebert
2006; Cour and Shi 2007; Ravikumar and Lafferty 2006).
In this case the matrix M contains the unary potentials (on
the diagonal) and the interaction potentials (on the off diag-
onal elements) that control the joint probabilities. For MAP
inference, the constraints Ax =1, x € {0, 1}"* on the solu-
tion are usually many-to-one: many nodes from the graph
can have the same label. We present the actual implemen-
tation of these potentials in the experiments (see Sect. 6.5).
For MAP inference each node i is matched to a possible
label/class a. The main difference between the two formu-
lations is that, while in the case of graph matching we usu-
ally enforce one-to-one constraints on the indicator solution
vector x, for MAP inference many-to-one constraints are im-
posed.

Parameter learning for both graph matching and MAP
inference consists of finding a w that maximizes the perfor-
mance (w.r.t. to the ground truth correspondences) of match-
ing, as defined by Eq. 1, over pairs of training images or of
classification/labeling in the case of Markov Random Fields.
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3 Graph Matching Algorithms

Graph matching (Problem 1) is NP-hard, so efficient al-
gorithms must look for approximate solutions. The prob-
lem has received more attention in computer vision after its
formulation as a quadratic integer programming problem.
Many efficient approximate methods have been proposed
recently (Berg et al. 2005; Leordeanu and Hebert 2005;
Cour et al. 2006; Gold and Rangarajan 1996; Schellewald
and Schnorr 2005; Zass and Shashua 2008; Duchenne et al.
2009; Leordeanu et al. 2009). Here, we briefly review two
of our recently published algorithms for graph matching:
spectral matching (Leordeanu and Hebert 2005) and integer-
projected fixed point (IPFP) (Leordeanu et al. 2009).

3.1 Spectral Matching

Since its publication, our approach to spectral graph match-
ing has been applied successfully in a wide range of
computer vision applications such as: discovering texture
regularity (Hays et al. 2006), object category recogni-
tion (Leordeanu et al. 2007), object discovery (Leordeanu et
al. 2005; Parikh and Chen 2007, Parikh and Chen 2007), un-
supervised modeling of object categories (Kim et al. 2008;
Kim et al. 2008), action recognition in video (Yan et al.
2008), recognizing actions from video (Liu et al. 2009),
matching 2D object aspects (Ren 2007), 3D scene ac-
quisition (Huhle et al. 2008), capturing 3D human per-
formance (de Aguiar et al. 2008), and symmetry analy-
sis (Chertok and Keller 2010), among others. Also, spec-
tral matching was the starting point for other matching al-
gorithms, such as spectral matching with affine constraints
(SMAC) (Cour et al. 2006), integer projected fixed point
(IPFP) (Leordeanu et al. 2009), tensor higher-order match-
ing (Duchenne et al. 2009), and algorithms for MAP infer-
ence based on spectral relaxations (Leordeanu and Hebert
2006; Cour and Shi 2007).

Spectral matching optimally solves the following relaxed
variant of Problem 1:
x* = argmax(x’ Mx) s.t.x'x=1. 3)

The solution to this problem is given by the first eigenvec-
tor of M. Since M has only positive elements, by the Perron-
Frobenius Theorem, the eigenvector elements are also pos-
itive, which makes the post-processing discretization of the
eigenvector easier. This eigenvector also has an intuitive in-
terpretation due to the statistical properties of M. We ob-
serve that M can be interpreted as the adjacency matrix of
a graph whose nodes represent candidate assignments and
edges M;,; jp represent agreements between these possible
assignments. This graph has a particular structure, which
helps us understand why using the first eigenvector to find
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an approximate solution to Problem 1 is a good idea. It con-
tains:

1. A strongly connected cluster formed mainly by the cor-
rect assignments that tend to establish agreement links
(strong edges) among each other. These agreement links
are formed when pairs of assignments agree at the level
of pairwise relationships (e.g., geometry) between the
features they are putting in correspondence.

2. A lot of incorrect assignments, mostly outside of that
cluster or weakly connected to it (through weak edges),
which do not form strongly connected clusters due to
their small probability of establishing agreement links
and random, unstructured way in which they form these
links.

These statistical properties motivate the spectral ap-
proach to the problem. The eigenvector value correspond-
ing to a given assignment indicates the level of associa-
tion of that assignment with the main cluster. We can em-
ploy a variety of discretization procedures in order to find
an approximate solution. One idea is to apply the Hungar-
ian method, which efficiently finds the binary solution that
obeys the one-to-one mapping constraints and maximizes
the dot-product with the eigenvector of M. Another idea is
to use the greedy discretization algorithm that we originally
proposed in Leordeanu and Hebert (2005): we interpret each
element of the principal eigenvector v of M as the confi-
dence that the corresponding assignment is correct. We start
by choosing the element of maximum confidence as correct,
then we remove (zero out in v) all the assignments in conflict
(w.r.t. the one-to-one mapping constraints) with the assign-
ment chosen as correct, then we repeat this procedure until
all assignments are labeled as either correct or incorrect.
The eigenvector relaxation of the graph-matching problem,
combined with the greedy discretization procedure, makes
spectral matching one of the most efficient algorithms for
matching using pairwise constraints.

3.2 Integer-Projected Fixed Point Algorithm

In a more recent paper (Leordeanu et al. 2009) we presented
another efficient graph matching algorithm (IPFP) that out-
performs most state-of-the-art methods. Since its publica-
tion, modified versions of IPFP have been applied to seg-
mentation (Brendel and Todorovic 2010) and higher-order
MRFs (Semenovich 2010). An algorithm that shares many
of IPFP’s properties in a different formulation was recently
and independently developed by Zaslavskiy et al. (2009,
2010).

Even though our learning method was inspired by the
spectral matching algorithm (Leordeanu and Hebert 2005),
it can in fact be used in conjunction with other graph match-
ing algorithms, including IPFP.

IPFP can be used as a stand-alone algorithm, or as a dis-
cretization procedure for other graph matching algorithms,
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such as spectral matching. Moreover, IPFP can also be
used for MAP inference in MRF’s and CRF’s, formulated
as quadratic integer programming problems. It solves effi-
ciently (though not necessarily optimally) a tighter relax-
ation of Problem 1 that is also known to be NP-hard:

x* = argmax(xTMx) st.Ax=1, x> 0. 4

The only difference between Problem 1 and Problem 4,
is that in the latter the solution is allowed to take continuous
values. Integer Projected Fixed Point (IPFP) takes as input
any initial solution, continuous or discrete, and quickly finds
a solution obeying the initial discrete constraints of Prob-
lem 1 with a better score (most often significantly better)
than the initial one:

1. Initialize x* =xg, S*=x]Mxo, k=0, where x; >0
and x £ 0;

2. Let biy1 = P4Mxg), C =xI M(bg1 — xx), D =
(br1 — x) TM(by1 — Xp);

3. If D >0, set Xy4+1 = bg41. Else let r = min(—C/D, 1)
and set Xg4+1 = Xg + 7 (b1 — Xp);

4. If b/, Mbyy > §* then set $* = b/, Mby,| and
X" =bgy1;

5. If Xg+1 = X, stop and return the solution x*;

6. Set k =k + 1 and return to step 2;

where the P;(.) in step 2 denotes a projection on to the dis-
crete domain, discussed below.

This algorithm is loosely related to the power method
for eigenvectors, also used by spectral matching: at step 2
it replaces the fixed point iteration of the power method
Vi+1 = P(Mvg), where P(.) denotes the projection on the
unit sphere, with the analogous update by = P;(Mxy),
in which Py;(.) denotes projection on the one-to-one (for
graph matching) or many-to-one (for MAP inference) dis-
crete constraints. Since all possible discrete solutions have
the same norm, P,;(.) boils down to finding the discrete vec-
tor bgy; = arg maxp(b? Mx;). For one-to-one constraints,
this can be efficiently accomplished using the Hungarian
method; for many-to-one constraints, the projection can eas-
ily be achieved in linear time.

The intuition behind this algorithm is the following: at
every iteration the quadratic score x’ Mx can be approxi-
mated by the first-order Taylor expansion around the cur-
rent solution xz: x! Mx & x,{Mxk + ZXZM(X — X¢). This
approximation is maximized within the discrete domain of
Problem 1, in step 2, where by is found. From (Leordeanu
et al. 2009), Proposition 1 we know that the same discrete
br+1 also maximizes the linear approximation in the con-
tinuous domain of Problem 4. The role of by is to pro-
vide a direction of largest possible increase (or ascent) in
the first-order approximation, simultaneously within both
the continuous and discrete domains. Along this direction,
the original quadratic score can be further maximized in the

continuous domain of Problem 4 (as long as bg41 # Xk).
At step 3 we find the optimal point along this direction,
also inside the continuous domain of Problem 4. The hope,
also confirmed in practice, is that the algorithm will tend
to converge towards discrete solutions that are, or are close
to, maxima of Problem 4. For MAP inference problems, as
shown in Leordeanu et al. (2009), IPFP always converges to
discrete solutions, while for graph matching we observe that
it typically converges to discrete solutions (but there is no
theoretical guarantee).

IPFP can also be seen as an extension to the popular It-
erated Conditional Modes (ICM) algorithm (Besag 1986),
having the advantage of updating the solution for all nodes
in parallel, while retaining the optimality and convergence
properties. It is also related to the Frank-Wolfe method
(FW) (Frank and Wolfe 1956), a classical optimization al-
gorithm from 1956 most often used in operations research.
The Frank-Wolfe method is applied to convex programming
problems with linear constraints. A well-known fact about
FW is that it has slow convergence rate around the opti-
mum, which is why in practice it is stopped earlier for ob-
taining an approximate solution. In contrast, in the case of
IPFP (applied to graph matching, which is in general not a
convex minimization problem) the local optimum is most
often discrete (for MAP it is always discrete). When the so-
lution is discrete the optimum is actually found during the
optimization of the linear approximation, when the discrete
point is found, so the convergence is immediate. This in-
sight is also demonstrated in our experiments, where IPFP
most often converges quickly. Therefore, unlike FW, IPFP
finds the solution in very few iterations, which is an impor-
tant advantage.

4 Theoretical Analysis

Our proposed learning algorithm is motivated by the statisti-
cal properties of the matrix M and of its principal eigenvec-
tor v, which is the continuous solution given by the spectral
graph matching algorithm (Leordeanu and Hebert 2005). In
order to analyze the properties of M theoretically, we need a
few assumptions and approximations. The assumptions we
make are intuitive and not necessarily rigorous, but they
are validated by our numerous experiments. Each instance
of the matching problem is unique so nothing can be said
with absolute certainty about M and its eigenvector v, nor
the quality of the solution returned. Therefore, we must be
concerned with the average (or expected) properties of M
rather than the infinitely many particular cases. We propose
amodel for M (Fig. 1) that we validate through experiments.

For a given matching experiment with its corresponding
matrix M, let p; > 0 be the average value of the second-
order scores between correct assignments E (M. jp) for
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M spondence then AE (vi,) = Avg = npovy + n(k — 1) povo.
Correct Dividing both equations by pjv; and taking the ratio of the
Assignments p1 two we obtain:
pr+ Gk —1Dpv
PR ©)
L+ k—1pror
Incorrect . . . . )
Assighments po Solving this quadratic equation for v, we get:
. (k—1)pr =14/ (1 — (k—1)p,)?> + 4k — 1) p?
' 2(k = Dpy '
Fig. 1 Pairwise scores (elements of the matching matrix M) between (6)

correct assignments have a higher expected value p; than elements
with at least one wrong assignment, with average value pg. This will
be reflected in the eigenvector v that will have higher average value v
for correct assignments than vy for wrong ones

any pair (ia, jb) of correct assignments. Similarly, let py =
E(M;q; jp) > 0 if at least one of the assignments ia and jb
is wrong. p; should be higher than pg, since the pairs of
correct assignments are expected to agree both in appear-
ance and geometry and have strong second-order scores,
while the wrong assignments have such high pairwise scores
only accidentally. Intuitively, we expect that the higher p;
and the lower po, the higher the matching rate. We also ex-
pect that the performance depends on their ratio p, = po/p1
rather than on their absolute values, since multiplying M by
a constant does not change the leading eigenvector. Simi-
larly, we define the average eigenvector value vi = E(vj,)
over correct assignments ia, and vop = E(vjp), over wrong
assignments jb. The spectral matching algorithm assumes
that correct assignments will correspond to large elements of
the eigenvector v and the wrong assignments to low values
in v, so the higher v| and the lower vg the better the match-
ing rate. As in the case of p,, if we could minimize dur-
ing learning the average ratio v, = vg/v; (since the norm of
the eigenvector is irrelevant) over all image pairs in a train-
ing sequence then we would expect to optimize the overall
training matching rate. This model assumes fully-connected
graphs, but it can be verified that the results we obtain next
are also valid for weakly-connected graphs, as also shown
in our experiments.

It is useful to investigate the relationship between v,
and p, for a given image pair. We know that Av;, =
3 jb M;q, jpvjp. For clarity of presentation, we assume
that for each of the n features in the left image there
are k candidate correspondences in the right image. We
make the following approximation E(} b Miq; jpvjp) ~
Zjb E(M;q. jp)E(vjp), by considering that any v;, is al-
most independent of any particular M, jp, since M is large.
The approximation is actually a ‘>’ inequality, since the
correlation is expected to be positive (but very small). For
our given matrix M, let us call its first eigenvalue A. It fol-
lows that for a correct correspondence ia, LE (viy) = Av] &
npivy + n(k — 1) povp. Similarly, if ia is a wrong corre-
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Using Egs. 5 and 6, it can be verified that v, is a monoton-
ically increasing function of p,, for k > 1. This is in fact
not surprising since we expect that the smaller p, = po/p1,
the smaller v, = vp/v; and the more binary the eigenvec-
tor v would be (and closer to the binary ground truth t),
with the elements of the wrong assignments approaching O.
This approximation turns out to be very accurate in practice,
as shown by our experiments in Figs. 3, 4 and 5. Also, the
smaller v, the higher the expected matching rate, by which
we mean the number of correctly matched features divided
by the total number of features. For the sake of clarity, dur-
ing this analysis we assume an equal number of features in
both images. We also assume that for each feature in the left
image there is one correct match in the right image. How-
ever, as we show in the experimental section, our algorithm
is robust to the presence of outliers.

One way to minimize v, is to maximize the correlation
between v and the ground truth indicator vector t, while
making sure that one feature from the left images matches
one feature in the right image. However, in this paper we
want to minimize v, in an unsupervised fashion, that is with-
out knowing t during training. Our proposed solution is to
maximize instead the correlation between v and its binary
version (that is, the binary solution returned by the match-
ing algorithm). How do we know that this procedure will
ultimately give a binary version of v that is close to the real
ground truth? We will investigate this question next.

Let b(v) be the binary solution obtained from v, re-
specting the one-to-one mapping constraints, as returned by
spectral matching for a given pair of images. Let us as-
sume for now that we know how to maximize the corre-
lation vI'b(v). We expect that this will lead to minimizing
the ratio v} = E(viq|biq (V) = 0)/E (vig|biqa(v) = 1). If we
let n;, be the number of misclassified assignments, n the
number of true correct assignments (same as the number of
features, equal in both images) and k the number of candi-
date assignments for each feature, we can obtain the next

two equations: E (v;q|b;jq(v) =0) = Wﬁw and

E(vilbjg(v) = 1) = "0tC=mmni Diyiding both by vy
and taking the ratio of the two we finally obtain:
o m/k—1)+ (1 —m/(k—1))v,

r

)

1 —m+mu,
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where m is the matching error rate m = n,,/n. If we rea-
sonably assume that v, < 1 (eigenvector values higher on
average for correct assignments than for wrong ones) and
m < (k — 1)/k (error rate lower than random) this func-
tion of m and v, has both partial derivatives strictly posi-
tive. Since m also increases with v,., by maximizing VTb(V),
we minimize v, which minimizes both v, and the true error
rate m, so the unsupervised algorithm can be expected to do
the right thing. In all of our experiments we obtained values
for all p,, v, v} and m that were very close to zero, which
is sufficient in practice, even if our gradient-based method
(Sect. 5) might not necessarily have found the global mini-
mum.

The model for M and the equations we obtained in this
section are validated experimentally in Sect. 6. By maximiz-
ing the correlation between v and b(v) over the training se-
quence we do indeed lower the true misclassification rate m,
maximize vt and also lower Pr, Uy and v,

5 Algorithms

In this section, we present supervised, semi-supervised and
unsupervised learning variants of our approach to graph
matching, and detail parameter learning for conditional ran-
dom fields.

5.1 Supervised Learning for Graph Matching

We want to find the geometric and appearance parameters w
that maximize (in the supervised case) the expected correla-
tion between the principal eigenvector of M and the ground
truth t, which is empirically proportional to the following
sum over all training image pairs:

N
J(w) = Zv<">(w)Tt<">, (®)

i=1

where t® is the ground truth indicator vector for the ith
training image pair. We maximize J(w) by coordinate gra-
dient ascent:

®
w +7 ZtTaV W )

(k+1>

To simplify notations throughout the rest of this paper, we
use F’ to denote the vector or matrix of derivatives of any
vector or matrix F with respect to some element of w. One
possible way of taking partial derivatives of an eigenvec-
tor of a symmetric matrix (when A has order 1) is given in
Sect. 8.8 of Magnus and Neudecker (1999) and also in Cour
et al. (2005) in the context of spectral clustering:

V=0I-M"O0I-M)v, (10)

33
where AT denotes the pseudo-inverse of A and
T/
M
V=" (11)
vy

These equations are obtained by using the fact that M is
symmetric and the equalities v/ v/ = 0 and Mv = Av. How-
ever, this method is general and therefore does not take full
advantage of the fact that in this case v is the principal eigen-
vector of a matrix with large eigengap. M — Al is large and
also rank deficient so computing its pseudo-inverse is not
efficient in practice. Instead, we use the power method to
compute the partial derivatives of the approximate principal

M1 This is related to Bach and

eigenvector: v = \/W
Jordan (2003), but in Bach and Jordan (2003) the method

is used for segmentation and as also pointed out by Cour et
al. (2005) it could be very unstable in that case, because in
segmentation and typical clustering problems the eigengap
between the first two eigenvalues is not large.

Here M"1 is computed recursively by MK T11 = M(M*1).
Since the power method is the preferred choice for comput-
ing the leading eigenvector, it is justified to use the same
approximation for learning. Thus the estimated derivatives
are not an approximation, but actually the exact ones, given
that v is itself an approximation based on the power method.
Thus, the resulting partial derivatives of v are computed as

follows:
V= IM"1]2(M" 1) — (M"D)T (M"I))(M"l)

M1}

12)

In order to obtain the derivative of v, we first need to
compute the derivative of M"1, which can be obtained re-
cursively:

M"1) =M’ M"~'1) + MMy (13)

Since M has a large eigengap, as shown in Leordeanu and
Hebert (2005), this method is stable and efficient. Figure 2
demonstrates this point empirically. The method is linear in
the number of iterations n, but qualitatively insensitive to 7,
as it works equally well with n as low as 5. These results are
averaged over 70 experiments (described later) on 900 x 900
matrices.

To get a better feeling of the efficiency of our method
as compared to Eq. 10, computing Eq. 10 takes 1500 times
longer in Matlab (using the function pinv) than our method
for n = 10 on the 900 x 900 matrices used in our experi-
ments on the House and Hotel datasets. In practice, we man-
ually selected the gradient step size once and used this value
in all our experiments.

5.2 Unsupervised and Semi-supervised Learning for Graph
Matching

The idea for unsupervised learning (introduced in Sect. 4),
is to maximize v} instead of v,, which could be achieved
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Correlation between eigenvector and ground-truth

087 ‘u_m-u\-u-.-\.. | ]
' \

e

Correlation coefficient

0O 10 20 30 40 50 60 70 80 90 100
gradient step number

Fig. 2 Experiments on the House sequence. The plots show the nor-
malized correlation between the eigenvector and the ground truth solu-
tion for different numbers of recursive iterations n used to compute the
approximative derivative of the eigenvector (averages over 70 experi-
ments). Even for n as small as 5 the learning method converges in the
same way, returning the same result

through the maximization of the dot-product between the
eigenvector and the binary solution obtained from the eigen-
vector. Thus, during unsupervised training, we maximize the
following function:

N
Ty => v b (w)). (14)

i=1

The difficulty here is that b(v{) (w)) is not a continuous
function and also it may be impossible to express in closed-
form, in terms of w, since b(v{") (w)) is the result of an iter-
ative discretization procedure. However, it is important that
b(v® (w)) is piecewise constant and has zero derivatives ev-
erywhere except for a finite set of discontinuity points. We
can therefore expect that we will evaluate the gradient only
at points where b is constant, and has zero derivatives. Also,
at those points, the gradient steps will lower v, (Eq. 7) be-
cause changes in b (when the gradient updates pass through
discontinuity points in b), do not affect v,. Lowering v, will
increase v/t and also decrease m, so the desired goal will
be achieved without having to worry about the discontinuity
points of b. This has been verified every time in our experi-
ments. Then, the learning step function becomes:

k
av® (w)

o, (15)

N
k+1 k k
wﬁ. = w; ) —i—r}Zb(vE Yow)T

i=1

In most practical applications, the user has knowledge of
some correct assignments, in which case a semi-supervised
approach becomes more appropriate. Our algorithm can eas-
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ily accommodate such a semi-supervised scenario by natu-
rally combining the supervised and unsupervised learning
steps: the discrete solution b from each step has fixed val-
ues for assignments for which the ground-truth information
is available, while for the rest of unlabeled assignments we
use, as in the unsupervised case, the solution returned by the
graph matching algorithm. The ability of easily combining
the supervised case with the unsupervised one in a princi-
pled manner is another advantage of our proposed method.

5.3 Unsupervised Learning for Other Graph Matching
Algorithms

With minimal modification, the unsupervised learning
scheme that we proposed can be used for other state-of-the
art graph matching algorithms. In Sect. 6.2 we show exper-
imentally that the parameters learned for spectral matching
improved the performance of other algorithms. In this sec-
tion we show that instead of using the binary solutions b
returned by spectral matching during each learning step, we
can actually use the binary solutions given by the algorithm
for which we want to maximize the performance. This will
produce a more efficient learning stage, better suited for that
specific graph matching algorithm.

To simplify the notation, we use M instead of M(w),
which is the more precise notation since all the pairwise
scores in the matrix are functions of w. In the same way, let
b denote the binary solution given by some graph matching
algorithm, for a given w. For any vector b with n elements
and full rank matrix M of size n x n, we can write b as:

b= b"v)vi + B v)va+ -+ b v,)v,, (16)

where vi, Vo, ..., Vv, are the eigenvectors of M ordered in
the decreasing order of the magnitudes of their correspond-
ing eigenvalues A1, A2, ..., A,. Here we can consider each
such M to be full rank due to the presence of random noise
in the pairwise scores from that particular matching prob-
lem.

It follows that the quadratic score bY Mb can be written
as:

b Mb =1; (b7 v)? + - + 1, (b  v,)2. a17)

If we consider that b has unit norm and that A is the eigen-
value with largest magnitude (also positive, since M is sym-
metric with non-negative elements), we immediately obtain
the following inequality:

b Mb > 2 v)? = DAy. (18)

This inequality is very loose in practice because 11 is ex-
pected to be much larger than the rest of the eigenvalues.
Since A = VlTle, where v is the principal eigenvector,
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and v/ Mv; is an upper bound to the optimal score xgpthopt
that obeys the mapping constraints, we obtain

b"M(w)b . 5
Xopt (W) T M(W)X gy (W) =2(b" vi(w)” —1, (19)

where Xqp (W) is the optimal solution of Eq. 1 for a given w.
Therefore, by maximizing b(W)TV1 (w), we maximize this
lower bound and expect b(w) to approach the optimal solu-
tion Xop(W). This is true for solutions b(w) returned by any
approximate graph matching algorithm. This gives an intu-
ition to why the same unsupervised learning scheme may be
applied to other algorithms as well: given a specific graph
matching algorithm, maximize the dot-product between its
binary solution b(w) and the principal eigenvector vi(w).
The learning step becomes:

av® (w)

N
k1) _ (k) wNT
W= w3 i =

i=1

(20)

5.4 Parameter Learning for Conditional Random Fields

The spectral inference method presented in Leordeanu and
Hebert (2006) is based on a fixed point iteration simi-
lar to the power method for eigenvectors, which maxi-
mizes the quadratic score under the L2 norm constraints
Zllevszz 1. These constraints require that the sub-
vectors corresponding to the candidate labels for each site
i have norm 1:

%
oF ZthHI;ijjb

ra
L * 2
V Y opei Vi

This equation looks similar to the eigenvector equation
Myv = Av were it not for the site-wise normalization instead
of the global one which applies to eigenvectors. Starting
from a vector with positive elements, the fixed point v* of
the above equation has positive elements, is unique and it
is a global maximum of the quadratic score under the con-
straints ) _, viza =1, due to the fact that M has non-negative
elements (Theorem 5 in Baratchart et al. 1998).

The learning method for the MAP problem, which we
propose here, is based on gradient ascent, similar to the one
for graph matching, and requires taking the derivatives of v
with respect to the parameters w.

Let M; be the non-square submatrix of M of size
nLabels x nLabels * nSites, corresponding to a particular
site i. Also let v; be the corresponding sub-vector of v,
which is computed by the following iterative procedure. Let
n be a particular iteration number:

21

M,’VEH)

V§n+l) —

(22)

V)T My

Let h; be the corresponding sub-vector of an auxiliary
vector h defined at each iteration as follows:

L My
i =

(23)

ST (V)

Then the derivatives of V§"+l) with respect to some ele-
ment of w, at step n + 1, can be obtained recursively as a
function of the derivatives of VE") at step n, by iterating the
following update rule:

(V(n+l))/ —h— (hTV(n+1))V(n+1)_ (24)

This update rule, which can be easily verified, is similar to
the one used for computing the derivatives of eigenvectors.

The partial derivatives of the individual elements of M
with respect to the individual elements of w are computed
from the equations that define these pairwise potentials,
given in Eq. 27. Of course, other differential functions can
also be used to define these potentials.

In both supervised and unsupervised cases, the learning
update step is similar to the one used for learning graph
matching. Here we present the supervised case. In the case
of MAP problems we have noticed that unsupervised learn-
ing can be successfully applied only to simpler problems, as
shown in the experiments Section 6.5. This is due to the fact
that in MAP problems it is easily possible to find parame-
ters that will strongly favor one label and make the solution
of the relaxed problem almost perfectly discrete. The super-
vised learning rule for MAP is

N (k)

av."” (w)
k+1 k T 9%

w; —wj—i—r]i_glti 48wj ,

(25)

where t; is the ground truth labeling for the ith training im-
age.

6 Experimental Analysis

In the case of graph matching we focus on two objec-
tives. The first one is to validate the theoretical results from
Sect. 4, especially Eq. 6, which establishes a relationship be-
tween p, and v,, and Eq. 7, which connects v} to v, and the
error rate m. Each p, is empirically estimated from each in-
dividual matrix M over the training sequence, and similarly
each v} and v, from each individual eigenvector. Equation 6
is important because it shows that the more likely the pair-
wise agreements between correct assignments as compared
to pairwise agreements between incorrect ones (as reflected
by p;), the closer the eigenvector v is to the binary ground
truth t (as reflected by v,), and, as a direct consequence,
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Fig. 3 Unsupervised learning
stage. First row: matching rate
and correlation of eigenvector
with the ground truth during
training per gradient step. The
remaining plots show how the
left hand side of Eqs. 6 and 7,
that is v, and v}, estimated
empirically from the
eigenvectors obtained for each
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the better the matching performance. This equation also val-
idates our model for the matching matrix M, which is de-
fined by two average values, po and p1, respectively. Equa-
tion 7 is important because it explains why by maximizing
the correlation v/ b(v) (and implicitly minimizing v’) we in
fact minimize v, and the matching error m. Equation 7 ba-
sically shows why the unsupervised algorithm will indeed
maximize the performance with respect to the ground truth.
We mention that by matching rate/performance we mean the
ratio of features that are correctly matched (out of the total
number of matched features), while the error rate is 1 minus
the matching rate.

The results that validate our theoretical claims are shown
in Figs. 3, 4, 5 and 6 on the House, Hotel, Faces, Cars and
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0 50 O 10 20 30 40 50
gradient step

Motorbikes experiments, respectively. The details of these
experiments are given below.

There are a few relevant results to consider. On all four
different experiments the correlation between v and the
ground truth t increases at every gradient step even though
the ground truth is unknown to the learning algorithm. The
matching rate improves at the same time and at a similar
rate with the correlation, showing that maximizing this cor-
relation also maximizes the final performance. In Fig. 4 we
display a representative example of the eigenvector for one
pair of faces, as it becomes more and more binary during
training. If after the first iteration the eigenvector is almost
flat, at the last iteration it is very close to the binary ground
truth, with all the correct assignments having larger confi-
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Fig. 4 Results on faces:
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dences than any of the wrong ones. Also, on all individual
experiments both approximations from Eqgs. 6 and 7 become
increasingly accurate with each gradient step, from less than
10% accuracy at the first iteration to less than 0.5% error at
the last. In all our learning experiments we started from a set
of parameters w that does not favor any assignment (w = 0,
which means that before the very first iteration all non-zeros
scores in M are equal to 1). These results motivate both the
model proposed for M (Eq. 6), but also the results (Eq. 7)
that support the unsupervised learning scheme.

The second objective of our experiments is to evaluate
the matching performance, before and after learning, on new
test image pairs. The goal is to show that, at testing time, the
matching performance after learning is significantly better
than if no learning was done.

6.1 Learning with Unlabeled Correspondences

Matching Rigid Objects under Perspective Transformations
We first perform experiments on two tasks that are the
same as those in Caetano et al. (2007) and our previous
work (Leordeanu and Hebert 2008). We use exactly the
same image sequences (House: 110 images and Hotel: 100
images) both for training and testing and the same features,
which were manually selected by Caetano et al. For test-
ing we use all the pairs between the remaining images.
The pairwise scores M. j, are the same as the ones that
we previously used in Leordeanu and Hebert (2008), us-
ing the Shape-Context descriptor (Belongie et al. 2002)
for local appearance, and pairwise distances and angles
for the second-order relationships. They measure how well
features (i, j) from one image agree in terms of geome-
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; Unsupervised Learning for Cars and Motorbikes
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Fig. 5 Correlation and matching rate w.r.t. the ground truth during
unsupervised learning for Cars and Motorbikes from Pascal 2007 chal-
lenge. Real and predicted v, decrease as predicted by the model. Re-
sults are averaged over 30 different experiments
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Fig. 6 During unsupervised learning, the normalized eigengap (eigen-
gap divided by the mean value in M) starts increasing after a few iter-
ations, indicating that the leading eigenvector becomes more and more
stable. Results are on the House and Hotel datasets averaged over 70
random experiments

try and appearance with their candidate correspondences
(a, b). More explicitly, the pairwise scores have the form
M jb = exp(—W' giq: j), Where giq: jp = [Isi — Sal, |s; —
Spl, %, lotij — otqpl]. Here, s, denotes the shape con-
text of]features a; d;j is the distance between features (i, j);
and o;; is the angle between the horizontal axis and the vec-
tor z_]) Learning consists of finding the vector of parameters
w that maximizes the matching performance on the training
sequence.
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Table 1 Matching performance on the hotel and house datasets at test-
ing time. In our experiments we used only 5 training images from the
‘House’ sequence, while for Caetano et al. (2007), we report upper
bounds of their published results using both 5 and 106 training images.
Notation: ‘S’ and ‘U’ denote ‘supervised’” and ‘unsupervised’, respec-
tively

Dataset Ours: Ours: (Caetano et al. 2007): (Caetano et al. 2007):

S(5)  UGB) S6) S(106)
House 99.8% 99.8% < 84% < 96%
Hotel 94.8% 94.8% <87% < 90%

As in both (Caetano et al. 2007) and (Leordeanu and
Hebert 2008), we first obtain a Delaunay triangulation and
allow non-zero pairwise scores M;,. j if and only if both
(i, j) and (a, b) are connected in their corresponding tri-
angulation. Our previous method (Leordeanu and Hebert
2008) is supervised and based on a global optimization
scheme that is more likely to find the true global opti-
mum than the unsupervised gradient based method proposed
in this paper. Therefore, it is significant to note that the
proposed unsupervised learning method matches our previ-
ous results, while significantly outperforming Caetano et al.
(2007) (Table 1).

We point out that the main reason for the significant dif-
ference in performance between ours and Caetano et al.
(2007) has to do with the fact that (Caetano et al. 2007)
puts less emphasis on the second-order geometry in the pair-
wise scores Mg jp, by using only information from the 0-1
Delaunay triangulation and no information about pairwise
distances and angles. On the contrary, we emphasize the im-
portance of second-order relationships, since in our experi-
ments, even when we leave out completely the shape-context
descriptors and use only the pairwise geometric information,
the performance of our method does not degrade. Of course,
it is also important to stress that, while the method by Cae-
tano et al. (2007) learns the parameters in a supervised way,
ours is the first to do so in an unsupervised fashion.

Next we investigate the performance at learning and test-
ing stages of the unsupervised learning method vs. its su-
pervised variant (when the ground truth assignments are
known). We perform 70 different experiments using both
datasets, by randomly choosing 10 training images (and us-
ing all image pairs from the training set) and leaving all pairs
of the rest of images for testing. As expected, we observe
that the unsupervised method learns somewhat slower on av-
erage than the supervised one, but the parameters they learn
are almost identical. In Fig. 7 we plot the average correlation
(between the eigenvectors and ground truth) and matching
rate at each gradient step for all training pairs and all exper-
iments vs. each gradient step, for both the supervised and
unsupervised cases. It is interesting that while the unsuper-
vised version tends to converge slower, after several itera-
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Fig. 7 Supervised vs.
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Table 2 Comparison of average matching performance at testing time
on the house and hotel datasets for 70 different experiments (10 train-
ing images, the rest used for testing). We compare the case of unsu-
pervised learning vs. no learning. First column: unsupervised learning;
Second: no learning, equal default weights w

Datasests Unsupervised learning No learning

House+Hotel 99.14% 93.24%

tions their performances (and also parameters) converge to
the same values. During testing the two methods performed
identically in terms of matching performance (average per-
centage of correctly matched features over all 70 experi-
ments). As compared to the same matching algorithm with-
out learned parameters the two algorithms performed clearly
better (Table 2). Without learning, the default parameters
(elements of w) were chosen to be all equal.

Matching Deformable 2D Shapes with Outliers The third
dataset used for evaluation consists of 30 random image
pairs selected from Caltech-4 Faces dataset. The experi-
ments on this dataset are different from the previous ones
for two reasons: the images contain not only faces but also
background clutter, and, the faces belong to different peo-
ple, both women and men, with different facial expressions,
so there are significant non-rigid deformations between the
faces that have to be matched. The features we used are ori-
ented points sampled along contours extracted in the image
in a similar fashion as in our previous work (Leordeanu et
al. 2007) (Fig. 8). The orientation of each point is the normal
vector at that point to the contour where the point was sam-
pled. The points on the faces that have to be matched (the
inliers) were selected manually, while the outliers (features
in the background) were selected randomly, while making
sure that each outlier is not too close (15 pixels) to any
other point. For each pair of faces we manually selected the
ground truth (the correct matches) for the inliers only. The
pairwise scores contain only geometric information about

gradient step

Fig. 8 Top row: a pair of faces from Caltech-4 dataset used in our ex-
periments. Bottom row: the contours extracted and the points selected
as features

pairwise distances and angles:

Mia;jb — e_WTgia;jb’ (26)
where w is a vector of 7 parameters (that have to be learned)
and g, jp = [Idij — dapl/dij, 16;i — 64,160 — Ol loij —
Oabl, 10ji — Opal, ltij — aapl, 1Bij — Babll. Here djj is the
distance between the features (i, j), 6; is the angle between
the normal of feature i and the horizontal axis, o;; is the an-

gle between the normal at point i and the vector ij, ;; is

the angle between l_j) and the horizontal axis and g;; is the
angle between the normals of i and j.

We performed 30 random experiments by randomly pick-
ing 10 pairs for training and leaving the rest 20 for testing.
The results shown in Fig. 4 are averages over the 30 ex-
periments. The top-left plot shows how, as in the previous
experiments, both the correlation v’ t and the matching per-
formance during training improves with every learning step.
During training and testing we used different percentages of
outliers to evaluate the robustness of the method (top-right
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Fig. 9 (Color online) Matching results on image pairs from Pascal 2007 challenge. Notice the significant differences in shape, view-point and
scale. Best viewed in color

plot). The learning method is robust to outliers, since the
matching performance during testing does not depend on the
percentage of outliers introduced during training (the per-
centage of outliers is always the same in the left and the right
images), but only on the percentage of outliers present at
testing time. Without learning (the dotted black plot), when
the default parameters chosen are all equal, the performance
is much worse and degrades faster as the percentage of out-
liers at testing time increases. This suggests that learning not
only increases the matching rate, but it also makes it more
robust to the presence of outliers.

6.2 Learning with Unlabeled Object Classes
and Correspondences

In our previous experiments every pair of training images
contained the same object/category, so a set of inliers exists
for each such pair. Next, we evaluated the algorithm on a
more difficult task: the training set is corrupted such that half
of the image pairs contain different object categories. In this
experiment we used cars and motorbikes from Pascal 2007,
a much more difficult dataset (see Fig. 9). For each class we
selected 30 pairs of images and for each pair between 30 to
60 ground truth correspondences. The features and the pair-
wise scores were of the same type as in the experiments on
faces: points and their normals selected from pieces of con-
tours. In Fig. 9 we show some representative results after
learning, with matching rates over 80%; contours are over-
laid in white. During each training experiment we randomly
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picked 5 pairs containing cars, 5 containing motorbikes and
10 discordant pairs: one containing a car and the other one a
motorbike (a total of 20 pairs for each learning experiment).
For testing we used the remaining pairs of images, such that
each pair contains the same object class. The learning algo-
rithm had no knowledge of which pairs are discordant, what
classes they contain and which are the ground truth corre-
spondences. As can be seen in Fig. 5, at each gradient step
both the matching rate and the correlation of the eigenvec-
tor w.r.t. the ground truth increases (monitored only for pairs
containing the same category). The proposed model is again
verified as shown by the plots of the real and ideal v, that
are almost identical. Not only that the learning algorithm
was not significantly influenced by the presence of discor-
dant pairs but it was also able to find a single set of param-
eters that matched well both cars and motorbikes. Learning
and testing results are averaged over 30 experiments.

Using the testing image pairs of cars and motorbikes,
we used several graph matching algorithms (for a more ex-
tensive discussion and comparison see Sect. 6.4): spectral
matching (SM) using the row/column procedure from Zass
and Shashua (2008) during post-processing of the eigenvec-
tor, with probabilistic matching (PM) using pair-wise con-
straints from Zass and Shashua (2008), and the well-known
graduated assignment algorithm from Gold and Rangara-
jan (1996) (GA). The same parameters and pair-wise scores
were used by all algorithms, learned as described above.
When no outliers were allowed all algorithms had similar
matching rates (above 75%) with learning moderately im-
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Table 3 Comparison of matching rates for 3 graph matching algo-
rithms before and after unsupervised learning on Cars and Motorbikes
from Pascal07 database, with all outliers from the right image allowed
and no outliers in the left image. When no outliers were allowed all
algorithms had a matching rate of over 75%, with learning moderately
improving the performance

Dataset SM PM GA

Cars: no learning 26.3% 20.9% 31.9%
Cars: with learning 62.2% 34.2% 47.5%
Motorbikes: no learning 29.5% 26.1% 34.2%
Motorbikes: with learning 52.7% 41.3% 45.9%

proving the performance. When outliers were introduced
in the right image (in the same fashion as in the experi-
ments on Faces) the performance improvement after learn-
ing was much more significant for all algorithms, with spec-
tral matching benefiting the most (Table 3).

6.3 Learning in the Context of Recognition

Next we investigate how unsupervised learning for graph
matching can improve object recognition. Here we are not
interested in developing a recognition algorithm, but only on
demonstrating the improvement in recognition after learn-
ing for matching, while using a simple nearest neighbor ob-
ject classification algorithm. We believe that better match-
ing should better cluster together images showing objects
of the same class, while separating more images of objects
from different classes. The nearest-neighbor algorithm is
perfectly suited for evaluating this intuition. For this ex-
periment, we used the cropped training images (using the
bounding boxes provided) from the Pascal *05 database (see
Fig. 10). We split the cropped images randomly in equal
training and testing sets. On the training set we learn the
matching parameters on pairs containing objects from the
same category. The features used and the pairwise scores
are the same as in the experiments on faces, except that this
time we used fully connected models (about 100-200 fea-
tures per image). At testing time, for each test image, we re-
turn the class of the training image that returned the highest
matching score x’ Mx (Eq. 1). We perform this classifica-
tion task both with and without learning (with default equal
w weights). The results (Table 4) suggest that unsupervised
learning for graph matching can be used effectively in an
object recognition system. In Fig. 11 we see some results
during learning. In this case we monitor only the eigengap
and b(V)TV because we did not have the ground truth avail-
able.

6.4 Learning for Different Graph Matching Algorithms

We perform unsupervised learning for five state of the art
graph matching algorithms on the Cars and Motorbikes data

Fig. 10 Cropped images (using bounding boxes) from the Pascal *05
training set, used in our classification experiments. The images in this
dataset, even though they are cropped using bounding boxes, are more
difficult than in the previous experiments, since the objects of the same
category have sometimes very different shapes, undergo significant
change in viewpoint, and contain background clutter

Table 4 Comparison of 4-class (bikes, cars, motorbikes and people)
classification performance at testing time on the task from Sect. 6.3.
Unsupervised learning for graph matching significantly reduces the
classification error rate by more than 2-fold

With learning No learning

80.8% 57.4%

from Pascal ’07 challenge, the same as that used in Sect. 6.2.
We use the same features (oriented points selected from
pieces of contours) as described in Sect. 6.2. The algo-
rithms are: spectral matching (Leordeanu and Hebert 2005)
(SM), spectral matching with affine constraints (Cour et
al. 2006) (SMAC), graduated assignment (Gold and Ran-
garajan 1996) (GA), probabilistic graph matching (Zass and
Shashua 2008) (PM) and our Integer Projected Fixed Point
Algorithm (Leordeanu et al. 2009) (IPFP).

For each algorithm, we perform 30 different learning and
testing experiments for each class and we average the re-
sults. For each experiment we randomly pick 10 pairs of
images for learning (with outliers) and leave the remain-
ing 20 for testing (with and without outliers). During train-
ing we add outliers to one image in every pair, such that
the ratio of outliers to inliers is 0.5. The other image from
the pair contains no outliers. We introduce this moderate
amount of outliers during training in order to test the ro-
bustness of the unsupervised learning method in real-world
experiments, where, especially in the unsupervised case, it
is time consuming to enforce an equal number of features
in both images in every pair. During testing we have two
cases: we had no outliers in both images in the first case,
and allowed all outliers possible in only one image in the
second case. The number of outliers introduced was signif-
icant, the ratio of outliers to inliers ranging from 1.4 to 8.2
for the Cars class (average of 3.7), and from 1.8 to 10.5 for
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Fig. 11 Pascal ’05, learning
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the Motorbikes class (average of 5.3). As in all our other
tests, by an inlier we mean a feature for which there ex-
ists a correspondence in the other image, according to the
ground truth, whereas an outlier has no such correct corre-
spondence. The inliers were manually picked, the same as
the ones used in Sect. 6.2, whereas the outliers were chosen
randomly on pieces of contours such that no outlier is closer
than 15 pixels to any other feature selected.

In Fig. 12, we display the behavior of each algorithm
during learning: average matching rate and average corre-
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lation of the eigenvector with the ground truth at each learn-
ing step. There are several important aspects to notice: the
correlation between the eigenvector and the ground truth in-
creases with every gradient step for all algorithms, SMAC
converging much faster than the others. This is reflected
also in the matching rate, that increases much faster for
SMAC. All algorithms benefit from learning, as all match-
ing rates improve significantly after several iterations. The
vector of parameters w was initialized to zero and the final
w’s learned are similar for all the algorithms. GA and SMAC
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Table 5 Comparison of matching rates at testing time for different
graph matching algorithms before (NL) and after (WL) unsupervised
learning on Cars and Motorbikes from Pascal *07 database, with out-
liers: all outliers allowed in the right image, no outliers in the left im-
age. The algorithm used during testing was the same as the one used for
learning. Results are averages over 30 different experiments. The same
parameters were used by all algorithms for the case of no learning with
and without outliers: all elements of w being equal

Dataset IPFP SM SMAC GA PM

Cars (NL) 509% 263% 39.1% 31.9%  20.9%
Cars (WL) 731% 61.6% 64.8% 46.6%  33.6%
Motorbikes (NL) 329% 29.7%  39.2% 342%  26.1%
Motorbikes (WL)  55.7%  54.8%  52.4% 46.8%  42.2%

have a rapid improvement in the first 10 steps, followed by
a small decline and a plateau for the remaining iterations.
This might suggest that for GA and SMAC learning should
be performed only for a few iterations. For the other three
algorithms learning constantly improves the matching rate
during training.

In Table 5, we show the test results of all algorithms with
and without learning, for both datasets, when outliers are in-
troduced. Without learning all algorithms use a parameter
vector w = [0.2,0.2,0.2,0.2,0.2] on both datasets. In our
experiments, the more outliers we introduce during testing
the more beneficial learning becomes. This is also in agree-
ment with our experiments on faces (Fig. 4). Table 5 shows
the results with and without learning in the presence of a
significant number of outliers (no outliers in one image and
all possible outliers in the other image, as explained previ-
ously). It is evident that learning significantly improves the
performance of all algorithms. The results shown in this sec-
tion strongly suggest that our unsupervised learning scheme
can significantly improve the performance of other algo-
rithms on difficult data (such as the Cars and Motorbikes
from Pascal *07) in the presence of a large number of out-
liers.

6.5 Parameter Learning for Conditional Random Fields

In order to compare our method to previous work on CRFs,
we have followed exactly the experiments of Kumar on im-
age denoising, following the implementation details and test
data provided in Kumar (2005). The task is to obtain de-
noised images from corrupted binary 64 x 64 images. We
used the same four images and the same noise models. For
the easier task the noise model is Gaussian with mean & =0
and standard deviation o = 0.3 added to the 0-1 binary
images. For the more difficult task we used as in Kumar
(2005), for each class, a different mixture of two Gaus-
sians with equal mixing weights yielding a bimodal noise.
The model parameters (mean, std) for the two Gaussians

Fig. 13 First row: original binary images (left one used for training,
next three for testing). Second row: images corrupted with unimodal
noise. Third row: images corrupted with bimodal noise

Table 6 Comparisons with Kumar (2005) on the same experiments.
In Kumar (2005), 50 noisy versions of the first image are used for train-
ing. We used only 5 noisy versions of the first image are used for train-
ing. For testing both approaches use 50 noisy versions of the remaining
three images. Note that the unsupervised learning matches the perfor-
mance of the supervised one. The inference method used in Kumar
(2005) is graph cuts and the learning methods are maximum pseudo-
likelihood (PL) and maximum penalized pseudo-likelihood (PPL)

Algorithm L2QP IPFP (Kumar 2005): (Kumar 2005):
PPL PL

Unimodal (sup.) 0.75% 0.73% 2.3% 3.82%

Unimodal (unsup.) 0.85% 0.69% NA NA

Bimodal (sup.) 7.15% 15.94% 6.21% 17.69%

were [(0.08, 0.03), (0.46, 0.03)] for the foreground class and
[(0.55, 0.02), (0.42, 0.10)] for the background class. The
original images together with examples of their noisy ver-
sions are shown in Fig. 13.

Unlike Kumar (2005), which uses 50 randomly-generated
noisy versions of the first image for training, we used only 5
such images. For the simpler task we also performed com-
pletely unsupervised learning (Fig. 14) getting almost iden-
tical results (Table 6). Our results were significantly bet-
ter for the simpler noise model, while matching the results
from Kumar (2005) for the more difficult noise model. Also
note that our learning method is easier to implement and
improves the performance of IPFP, not just L2QP (our spec-
tral MAP inference algorithm from Leordeanu and Hebert
(2006) for which it was originally designed). The pairwise
potentials we used are:

Mig.jb =0 (W [ta; talis tp; tp15; tatp|l; — I;]1), 27
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Fig. 14 Left plot: supervised
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where I; is the value of pixel 7 in the image and |I; — I;] is
the absolute difference in image pixel values between con-
nected sites i and j. Following (Kumar 2005), we used 4-
connected lattices. We also experimented with 8-connected
neighborhoods with no significant difference in perfor-
mance.

The parameter values for all of our learning experiments
were:

o Initial,

w=1[0.5; —1; 0.5; —1; —0.5; 1];
e Unsupervised, unimodal noise,

w=[1.27; —2.55; 1.27; —2.55; —2.50; 0.47];
e Supervised, unimodal noise,

w=[1.27; —2.55; 1.26; —2.55; —2.63; 0.26];
e Supervised, bimodal noise,

w=[1.98; —5.24; 1.98; —5.24; —2.99; 0.22].

Our learning method avoids the computational bottle-
necks of most probabilistic approaches such as maximum
likelihood and pseudo-likelihood, which need the estima-
tion of the normalization function Z. The main reason for
unsupervised learning to not do as well for MAP problems
as for graph matching is the different structure of the matrix
M. In the case of graph matching this matrix contains a sin-
gle strong cluster formed mainly by the correct assignments,
while in the case of MAP problems, the matrix could contain
several such clusters corresponding to completely different
labelings. The idea of accidental alignment is not applicable
to most MAP problems, thus the learning algorithm could
converge to several parameter vectors that would binarize
the continuous solution, in which case supervised learning
is required. Moreover, even in the case of supervised learn-
ing, training is sensitive to initialization in the case of MAP
problems, a fact also observed by other researchers.

7 Conclusions

We present an efficient way of performing both supervised
and unsupervised learning for graph matching in the context
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of computer vision applications. We show that the perfor-
mance of our unsupervised learning algorithm is compara-
ble with that of the supervised case. The proposed algorithm
significantly improves the performance of several state-of-
the-art graph matching algorithms, which makes it widely
applicable. We also present a new approach to learning for
MAP problems and demonstrate that for some problems,
such as image denoising, it is possible to perform success-
ful learning in a completely unsupervised manner. As future
work we plan to extend the learning algorithms presented
here to the case of matching and MAP inference beyond
pairwise to higher-order constraints.
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