
MEASURING NOISE CORRELATION FOR IMPROVED VIDEO DENOISING

Anil Kokaram∗, Damien Kelly, Hugh Denman, Andrew Crawford

Chrome Media Group, Google Inc, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

ABSTRACT

The vast majority of previous work in noise reduction for visual me-
dia has assumed uncorrelated, white, noise sources. In practice this
is almost always violated by real media. Film grain noise is never
white, and this paper highlights that the same applies to almost all
consumer video content. We therefore present an algorithm for mea-
suring the spatial and temporal spectral density of noise in archived
video content, be it consumer digital camera or film orginated. As an
example of how this information can be used for video denoising, the
spectral density is then used for spatio-temporal noise reduction in
the Fourier frequency domain. Results show improved performance
for noise reduction in an easily pipelined system.

Index Terms— Noise Measurement, Video Denoising, Denois-
ing, Noise Reduction, Video Noise Reduction, Wiener Filter, 3D
Fourier Transform

1. INTRODUCTION

Noise reduction for video sequences is a well studied sig-
nal processing topic. The core problem is always to remove
noise without affecting image details. Early practical video
denoisers were developed by Dubois, Dennis et al [1] in the
1980’s, based on motion compensated temporal filtering with
no spatial information. Provided the motion compensation
was accurate, this held the potential for excellent preservation
of details. However the dirty window side effect naturally led
to the design of spatio-temporal noise reduction filters intro-
duced by Katsagellos, Sezan, Lagendijk et al [2] by the mid
1990’s. Transform domain noise reduction for video was in-
troduced toward the end of that decade involving transform
coefficient shrinkage of some kind in the fourier frequency
and wavelet domains [3, 4]. This held the potential for much
stronger noise reduction power with better detail preservation
and indeed these techniques have been used in commercial
denoisers1 for some time. The seminal work of Efros et al
at the turn of the century enabled researchers to build image
models from the redundancy in the image itself and this led
to the now popular non-local means algorithm for noise re-
duction. It is only relatively recently however that video de-
noising schemes based on this idea have arisen [5, 6]. The
combination of sparse coding ideas and non-local means has
now led to the general notion of shrinkage in an adaptive basis
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Fig. 1. Two examples of typical footage (Top: Consumer footage,
Bottom: 2K Film scan), showing on the left the blocks over which
the N-PSD (shown on the right) was measured. The maximum noise
PSD aplitude is scaled to 1.

space tuned to images and video e.g. Sapiro et al [7]. The key
improvement introduced by these algorithms has been the po-
tential for exact preservation of strong image details together
with very strong noise reduction.

There is therefore no shortage of ideas for denoising con-
sumer video footage. However, none of the previous work has
addressed one important issue: noise in real video is hardly
ever uncorrelated. While it is well known that film grain
noise is not white, the work of Buades et al [6] attempts to
show that noise in digital cameras is signal dependent, addi-
tive and white. However this ignores the reality of the en-
tire processing chain of consumer capture and upload which
must introduce spatial correlation. Immediately after the sen-
sor for instance, there is a de-mosaicing step that upsamples
the colour channels before compression. Particularly in the
case of online video repositories, the numerous transcoding
and upsampling/downsampling stages that are applied at ev-
ery stage of upload and download imply that any noise is now
spatially correlated and combined with compression artefacts.
In this paper we lump all of these defects into our definition
of noise as we attempt to address real picture degradation.



Figure 1 shows the power spectral density (psd) of noise
measured in a 720p consumer clip and a 2K professional film
scan. In both cases the psd is not flat and hence the noise is not
white. We have analysed over 100,000 clips (each over 10 sec
in length) from various consumer sources and the noise is not
white. By ignoring this correlation structure, current denois-
ing algorithms run the risk of attenuating more of the signal
spectrum (regardless of basis) than is necessary. This leads to
more blurring of details than is desirable in a practical system.
Addtionally, non-local means and sparse denoising concen-
trates on modelling the underlying picture in some implicit
sense, but by capturing the noise structure we are also able
to incorporate information about the noise. We therefore turn
a one class problem into a much more optimistic two class
problem. Furthermore, in sparse denoising, noise correlation
causes a residual noise component in the adaptive bases com-
puted in the sparse representation.

We propose in this paper to measure the noise correlation
structure from the degraded video itself. The idea is to use
a low complexity step to select a number of candidate image
patches or blocks which contain noise-like texture and then
process these candidates in a more complex second step. This
second step allows the correlation structure to be expressed in
the right form for the denoiser that is to be used. A wavelet
denoiser would require measurement of the noise variance in
each subband, a sparse shrinkage denoiser would require the
noise power in each of the basis functions. As an example, in
this paper we use the overlapped block 3D Fourier Frequency
denoiser first introduced in [3]. The denoiser is easy to un-
derstand and has many similarities to the emerging ideas in
sparse shrinkage denoising, without the computational com-
plexity. In fact it is the precursor to the block matching based
denoiser of Rusanov et al [8]. We show that by simply mea-
suring the noise structure successfully, we can produce state
of the art results. We next state our assumptions about noise
and the noise degradation model, then go on to present the
noise measurement subsystem.
Noise Model: Given the clean pixel intensity In(h, k), at
site (h, k) in frame n, we assume additive noise such that
Gn(h, k) = In(h, k) + νn(h, k) where the observed dirty
pixel intensity is Gn(h, k) and the additive noise is νn(h, k).
That noise is assumed to be correlated and for the purposes
of this paper its correlation structure is expressed through its
3D Power Spectral Density in the 3D Fourier Frequency do-
main. See Appendix A for further definitions. This is the
appropriate form for denoising in the Fourier Domain with
the overlapped block Wiener Filter [3]. However the correla-
tion structure can be expressed in any other form for use with
other denoisers. The amplitude of the noise PSD (N-PSD)
in the qth plane of the (r, s)th frequency bin is denoted by
PNq (r, s). We further assume that the N-PSD is spatially and
temporally symmetric i.e. there is no directional or coherent
textural structure. In this paper we do not allow for signal de-
pendent noise. Modifications that allow for signal dependent

noise will be presented in future work.

2. NOISE SPECTRAL DENSITY MEASUREMENT

We measure noise by first selecting patches in the current
frame which are likely to contain noise added to low com-
plexity image texture. We then use the residual arising from
a low-order image model of those patches to estimate the
noise statistics from a robustly chosen subset of patches. Fi-
nally, from the corresponding motion compensated volumes
we generate an estimate of the noise power spectral density.
Patches are B × B pixels, and are visited with an overlap of
50% in the image. Given a patch Gn(h, k) in frame n, we
define the corresponding motion compensated patches in the
previous and next frames as G′n−1(h, k), G′n+1(h, k) respec-
tively. We compensate with translational global motion which
reduces the computational load of the process without affect-
ing quality.
Selecting candidate noise patches: Suitable candidates con-
tain no dominant edge or directional gradient structure. Our
candidate patch selector is therefore based on a modification
of the ideas behind corner detection. However texture anal-
ysis is confused by noise in the image, which leads to the
paradox that we need to know the noise to estimate the appro-
priate patches for noise measurement. To resolve this, we low
pass filter the image under consideration with a light gaussian
filter (variance of 2 here) to reduce the influence of noise to
some extent. Statistics gathered over patches then gives fur-
ther robustness.

Given the filtered patchGfn(h, k) and associated gradients
in the horizontal and vertical directions represented as column
vectors, [gx, gy], the well known gradient covariance matrix
is Cgg = [g′xgx g′xgy; g′xgy g′ygy]. Defining the max-
imum and minimum eigenvalues of this matrix as λ1, λ2,
appropriate candidate patches are selected when the follow-
ing conditions are met: |Cgg| < Td; Tr(Cgg) < Tg; and
λ1/λ2 < Tl. We use Tl to control the amount of dominant di-
rectional information in a patch, Tg controls the total amount
of gradient energy and Td is a proxy for the cornerness mea-
sure. Our experiments use Td = 0.04, Tg = 0.9, Tl = 30.
Figure 1 shows typical patches selected with this process in
one example frame (B = 16).

Finally, for patches to yield a robust spectral measure,
the corresponding patches in the surrounding frames must
not contain texture information. Hence we reject any patches
which have large motion compensated DFDs (> 10 in our ex-
periments below); where DFD is (1/B2)

∑
h,k |Gn(h, k) −

G′n+1(h, k)|, and similarly for the previous frame.
Patch Analysis for Noise: A planar model with coefficients
a0−3, Ĝn(h, k) = a0 + a1h + a2k + a3hk, for the underly-
ing image data is fit to each candidate patch Gfn (using LS)
in the current frame. Since patches are selected to have lit-
tle underlying image texture information, the residual error
en(h, k) = Gn(h, k)− Ĝn(h, k) provides a possible estimate
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Fig. 2. A failure case. The original clip in the top left yields the
measured N-PSD shown on the right using the blocks as indicated.
cs = 7.3 clearly indicates asymmetry in the N-PSD. A zoom on the
original frame (bottom left) shows some of the wave texture removed
in the denoised output (right).

of the noise variance σ2
ee in each patch. Note we use the ac-

tual degradaded patch Gn for the residual. Clearly not all the
patches will be well modelled by a plane, and those will most
likely contain some image texture information. To robustly
select those patches that are most likely to represent noise, we
generate a histogram of σ2

ee and those patches that lie within
the lower quartile are assumed to contain only noise.

Each of the residual patches en(h, k) are then combined
with their counterparts in frames n − 1, n + 1 and used to
generate a set of final candidate N-PSD’s,Np as in Appendix
A. Each example in Np arises from the correlation structure
of the underlying stochastic noise generation process ν. The
MMSE estimate for the N-PSD is the average of these PSDs.
In practice we find that the median of each frequency bin
across the set Np gives a more useful N-PSD P̂Nq (r, s) for
denoising.
Validating the N-PSD: The noise measurement algorithm
as described above can still confuse legitimate image texture
with undesired noise e.g. carpet and waves. Figure 2 shows an
example. Recall that our definition requires noise to be non-
directional both in space and time. Hence the N-PSD is cir-
cularly symmetric and the noise power should not vary with
time. We therefore define two confidence measures, cs, ct,
that assess the shape of the N-PSD. Spatial symmetry is cap-
tured with cs(n), by measuring the ratio of energies in a nar-
row band of horizontal and vertical frequencies in Pn(h, k),
as follows.

∆(q) =

1∑
r=0

1∑
s=0

Pq(B/2 + r,B/2 + s)

cs(q) =

∑B−1
r=0

∑1
s=0 Pn(r,B/2 + s)−∆(q)∑1

r=0

∑B−1
s=0 Pq(B/2 + r, s)−∆(q)

where ∆(q) measures the energy around the lowest frequen-

cies of the spectral plane Pq . Removing ∆(q) is important.
That energy tends to compose the bulk of the energy of the
PSD in that plane, hence would dominate the ratio and desen-
sitise the metric. Valid Noise PSDs show cs ≈ 1, and we use
cs < Ts where Ts = 1.25.

Temporal symmetry is measured with ct as follows.

ct =

∑B−1
r=0

∑B−1
s=0 P0(r, s)∑B−1

r=0

∑B−1
s=0 P1(r, s)

If the noise PSD is valid the power of the noise PSD in
each spectral plane should be approximately the same, hence
ct max(ct, 1/ct) < Tt. In our experiments Tt = 3.0.

3. THE NOISE REDUCTION SYSTEM

The overlapped block 3D Wiener Filter [3] is used for denois-
ing. Given our estimated N-PSD PNq (r, s), the filter Hq(r, s)
in the spectral domain can be modified from [3] as follows.

Hq(r, s) =
f(PGq (r, s)− PNq (r, s))

PGq (r, s)

where f(x) =

{
PGq (r, s)− PNq (r, s) PGq (r, s) > βPNq (r, s)
β−1
β PNq (r, s)) Otherwise

Here β = 1.1 prevents discontinuities in the spectrum of the
output signal after filtering. See [3] for further details.

For fully automated processing of entire movies, the sys-
tem has to deal with shot transitions. In each shot a separate
measurement of the N-PSD must be made since the noise can
change between shots. We use a histogram based shot cut de-
tector to make another noise measurement. If less than K can-
didate patches are selected in a frame for noise measurement,
the process is repeated in the next frame. We only update N-
PSD between shots if the change in noise energy is significant
(25% here).

4. RESULTS AND FINAL COMMENTS

Figure 3 shows frames from two example sequences, one is a
typical consumer video upload (Top) and the other from a raw
2K scan of an archived film (hence no compression artefacts).
The images show that using P̂Nq (r, s), there is better detail
preservation in the denoised output. We can use the metric
Q introduced by Milanfar et al [9] to give some quantitative
indication about the tradeoff between detail loss and noise.
For the top row Q = 46.3, 37.2 when using the N-PSD and
AWGN respectively. For the bottom the metric is 12.7, 10.3
respectively. Thus in both cases Q reinforces the visual com-
parison. Also in both cases, ct ≈ cs ≈ 1. Figure 2 shows
a failure case that is detected by the symmetry measures pre-
sented earlier ct = 1.5, cs = 7.3. In our pipelined system,
this kind of material is left untouched.



Fig. 3. Two zooms on examples of typical footage. Top row: Consumer footage showing heavy noise, Bottom Row: A 2K film scan. Left to
right shows Original (degraded) footage, denoising using the measured N-PSD, denoising assuming AWGN of the same variance. In all cases
using the measured N-PSD gives much better detail preservation with the same noise reduction power in flat areas.

We have presented a system for measuring the correlation
inherent in noise in real media, together with a mechanism
for detecting failures. Our examples show that it is relatively
simple to incorporate this information into spectral domain
denoisers, and does yield improved detail preservation. Our
project page will be updated with our complete set of exam-
ples in due course. It is however not clear how non-local
means denoising can be informed with correlation informa-
tion and we consider this in future work.

A. THE 3D FFT

The 3D FFT is defined as follows.

Fq(r, s) =

N−1∑
n=0

ωnq
3

B−1∑
h=0

ωrh
2

B−1∑
k=0

Gt(h, k)ω
sk
1

where Gt(h, k) is the intensity at site h, k in frame t, and Fq(r, s)
is the 3D spectral coefficient in plane q at frequency bin (r, s). The
3rd FT is taken over N frames of Gt, and the patch in Gt is B ×B
pixels. We assume that spectral coefficients Fq(r, s) in each plane q
are rearranged so that the DC coefficient is at (B/2+ 1, B/2+ 1).(
fftshift in Matlab). The power spectral density Pq(r, s) is then
|Fq(r, s)|2.
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