
Automated Locality Optimization Based on the
Reuse Distance of String Operations

Silvius Rus
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043
Email: rus@google.com

Raksit Ashok
Google India Pvt. Ltd.

No. 3, RMZ Infinity - Tower E
Old Madras Road

Bangalore, 560 016, India
Email: raksit@google.com

David Xinliang Li
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043
Email: davidxl@google.com

Abstract—String operations such as memcpy, memset and
memcmp account for a nontrivial amount of Google datacenter
resources. String operations hurt processor cache efficiency when
the data accessed is not reused shortly thereafter. Such cache
pollution can be avoided by using nontemporal memory access
to bypass L2/L3 caches. As reuse distance varies greatly across
different memcpy static call contexts in the same program, an
efficient solution needs to be call context sensitive. We propose a
novel solution to this problem using the page protection mecha-
nism to measure reuse distance and the GCC feedback directed
optimization mechanism to generate nontemporal memory access
instructions at the appropriate static code contexts. First, the
compiler inserts instrumentation for calls to string operations.
Then a run time library measures reuse distance using the page
protection mechanism during a representative profiling run. The
compiler finally generates calls to specialized string operations
that use nontemporal operations for the arguments with large
reuse distance. We present a full implementation and initial
results including speedup on large datacenter applications.

Index Terms—memcpy; nontemporal; reuse distance

I. INTRODUCTION

A. Background

Standard library string operations such as memcpy, memset
or memcmp and others are ubiquitous. They implement basic
functions: memory copy, memory move, finding a character
in a string or finding the length of a string. They are used
in core libraries, such as dynamic memory allocators, or
runtime systems of various languages, including C, C++, Java
or Python. In a function profile across all Google datacenter
applications string operations take 2 of the top 10 spots.
String operations can cause performance problems because

they flush large portions of the processor caches. Consider
the case in Fig. 1, where the memcpy source is read again
immediately thereafter, but the destination is not reused for
a while. If the destination memory is not in cache, this will
have a doubly negative effect. First, writing requires bringing
each line to cache. To do so, previously cached data will
have to be written back. That makes already two cache-to-
memory operations. Moreover, since the cache lines will not
be reused for a while, this effectively reduces the usable size of
the cache. At some point they will get written back, perhaps
replaced by an access to the same data that they evicted in

the first place unnecessarily. That makes two more cache-to-
memory operations.

memcpy (d e s t , s r c , 6 5536) ;
/ / ’ s r c ’ i s r eu s ed immed i a t e l y .
do something (s r c) ;
work on something else () ;
/ / ’ d e s t ’ i s r eu s ed much l a t e r .
do something (d e s t) ;

Fig. 1. Example of a call to memcpy where the read memory operation has
temporal locality, but the write does not, so it pollutes the cache.

Such cache pollution can be avoided by using nontempo-
ral memory access to bypass L2/L3 caches. Then a write
operation will take a single memory operation. Moreover,
writes to contiguous memory locations may be aggregated
in on-chip write-combine buffers and then written out more
efficiently. When a write-combine buffer is completely full
it can be written out without requiring a read-modify-write
sequence. However, nontemporal operations are suboptimal
when the data is in fact reused shortly thereafter because it
will have to be fetched to cache. A regular write followed
by a reuse of the data is faster because it has a useful
prefetch effect. Nontemporal writes are also not beneficial
when data is already cached In such cases regular writes are
usually faster because they may modify only the cache and
not the main memory. Moreover, nontemporal writes require
explicit flushing of write buffers, which adds a fixed amount
of overhead and places extra burden on the programmer or
code generator.
Throughout this paper we will focus only on x86 64

processors, namely AMD Family10h [1] and Intel Nehalem
[4] and Core2 [3]. While the techniques presented in this
paper are generally applicable, their effectiveness depends on
microarchitecture design.

B. Motivation

Unfortunately it is not easy to tell beforehand whether
a memcpy target will be used or not. A heuristic is to
use nontemporal operations for large operations. Such large
operations are more likely to have a large reuse distance. That

181978-1-61284-357-5/11/$26.00 ©2011 IEEE

-4

-3

-2

-1

 0

 1

 2

 3

 4

4096 16384 65536 131072

%
 w

ho
le

 p
ro

gr
am

 im
pr

ov
em

en
t

nontemporal operation threshold in bytes

streetview-facerec
websearch-frontend
websearch-backend

protocol-buffer
adsense-docs

adsense-keywords
log-processor

fast-compression
geometric-mean

Fig. 2. Operation size alone is not a good indicator alone for
substituting string operations with nontemporal counterparts.

is how memset works on a recent implementation of GNU
libc. However, Fig. 2 shows that size alone is not a good
discriminator for other string operations including memcpy.
(Size is an important factor though, and is considered alongside
reuse distance throughout the remainder of this paper.)
The fundamental problem is that reuse distance may vary

across different memcpy static call contexts in the same
program. An efficient decision to use nontemporal memory
access for string operations may need to be made for each
static call context, and possibly for different workload classes.
The practical problem is that measuring the reuse distance

by instrumenting each memory reference is expensive, espe-
cially for large programs with large data sets. [12] reports a
200x time expansion even for fairly small data sets. This is
unfortunate since these issues are most important on larger
servers running applications with high memory usage on
multiple processing cores and memory nodes. A light-weight
reuse distance measurement mechanism is crucial to practical
applicability.

C. Contribution

We propose a novel feedback-directed solution to this
problem. First the compiler inserts instrumentation for calls to
string operations. A run time library measures reuse distance
using the page protection mechanism during a representative
profiling run. The compiler then generates calls to specialized
string operation versions that use nontemporal operations for
the arguments that presented large reuse distance.
This paper makes the following original contributions:

• A novel pay-per-view method to measure the reuse dis-
tance of string operations. The overhead is proportional
to the dynamic number of string operations instrumented
and not to the number of dynamic memory references,
since most work is piggy-backed on the hardware paging
mechanism. No hardware extensions are needed.

• A feedback directed compiler optimization pass that
replaces string operations with semantically equivalent
but nontemporal operations at static call contexts with
large reuse distance.

II. STRING OPERATIONS

String operations are an important component of about every
program. Function profiles across all applications in Google
datacenters show memcpy, memset, memcmp among the top
cycle consumers globally. We will focus on these functions,
and in particular on memcpy for the remainder of this article.
Note that while we are providing an in-depth performance
characterization of nontemporal memory access operations,
the purpose of this article is not to explain how nontemporal
memory access is implemented in specific processors. For
implementation details please see the corresponding documen-
tation [1], [4], [3].

A. Optimizing String Operations

Optimizing memcpy is a popular Internet topic. A web
search showed 10 times more matches for optimize memcpy
than for optimize malloc. Much of this memcpy optimization
effort is short term, related to a project and a specific micro-
processor architecture. Why not solve this once and forever?
First, memcpy performance depends on the memory hard-

ware capability and configuration: bus/interconnect throughput
and latency, cache hierarchy (cache capacity and associativity,
cache coherence protocol). The main reason why a single
most efficient memcpy does not exist is that the processor
microarchitecture changes over time. Some of these changes
have a profound impact on memcpy performance. The bus
width or clock rate have a direct effect. A more subtle effect
comes from cache behavior. Processors with writeback caches
keep data in cache without sending it to memory until a cache
conflict, capacity or coherence event requires it. In order to
write a memory location, its whole cache line is brought to
cache first. However, we will see shortly that this mechanism
is not always optimal. The alternative is to use nontemporal
memory access, which bypasses some levels in the processor
cache hierarchy.
Second, memcpy performance is often affected or dominated

by cache misses related to its interaction with the surrounding
code. Moreover, the same code may show completely different
memcpy behavior on fundamentally different input sets.
We argue that it is this combination of microarchitecture

changes and dependence on context and input that make it
hard, perhaps impossible, to come up with a one-size-fits-all
memcpy. Thus we propose a feedback-directed solution. The
remainder of this section explores the performance tradeoffs
between memcpy implementations using temporal and non-
temporal memory operations, which establishes our field of
choices and tells us what factors are relevant in the feedback-
directed decision process.
Nontemporal memory operations can speed up execution in

two ways. First, nontemporal writes may not require a cache
line to be fetched before the write, possibly resulting in a 2x

182

de f i n e BLOCK SIZE (32 ∗ 1024)
de f i n e ARRAY SIZE (256 ∗ 1024 ∗ 1024 + BLOCK SIZE)
de f i n e REPS (8 ∗ 1024)

void t e s t (char∗ p1 , char∗ p2 , char∗ p3 , char∗ p4) {
s i z e t o f f s e t = 0 ;
f o r (i n t i = 0 ; i < REPS ; ++ i) {
s t a r t t i m e r () ;
memcpy (p1 + o f f s e t , p2 + o f f s e t , BLOCK SIZE) ;
s t o p t im e r () ;
elapsed memcpy += g e t e l a p s e d () ;

s t a r t t i m e r () ;
work (p3 + o f f s e t , p4 + o f f s e t) ;
s t o p t im e r () ;
e l ap sed work += g e t e l a p s e d () ;

o f f s e t += BLOCK SIZE ∗ (random () % 100)
o f f s e t = o f f s e t % ARRAY SIZE ;
}
}

char a1 [ARRAY SIZE] , a2 [ARRAY SIZE] ,
a3 [ARRAY SIZE] , a4 [ARRAY SIZE] ;

t e s t (a1 , a2 , a3 , a4) ; / / No r eu s e .
t e s t (a1 , a2 , a3 , a2) ; / / Read r eu s e .
t e s t (a1 , a2 , a1 , a4) ; / / Wr i t e r e u s e .
t e s t (a1 , a2 , a1 , a2) ; / / Read and w r i t e r e u s e .

Fig. 3. Code kernel to simulate 4 different reuse scenarios. In all
cases the test consists of a memcpy of size 32 KB followed by a
work loop that also touches 2 * 32 KB of memory. Unlike memcpy,
it touches it in random order. The first argument to work is read and
written and the second one only read).

increase in throughput. Second, they do not replace existing
lines in cache, thus a cache line referenced before and after a
conflicting nontemporal memcpy will not cause a miss.
However, nontemporal operations are suboptimal when the

data is in fact reused shortly thereafter because it will have
to be fetched to cache. A regular write followed by a reuse
of the data is faster because it has a useful prefetch effect.
Moreover, at least on the processors we experimented with,
nontemporal writes require explicit flushing of write-combine
buffers, which adds a fixed amount of overhead and places
extra burden on the programmer or code generator.
Fig. 3 shows a code snippet used to evaluate the effect of

using nontemporal memory operations. We implemented four
versions of memcpy, corresponding to all the combinations
of temporal/nontemporal read/write. Nontemporal reads are
implemented by issuing prefetchnta instructions in ad-
vance. Nontemporal writes were implemented using movntq
instructions. Whether this is the best way to implement non-
temporal operations is outside the scope of this paper. Each
implementation is evaluated in four reuse scenarios.
Fig. 4 illustrates the effectiveness of nontemporal operations

for each possible reuse pattern.
AMD Family10h (a) and Intel Core2 (c) show similar

behavior patterns that fit our expectations. When there is no
reuse between the copy loop and the work loop (first bar
group in each graph), the best memcpy version is rw, with

 0

 50

 100

 150

 200

no w r rw - no w r rw - no w r rw - no w r rw

T
im

e
(m

ic
ro

se
co

nd
s)

work
memcpy

no reuse read reuse write reuse r/w reuse

(a) AMD Family10h

 0

 10

 20

 30

 40

 50

 60

no w r rw - no w r rw - no w r rw - no w r rw

T
im

e
(m

ic
ro

se
co

nd
s)

work
memcpy

no reuse read reuse write reuse r/w reuse

(b) Intel Nehalem

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

no w r rw - no w r rw - no w r rw - no w r rw

T
im

e
(m

ic
ro

se
co

nd
s)

work
memcpy

no reuse read reuse write reuse r/w reuse

(c) Intel Core2

Fig. 4. Performance of the kernel in Fig. 3 under four reuse scenarios
using four memcpy implementations (no = temporal read and write, r
= nontemporal read, temporal write, w = temporal read, nontemporal
write, rw = nontemporal read and write).

183

record r ange
s t a r t : a d d r e s s v a l u e t yp e
l e n : s i z e v a l u e t yp e
c o u n t e r : r e u s e d i s t a n c e v a l u e t yp e
t ime : t ime va l u e t yp e

rou t i n e i n s t r um e n t (s t a r t , l en , c o u n t e r)
mp ro t e c t (s t a r t , l en , PROT ALL)
r ange = c r e a t e r a n g e (s t a r t , l en , c o u n t e r)
r a n g e t r e e . i n s e r t (r ange)
r ange . t ime = g e t t ime ()

rou t i n e s e g f a u l t (a d d r e s s)
t ime = g e t t ime ()
r ange = r a n g e t r e e . f i n d (a d d r e s s)
mp ro t e c t (r ange . s t a r t , r ange . l en , PROT NONE)
e l a p s e d = t ime − r ange . t ime
upda t e runn ing mean (r ange . coun t e r , e l a p s e d)
r a n g e t r e e . remove (r ange)
d e s t r o y (r ange)

Fig. 5. Reuse distance measurement pseudocode.

both nontemporal reads and nontemporal writes. When only
the memcpy source is reused (second group of bars), the
best memcpy version is w, nontemporal writes but temporal
reads. This make sense, since the destination is not reused but
the source is. When only the memcpy destination is reused
(third group of bars), the best memcpy version is r, temporal
writes but nontemporal reads. When both the source and the
destination are reused, the best version is no, the one using
temporal reads and temporal writes.
All these graphs were recorded using a block size of 32 KB.

Different block sizes (not illustrated here) produce different
numbers but overall the nontemporal/reuse interaction is sig-
nificant. When the size decreases below 4 KB, nontemporal
reads start to become too expensive. At a block size of 1
KB the overhead of nontemporal reads becomes so high that
overall the versions that use nontemporal reads are always
slower than the others, regardless of the reuse pattern.
There are several conclusions from this study. First, per-

formance numbers vary across microprocessor architectures.
Second, there are at least two factors to be considered when
designing nontemporal string operations: (1) the actual reuse
distance of the memory touched by the string operation and
(2) the size of the string operation.

III. MEMORY REUSE DISTANCE MEASUREMENTS

Measuring memory reuse distance is an established topic.
However, the existent techniques rely on analyzing large traces
produced by instrumentation of all memory references [17].
Since we are interested at this point only in string operations,
it is wasteful to instrument every memory reference. More-
over, our benchmarks are large, thus instrumentation may be
impractical due to memory or time overhead.

A. Measuring the Reuse Distance using Page Protection

We chose to measure reuse distance in a different way.
Instead of instrumenting every memory reference or a random
selection, we decided to instrument only the operations we

care about. The instrumentation mechanism (Fig. 5) protects
the memory pages from read/write access and records the
current time. When one of these protected pages is accessed
next, a custom page fault handler is invoked. This handler
determines whether the fault occurred at an address in the
original memcpy range. If so, it records the current time, then
it records the time elapsed from the moment the page was
last protected and then it unprotects the page and resumes
execution. The elapsed time is accumulated as a running mean.
The cost of our instrumentation is thus pay-per-view. It it

limited to one call to mprotect for each instrumentation point
plus one insertion in a range tree, which is bounded in size.
Each memory reference does get checked, but this is piggy-
backed on the hardware virtual-to-physical address translation
mechanism. No special hardware is required. No more than
a fault occurs for each dynamic instrumentation point. Each
fault takes a lookup in the range tree, followed by a call to
mprotect and one range tree deletion.

B. Reuse Distance Metrics

We are currently using a lightweight system clock as the
metric for the reuse distance timer. While this is an imprecise
estimation of memory activity, it has provided sufficient infor-
mation that led to measurable gain in several benchmarks. In
a different study, [14] showed that locality measures can be
approximated using time with over 99% accuracy.
As work in progress, we are exploring other measures,

hardware event counters such as L2 cache writebacks. The
challenge is to implement a measure that is robust across
threads and processing units. Many of our benchmarks are
heavily multithreaded and it is not uncommon that the result
of a memcpy executed on some processor core get reused first
on a different core, and computing the difference between the
counter values on different cores does not make sense. One
way to achieve this would be to record counter values on all
cores periodically via timer interrupts and to build a per-core
database of counter values along a global time line (itself based
on a synchronized clock). Then we can simply record the time
and core where the protection occurred, and the same for the
moment the page fault was triggered. Consulting the database
will then allow us to differentiate between writebacks on the
original core vs. on the core where the page fault is triggered.
All current experimental results were obtained using a system
clock.

C. Engineering

Although the idea is simple, we met several technical
hurdles in implementing this mechanism.
First, string operations are ubiquitous. They may be called

in application bootstrap code, such as memory allocator code
in dynamic library initialization routines. This code may run
before even the pthread library is functional, which means we
could not use malloc or pthread everywhere in the instrumen-
tation library.
Second, the data copied by memcpy could be anywhere in

the process space. It could be on the same page as the global

184

offset table or the procedure linkage table, which means we
cannot always call shared library functions from the signal
handler, as that would cause a second SEGFAULT which
crashes the program. It could be on the same stack page as
the instrumentation routine’s stack frame, thus the SEGFAULT
would be triggered before even returning, resulting in pure
overhead with no reuse distance information gain.
Third, several threads may try to read a protected region

at about the same time, which will produce several calls to
the SEGFAULT signal handler for the same protected area.
These calls get serialized. The first handler instance must
unprotect the pages so execution can continue. However, the
second signal on the same range will appear unrelated to the
reuse distance measurement mechanism because this range is
not registered anymore. To distinguish such duplicated signals
from unrelated signals possibly caused by software bugs, we
simply try to read one word at the SEGFAULT address. If
this signal is a duplicate, nothing will happen because the
pages were just unprotected. If the signal is unrelated then
this read will result into a second SEGFAULT that will crash
the program as it would do in a normal execution.
A more severe issue is that if a pointer to a protected page

is passed into a system call, dereferencing it will result not in
a call to our fault handler, but rather in an EFAULT system
call return value.
Our solution is to isolate the instrumentation code and

data from the application code and data. There are several
ways to accomplish it. First, the program could run under
ptrace, a Linux system utility that permits an observer program
to intervene at each system call. This would give us the
separation of data and code as the observer runs different
code in a different process space. However, this approach has
severe drawbacks. Running under ptrace may conflict with
other monitoring processes, such as debuggers or sandboxes.
It adds more slowdown and it makes it harder or impossible
to run in production environments.
Our current approach is to run in the same process space and

manage the separation explicitly. The SEGFAULT handler runs
on its own stacks separate from the thread stacks. For global
state we do not use global variables. Instead we use macro
names that expand to offsets in a privately mapped memory
pool. We use a custom dynamic memory allocator that uses
privately mapped memory pages as well. Our library does not
make system calls with a few controlled exceptions. There
are a few locations that never get protected: the current stack
frame, the global offset tables and procedure linking tables and
a special page that contains a master mutex used to control
updates to internal global data structures.
To avoid leaking protected pages through system calls, we

wrap all libc library calls and walk all their pointer arguments
that may be passed to system calls. For instance, for function
open we walk the string that stores the file path. If this string
lies on a protected page, the SEGFAULT will be triggered
during this walk, before the system call. If protected memory
is passed through the system call inadvertently, this does not
lead to a SEGFAULT, but instead the system call returns with

an error code, usually EFAULT, which may not crash the
application but rather change its behavior–a hard to detect bug.
Walking all the memory that could be referenced by a system
call is unfortunately hard to do reliably for vaguely specified
interfaces such as ioctl, where the argument list is variable
and the argument types may depend on runtime flag values.
However, the wrapping mechanism has worked in practice for
several million lines of benchmark code.

D. Overhead Reduction

The instrumentation overhead comes from multiple sources.
First, a call to an instrumentation stub is made for every

dynamic call to a string operation. Most calls return after a
brief check because not all string operations are actually in-
strumented (controlled by profiling run environment variables).
However, even these quick checks do lead to measurable
overhead. One way to diminish this effect is to tell the
compiler exactly what operations are to be instrumented and
avoid inserting calls to instrumentation stubs altogether for
functions deemed not interesting.
Second, most instrumentation calls would result in one or

two mprotect calls, which are very expensive. There is also
overhead in looking up and maintaining the reuse distance
library internal structures (range tree, dynamic memory allo-
cator free lists, result tables). In a small stress test we measured
a 1,000x slowdown for very short and frequent memcpy calls.
Most programs do not call memcpy nearly as much, but can
still show significant overhead, up to around 2x in practice. We
reduced this greatly by employing sampling uniformly at the
call site of mprotect. The instrumentation library thus drops
100 of every 101 instrumentation requests.
Third, we are limiting the amount of extra memory used to

store internal data structures such as custom memory allocator
free lists or page trees. We do it primarily to avoid out-of-
memory kills in production environments but it also reduces
overhead by dropping instrumentation requests that would go
over the memory budget. In practice this mechanism is useful
mostly at very low sampling rates. It has the same drawback
as sampling, potential decrease in profile quality.
Fourth, we are wrapping all libc calls that may result in

system calls with access to user space memory. The wrapper
code needs to walk the memory before calling the original
function to avoid page faults within the system call. To reduce
the overhead of these walks the wrapper code does not read
every memory word but rather one word per page, which
reduces this overhead by a factor for large strings. This is
unfortunately not possible for strings with unknown length,
where reading all the characters is needed in order to detect
the terminating character.
Section V-A shows benchmark statistics including instru-

mentation overhead across many large benchmarks. As a
geometric mean the overhead of reuse distance measurements
for calls to memcpy, memset, memcmp and bcmp is about 2%
to 3%.

185

Code Lines Description memcpy memset memcmp memchr
bigtable ≈ 1M Bigtable server 1.72% 0.11% 0.40% 0.01%
streetview-facerec ≈ 1M Face recognition 0.59% 0.06% 0.33% 0.00%
streetview-stitch ≈ 1M Panorama stitcher 0.38% 2.19% 0.14% 0.00%
websearch-frontend ≈ 1M Web server 2.96% 0.10% 1.09% 0.63%
websearch-backend ≈ 1M Search engine 0.25% 0.12% 0.20% 0.00%
encryption-ssl ≈200K Openssl 0.12% 0.32% 0.01% 0.31%
protocol-buffer ≈ 1M Wire protocol 8.50% 0.04% 0.01% 0.00%
adsense-serving ≈ 1M AI/Data mining 37.58% 0.80% 0.00% 0.00%
adsense-indexing ≈ 1M AI/Data mining 1.20% 2.49% 0.03% 0.00%
log-processor ≈ 1M Log mining 4.29% 0.18% 0.49% 0.42%
fast-compression ≈100K (De)Compression 21.74% 1.47% 0.00% 0.00%

Fig. 6. Google datacenter benchmarks. The numbers represent the percentage of total CPU cycles spend in top string operations during
benchmark execution.

IV. COMPILER AUTOMATION

A. Feedback Directed Optimization

We decided to implement the automation of the substitution
with nontemporal string operations in the GCC[2] feedback
directed framework. GCC users are already used to it:

// Code instrumentation phase.
gcc -fprofile-generate test.c
// Profile collection in representative run.
./a.out
// Optimization using profile data.
gcc -fprofile-use test.c

The instrumentation phase is straightforward. The compiler
inserts calls to the runtime library after every call to a string
operation. The advantage of doing this in the compiler, as
opposed to, e.g., using the LD PRELOAD mechanism is that
the compiler will insert this instrumentation even for memcpy
calls that are transformed by other compiler mechanism, e.g.,
as an inline loop. Also, over time we hope to make use of
compiler information to enhance and extend this mechanism
beyond string operations.
We are using the GCOV mechanism and the GCC profile-

generate infrastructure. Each static call context is allocated a
GCOV set of counters. The address of the first counter will
identify this context throughout the runtime library. The library
is responsible to update the counter values continuously as
more information about the same static context accumulates
during execution. Currently there are four counters for each
pointer argument of each string operation: the average opera-
tion footprint, the average reuse distance, the dynamic number
of calls and the product size ∗ reuse distance aggregated
over all the calls.
In the profile-use phase the compiler reads back the counter

values for each call context and decides whether to substitute
the call with an equivalent nontemporal one. The decision is
controlled by compiler parameters that set thresholds for the
operation footprint and for the reuse distance.
In addition to sensitivity to static call context, making these

substitutions in the compiler makes sense because the compiler
has access to the memory reference pattern before the string
operation. Thus the compiler can improve a decision if it
knows, for instance, that a memcpy is immediately preceded
by a loop that references its arguments. In such cases using
nontemporal memory access would not be beneficial because

data may be already cached. The compiler could also help
reduce the number of instrumentation points by not instru-
menting string operation call sites follow shortly by reuse of
their arguments. We have not explored this avenue yet.
Section V presents profile-generation and profile-use data

and discusses quantitative choices.

B. User Advisory Tool

Is user advice to switch to nontemporal operations appro-
priate and feasible? This question turned out more complex
than it appeared initially. On one hand a fully automated
compiler mechanism has several advantages. First, decisions
may change over time. A suggestion to replace a call to
memcpy with a call to a nontemporal version may not be
given anymore after the input or the program code changes
significantly. The compiler mechanism would simply not make
the substitution anymore, whereas a programmer would have
to re-edit the code in order to revert the original substitution.
Another advantage on the compiler side is that memcpy
calls from inlined functions will get analyzed and optimized
differently at each inline site. The advice to the user would
then be to perform inlining by hand and then specialization at
only some sites. That would be likely to have little practical
success.
On the other hand, giving advice to the programmer may

point to design mistakes at a level higher than the compiler can
fix. Replacing with a nontemporal memcpy may simply offer
a partial fix of the effect, which will hide the root cause. It
may be better to let the programmer figure out the root cause.
Consider the following code snippet.

Item item; // sizeof(item) == 64 KB
pool.get(item, location); // memcpy(item, ...)
item.set_field(key, val); // Touch only 1 KB.
pool.put(item, location); // memcpy(..., item)

The first call to memcpy will have a short reuse distance
(although only a small part of the item is touched). The second
call to memcpy may have a very large reuse distance for
the write operation. The compiler solution would be to use
nontemporal writes for the second call to memcpy. While that
leads to speedup, possibly significant, this is hiding a design
choice that leads to severe performance issues. The problem
is that the design considers item as an atomic quantum, and
this quantum is much larger (64 KB) than the state (1 KB)

186

void a d d i n t v e c t o r (i n t ∗ de s t , i n t ∗ s r c1 , i n t ∗ s r c2 ,
s i z e t l e n) {

s i z e t i ;
f o r (i = 0 ; i < l e n ; ++ i)

d e s t [i] = s r c 1 [i] + s r c 2 [i] ;
}

Fig. 7. Streaming kernel that is not a string operation.

that needs to be changed by the operation. This is a hard to
detect high level performance bug. The programmer may not
be aware of it because the ratio between the copy size and the
modified state size may increase over time even though it was
initially close to 1.
We use the compiler feedback-directed mechanism as a user

advisory tool as well. The reuse distance and footprint at each
call context are printed as compiler notes for all the sites where
they were measured. They are extremely valuable in giving
application programmers a better understanding of how their
programs reference memory. The compiler notes are given in
a fixed format, which makes it trivial to postprocess them and
figure out quickly the top, say, 10 sites which in many cases
account for over 50% of all time spent in string operations.

C. Extension to Arbitrary Streaming Kernels

Although this paper focuses on string operations, the same
technique can be used with other streaming kernels. In the
example in Fig. 7 two arrays are read and one is written.
Depending on the reuse distance of each of (dest, src1 or
src2), the compiler can generate one of eight combinations
of temporal/nontemporal choices. There are a few additional
issues when transforming arbitrary streaming kernels.
First, the compiler must be able to recognize the streaming

pattern, or the library programmer must be able to tell the
compiler how to instrument important functions. We have
not yet explored automatic pattern recognition but believe
there is strong potential in this direction. We did design the
compiler framework to make it easy for programmers to define
instrumentation methods for arbitrary functions.
Second, the substitution decision must be aware of hard-

ware capabilities. Issuing nontemporal memory operations for
several streams concurrently might not help even when the
memory reuse distance is large, because the hardware may
impose limitations on the number of in-flight nontemporal
memory access operations.
Third, the compiler must be able to generate efficient code.

Unlike the canned string routines, arbitrary kernels have to be
reconstructed and specific memory access instructions have to
be substituted. Instructions must be inserted to flush write-
combine buffers.
A practical alternative to this relatively complex compiler

mechanism is to ask developers to recognize and instrument
such kernels by hand using the reuse distance library we
provide. The feedback-directed optimization compiler pass can
be extended to handle functions other than string operations.
We have designed but not yet implemented the compiler

support for this semi-automated process.

D. Limitations

Our approach has some limitations, some technical and
some fundamental.
First, we are not taking into account the reverse reuse

distance for string operations, which is the distance from the
previous reference on the same memory region to the string
operation. This could be important because a nontemporal
write on cached data in exclusive of modified state is slower
than a temporal write. While the nontemporal one modifies
RAM, the temporal one will likely modify just the cache,
which takes much less time.
Second, we are using an artificial measure for the reuse

distance. We are investigating ways to integrate hardware event
counter readings in this measure, such as writeback events.
Third, we have not looked at interaction with hardware

prefetch mechanisms. We are planning to study this interaction
and to research possible correlations between hardware events
related to hardware prefetch and the opportunity of nontem-
poral operations.
Fourth, we are not detecting dynamic phases for a single

static context. The same static context may change reuse
distance over time. Our approach misses such opportunities.
Finally, we are only instrumenting operations larger than

4,096 bytes, so we are missing a large number of opportu-
nities. Instrumenting only objects larger than a memory page
reduces the overhead. Instrumenting smaller pages may result
in useless instrumentation, in the case where a page fault is
generated by a memory access to data on a protected page,
but not within the actual string operation range. This happens
with our current scheme as well, but with lower probability.
Also, we acknowledge that feedback-directed optimization

is not a feasible solution for all programs, but it is for a
large class of applications, such as many datacenter servers
or repetitive tasks such as stitching images into StreetView
panoramas or recognizing characters on scanned books.

V. EVALUATION

A. Benchmarks and Setup

We used a set of benchmarks largely representative of
Google datacenter workloads. Fig. 6 presents a few charac-
teristics of these benchmarks. Note that while benchmarks
adsense-serving and adsense-indexing use the same binary,
they are run on different classes of input. This leads to
very different importance of string operations. 37.58% of
adsense-serving is spent in memcpy vs. 1.20% for adsense-
indexing. Note that the performance behavior is stable within
a single input set class (serving or indexing). For instance,
the percentage spent in memcpy is consistent across serv-
ing different workloads. This supports our hypothesis that
feedback-directed optimization is both needed and effective.
In order to deploy this optimization with the adsense team,
they built two binaries, one optimized for serving and the
other for indexing. It was not a problem because these are
two completely different processes.

187

Benchmark Slowdown Instrumentation Points
bigtable 4.0% 15,743
streetview-facerec 0.0% 19,775
streetview-stitch 0.8% 14,516
websearch-frontend 1.8% 31,282
websearch-backend 1.1% 27,022
encryption-ssl 0.0% 1,225
protocol-buffer 15.5% 12,390
adsense-serving 1.7% 11,449
adsense-indexing 7.5% 11,449
log-processor 4.3% 26,958
fast-compression 7.4% 2,438

Fig. 8. Instrumentation statistics. The last column shows the number
of static instrumentation points. The baseline for the overhead com-
putation was taken with a binary build with the same options except
-fprofile-reusedist. We used the default sampling rate of 101.

Large hot functions are rare in highly tuned datacenter appli-
cations. The adsense-doc case is clearly an outlier. However,
string operations do account for about 3 to 4% of the total
application time in many cases.
All experiments were run on AMD Family10h, Intel Ne-

halem and Intel Core2 processors. The number of trials
varies with the benchmark. The measurement error margin
for speedup is below 0.5% in all cases and around 0.1% in
many. Since reviewers expressed doubt about the possibility of
measuring large applications with such high accuracy, we feel
obliged to shed some light on the methodology. Although the
benchmarks generally use the exact same code as production
binaries, they were run in isolation, thus they do not access
remote file systems or make remote procedure calls during the
part of the program execution that gets measured. We tried
to reduce the amount of local disk access as well whenever
possible. For experiments run on NUMA machines we locked
benchmarks to a particular CPU and memory node, when the
workload fit within a node. For larger benchmarks we used
an interleaved page allocation policy to spread pages across
memory nodes evenly thus ensuring similar CPU to memory
node mapping across different runs. Each benchmark is run
several times and the trimmed mean is reported. The actual
run count depends on the natural variance of each benchmark
and guarantees error margin below 0.5% with 95% confi-
dence. Benchmarks generally produce a performance metric
internally, so performance is usually reported as throughput,
server latency or phase run time, and not as an external
observation. The test machines are fully dedicated to one
experiment at a time and are brought to a clean state before
running each experiment. This includes killing rogue processes
and dropping system file caches. Not least, benchmarks get
better over time and flaky ones tend to get discarded.
Fig. 8 shows that the overhead of the instrumentation

is tolerable in most cases. As discussed in Section III-D,
overhead is reduced significantly by sampling.

B. Performance Improvement

Fig 9 shows statistics of the compiler optimization phase
and peak speedup across all test platforms. Fig. 10 shows
speedup graphs for each platform for an operation size thresh-
old of 16 KB (only operations of average size 16 KB or higher

Benchmark Coverage Peak Peak/Coverage
bigtable 2.24% 0.00% 0.00%
streetview-facerec 0.98% 0.65% 66.32%
streetview-stitch 2.71% 0.74% 27.30%
websearch-frontend 4.78% 1.55% 20.08%
websearch-backend 0.57% 0.31% 54.39%
encryption-ssl 0.76% 0.00% 0.00%
protocol-buffer 8.55% 0.00% 0.00%
adsense-serving 38.38% 31.95% 83.24%
adsense-indexing 3.72% 0.22% 5.9%
log-processor 5.38% 1.99% 36.99%
fast-compression 23.21% 1.84% 7.9%
geometric mean 5.46% 3.23%

Fig. 9. Optimization statistics. The coverage column shows the
time spent in string operations as percentage of whole program
execution. The peak column shows the peak speedup across the whole
experiment set. The peak/coverage column shows the ratio between
the peak speedup and the coverage.

are substituted with nontemporal operations).
The peak/coverage column shows how well (or not) we are

exploiting the opportunities. For adsense-serving we appear to
be speeding up more than expected. The application speeds
up 31.95% while the initial memcpy coverage is 38.38%.
This high speedup was measured on AMD Family10h, which
is most sensitive to nontemporal operations (see Fig. 4. On
Intel Core2, the speedup for this application was 16.84% and
on Intel Nehalem 9.77%. It turns out that a large part of
the execution is taken by memcpy with large reuse distance
(around 40 million cycles) and fairly large footprint, around
55 KB each.
We are approaching theoretical improvement limit in

streetview-facerec and websearch-backend, but the overall
speedup is modest because string operations take little of the
total execution time to start with.
The fast-compression, adsense-indexing and log-processor

benchmarks speed up moderately. Although they spend much
time in memcpy, the reuse distance is relatively short. A naive
replacement with nontemporal operations at all sites in fast-
compression led to significant slowdown. Note that adsense-
indexing and adsense-serving use the same code, but are run
on different input set classes.
In the protocol-buffer and bigtable benchmarks many or

most string operations are shorter than 4,096 bytes, so our
instrumentation misses them. We are planning to investigate
whether it is worth reducing our instrumentation threshold to
record the reuse distance for shorter strings. This may lead to
a large increase in instrumentation overhead. In encryption-ssl
there are almost no string operations.
Fig. 10 shows that using reuse distance as a discriminator

for switching to nontemporal operations makes sense. The best
threshold across all three test platforms was 1,000,000 cycles.
At this level the geometric mean is 3% on AMD Family10h,
1.36% on Intel Nehalem and 1.90% on Ilium Core2.
The results are certainly not earth-shattering, but they do

prove that string operations can be optimized through fully
automated reuse distance analysis, and that this analysis is
practical. Note that on average string operations account
for only 5.46% of the whole program execution time, so a

188

-4

-3

-2

-1

 0

 1

 2

 3

 4

300000 600000 1000000 10000000

%
 w

ho
le

 p
ro

gr
am

 im
pr

ov
em

en
t

reuse distance threshold in cycles

streetview-facerec
websearch-frontend
websearch-backend

protocol-buffer
adsense-docs

adsense-keywords
log-processor

fast-compression
geometric-mean

31.01% 31.47% 31.95% 31.28%

(a) AMD Family10h

-4

-3

-2

-1

 0

 1

 2

 3

 4

300000 600000 1000000 10000000

%
 w

ho
le

 p
ro

gr
am

 im
pr

ov
em

en
t

reuse distance threshold in cycles

streetview-facerec
websearch-frontend
websearch-backend

protocol-buffer
adsense-docs

adsense-keywords
log-processor

fast-compression
geometric-mean

9.44% 9.77% 9.36% 9.60%

(b) Intel Nehalem

-4

-3

-2

-1

 0

 1

 2

 3

 4

300000 600000 1000000 10000000

%
 w

ho
le

 p
ro

gr
am

 im
pr

ov
em

en
t

reuse distance threshold in cycles

streetview-facerec
websearch-frontend
websearch-backend

protocol-buffer
adsense-docs

adsense-keywords
log-processor

fast-compression
geometric-mean

16.72% 16.39% 16.47% 16.84%

(c) Intel Core2

Fig. 10. Speedup comparison. String operations are substituted with
nontemporal ones when the mean reused distance for a given call
context is above the threshold (X axis labels).

reduction of the total execution time by roughly 2% means
a 36% improvement in string operation. This is significant
especially given that not all initial string operations had large
reuse distance.

VI. RELATED WORK AND ACKNOWLEDGMENTS

Reuse distance measurement. The concept of reuse distance
was introduced by [11]. [9] observed that patterns of hot data
streams do not change much across input sets, which supports
our decision to use offline feedback-directed decisions. Similar
conclusions appear in [17], where locality in the SPEC bench-
mark gcc is estimated to depend 70% on code and only 30%
on input. [17] presents a fairly comprehensive report of recent
reuse distance approximation techniques. Approximation is
needed as traces of all memory references are too large to
analyze with 100% accuracy. [12] documents a 200x increase
factor for instrumentation based methods. Some of these
papers offer ways to reduce instrumentation overhead, mostly
sampling or reducing input size. For us reducing input size is
not an option. For instance, the streetview-stitcher benchmark
stitches images to create streetview panoramas. All the input
images are of a certain size. Program behavior does not change
significantly when changing input sets, as long as the image
stay at that same size. Using smaller images would change
the memory access pattern and the ratio between the resident
set and cache capacity, which would affect the behavior of the
benchmark. We are thus left with sampling, which works well
for us due to the pay-per-view feature (overhead is directly
proportional with the number of dynamic instrumentation calls
and not with the number of all memory references).
Focusing only on string operations misses other opportu-

nities, such as hand coded memcpy versions. Previous ap-
proaches are more general, in the sense that they instrument
every memory operation. However, the focus of previous
research was to compute a reuse distance histogram for
the whole program, whereas we want to be more precise
and compute the reuse distance for all static calls to string
operations. We hope that what we learn from this experience
can be generalized later through compiler analysis to other
similar loops.
We are not aware of any previous implementation that used

the paging mechanism to measure reuse distance. This is
a central feature of our measurement mechanism. It’s what
allows us to control the level of overhead simply by adjusting
the amount of instrumentation.
One of our current limitations is that we use time as an

approximation for reuse distance. However, [14] showed that
temporal locality indicators can be approximated using cycle
counters with over 99% accuracy. We still plan to explore more
useful measures, of which [13] offers a good discussion.
We acknowledge the contribution of anonymous reviewers

who helped improve this article. They also helped improve the
proposed technique by suggesting sampling to reduce overhead
and extending the applicability by targeting functions other
than string operations.

189

Hardware Optimization. [10] discusses memory disambigua-
tion using store distance measured using small buffer in
hardware. [13] present a new cache line replacement policy
using predictions based on history, using an extra 20 KB in L2.
[15] proposing not caching references that miss all the time.
The idea is to use 2 prediction bits to measure nontemporality
analogous to the branch prediction mechanism.
Compiler Optimization. [8] introduced some of the first
key ideas about using the compiler to control cache bypass.
[5] presents context based optimization. Unlike our approach,
theirs records the reuse distance for each instruction and adds
nontemporal hints if over 90% of the instances suggest non-
temporal behavior (the actual decision depends on cache size
and associativity). The paper does not discuss instrumentation
overhead or trace size. [6] make a distinction between uses
of reuse distance information. source hints are passed to the
compiler to define cache dependence information such as
instruction B’s operand is prefetched by instruction A, thus its
latency will be that of a cache hit. Target hints are encoded
in the instruction and must be supported by the hardware.
They propose dynamic hints that take into account program
phases. This is more than what we support currently. However,
their dynamic hints only work for polyhedral patterns, which
is a strong limitation. (They could work for other patterns
as well, but it may cost too much to produce the hints for
access patterns that are not polyhedra.) [16] describe how
to generate nontemporal hints for Itanium and mentions that
instead of bypassing the cache, Itanium implements a modified
LRU in which nontemporal hints result in going directly to the
first position to be evicted. This is better than bypassing the
cache because it does not hurt spatial locality. [7] presents
static reuse distance. It is elegant and precise, but only works
for matlab (regular matrices, no pointers, no irregular data
structures).
User Advisory Tools. [12] documents 200x reuse distance
instrumentation factor and suggests sampling and/or reducing
input size. They document data size between 1 MB to 80
MB. They present a user study where a research program
(2,200 lines of code) is improved 7% through a 6 line change
based on temporal locality analysis based on reuse distance
measurement. Our compiler pass gives advice as well. To put
things in perspective, most of our benchmarks have over 1
million lines of code each and the data size is generally over
1 GB. We cannot reduce our data set size for fundamental and
practical reasons.

VII. CONCLUSIONS

This paper addresses a fundamental, hard problem. The
problem is to predict which string operations have large
reuse distance. The goal is to replace such operations with
nontemporal counterparts, thus reducing cache pollution and
gaining performance.
Our solution to the prediction problem is to actually measure

reuse distance during a run on representative input. We ac-
knowledge that this is not a feasible solution for all programs,
but it is for a large class of applications, such as many

datacenter servers or repetitive tasks such as stitching images
into StreetView panoramas or optical character recognition.
Our solution is call context sensitive in that we make an
entirely new decision for each static call to a string operation.
More work is needed. On the fundamental side, we need to

go deeper into hardware details and understand the regression
behavior on particular processor microarchitectures. On the
technical side, we need to improve the analysis precision while
keeping the overhead low enough not to perturb measurements,
and to explore the optimization parameter space to produce the
best results.
Both the reuse distance measurement library and the feed-

back directed compiler optimization pass are fully imple-
mented on a private branch of the GCC compiler suite. Results
on large datacenter applications show that the implementation
is robust and that initial improvement numbers, while not
earth-shattering, are substantial.

REFERENCES

[1] AMD family 10h. http://en.wikipedia.org/wiki/AMD K10.
[2] The gcc compiler collection. http://gcc.gnu.org.
[3] Intel Core processors. http://en.wikipedia.org/wiki/Intel Core 2.
[4] Intel Nehalem. http://en.wikipedia.org/wiki/Nehalem (microarchitecture).
[5] K. Beyls and E. H. D’Hollander. Reuse distance-based cache hint

selection. In Euro-Par ’02: Proceedings of the 8th International Euro-
Par Conference on Parallel Processing, pages 265–274, London, UK,
2002. Springer-Verlag.

[6] K. Beyls and E. H. D’Hollander. Generating cache hints for improved
program efficiency. J. Syst. Archit., 51(4):223–250, 2005.

[7] A. Chauhan and C.-Y. Shei. Static reuse distances for locality-based
optimizations in matlab. In ICS ’10: Proceedings of the 24th ACM
International Conference on Supercomputing, pages 295–304, New
York, NY, USA, 2010. ACM.

[8] C.-H. Chi and H. Dietz. Unified management of registers and cache
using liveness and cache bypass. SIGPLAN Not., 24(7):344–353, 1989.

[9] T. M. Chilimbi. On the stability of temporal data reference profiles. In
PACT ’01: Proceedings of the 2001 International Conference on Parallel
Architectures and Compilation Techniques, page 151, Washington, DC,
USA, 2001. IEEE Computer Society.

[10] C. Fang, S. Carr, S. Önder, and Z. Wang. Feedback-directed memory
disambiguation through store distance analysis. In ICS ’06: Proceedings
of the 20th annual international conference on Supercomputing, pages
278–287, New York, NY, USA, 2006. ACM.

[11] J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Syst. J., 9(2):78–117, 1970.

[12] X. Gu, I. Christopher, T. Bai, C. Zhang, and C. Ding. A component
model of spatial locality. In ISMM ’09: Proceedings of the 2009
international symposium on Memory management, pages 99–108, New
York, NY, USA, 2009. ACM.

[13] P. Petoumenos, G. Keramidas, and S. Kaxiras. Instruction-based reuse-
distance prediction for effective cache management. In SAMOS’09: Pro-
ceedings of the 9th international conference on Systems, architectures,
modeling and simulation, pages 49–58, Piscataway, NJ, USA, 2009.
IEEE Press.

[14] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approximation using
time. In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
55–61, New York, NY, USA, 2007. ACM.

[15] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified
approach to data cache management. In MICRO 28: Proceedings of
the 28th annual international symposium on Microarchitecture, pages
93–103, Los Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[16] H. Yang, R. Govindarajan, G. R. Gao, and Z. Hu. Compiler-assisted
cache replacement: Problem formulation and performance evaluation. In
16th International Workshop on Languages and Compilers for Parallel
Computing(LCPC03), pages 131–139, 2003.

[17] Y. Zhong, X. Shen, and C. Ding. Program locality analysis using reuse
distance. ACM Trans. Program. Lang. Syst., 31(6):1–39, 2009.

190

