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Abstract

We present a method for measuring the reach and frequency of online ad campaigns by audience
attributes. This method uses a combination of data sources, including ad server logs, publisher
provided user data (PPD), census data, and a representative online panel. It adjusts for known
problems with cookie data and potential non-representative and inaccurate PPD. It generalizes for
multiple publishers and for targeting based on the PPD. The method includes the conversion of
adjusted cookie counts to unique audience counts. The benefit of our method is that we get both
reduced variance from server logs and reduced bias from the panel. Simulation results and a case
study are presented.

1 Introduction

Advertisers would like to understand the attributes of the audience their ads are reaching. The
definition of an audience commonly used for TV advertisers is the Gross Rating Point (GRP) [1],
which is based on the reach and frequency of the audience by age and gender. Having these metrics
for both online and TV ads would allow marketers to understand the aggregate performance of
their marketing campaign in reaching their desired audience. Existing digital reporting practice,
which measures cookies rather than people, makes it difficult for advertisers to know how the web,
TV, and other platforms work together. Other audience breakdowns by a wider set of audience
attributes such as ethnicity, education, income, and audience expressed interests are also possible.

This paper addresses a method to measure GRPs using a combination of data from several different
sources to compute audience reach metrics: US census data, ad server logs from the ad serving
network, publisher-provided self-reported demographic data, and a representative online panel. The
number of people exposed to a campaign is inferred from the number of unique cookies exposed to
these campaigns. For a subset of these cookies, demographic information is available from publisher
provided data (PPD). These demographic labels may be incorrect for some of the cookies and the
cookies with labels may not be representative of all cookies. Models are developed in Section 3
to adjust for possible bad and biased labels using panel data. A user is typically represented by
multiple cookies, some of which may be shared with other users on the same device. Accurately
inferring the number of users behind a given number of cookies as described in Section 4. These
models are trained and evaluated using the online calibration panel data for which the true cookie-
to-user relationships are known.

A probability-recruited online panel provides reliable data against which the GRP metrics are
calibrated and verified based on statistical methodology. This panel should be aligned to the US
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online population using data from the US Current Population Survey (CPS) [2] on key demographic
variables such as age, gender, household income, and education level using demographic weights.
The panel plays a key role in adjusting for demographic bias and cookie-sharing effects in PPD, in
inferring models to accurately estimate the number of users behind aggregated cookie counts, and
in evaluating the accuracy of the method.

Another approach to measure GRPs online would be through direct panel-based measurement.
Direct measurement using a panel would require a very large panel to cover more than just the
very largest campaigns and Web properties. It is therefore expensive and limited in coverage.
Our proposed cookie-based method, calibrated using a smaller high-quality panel, is able to cover a
larger part of the long tail of the web. The benefit of our method is that for our reach and frequency
estimates, we get both reduced variance from server logs and reduced bias from the panel.

Section 2 of this paper discusses in detail the various data sources required for this method. Sec-
tions 3 and 4 develop the demographic correction models and cookie-to-user models, respectively.
Sections 5 and 6 show simulations and illustrations of the method.

2 Data Sources

2.1 Server logs data and publisher provided data

Typically, online campaign performance is reported on the basis of the ad serving network’s cookie,
as most impressions are served to users who have a cookie. Ad server logs are a rich source of
information in terms of audience reach and frequency of ad exposure. It also provides audience
breakdown in terms of sites and real-time or near real-time audience data. However, cookies present
significant technical challenges to overcome when used for audience measurement.

The first challenge is that a cookie does not identify a person, but a combination of a user account,
a computer, and a web browser. Thus, anyone who uses multiple accounts, computers, or browsers
has multiple cookies. Cookies do not differentiate between multiple users who share the same user
account, computer, and browser [3]. In order words, a user can have multiple cookies and a cookie
can have multiple users.

A second challenge is that not all cookies have demographic information attached to them, and
when there is demographic information available it may be of questionable quality and biased.
In order to obtain the demographic composition for an audience, at least a subset of the cookies
for that audience need to have an age and gender label. Publisher provided data (PPD) can
provide age and gender information, and potentially other audience attributes, for logged-in users
via the ad request. This exchange of information is done anonymously so as to protect the user’s
identity. However, the composition of PPD is known to be biased toward the audience a publisher
attracts, which does not necessarily reflect the US population. For example, demographics from
publishers with a large number of users can be skewed to a younger audience. The quality of
declared demographic information relies on the truthfulness of users and also the extent to which
cookies are shared between multiple users.

The third challenge is that cookie deletion (or cookie churn) can also lead to inaccuracies in au-
dience measurement, such as the overstatement of reach and understatement of frequency. It also
impacts site-specific measurement by potentially leading to an overstatement of unique visitors and
understatement of repeat visitors [4]. Finally, there is also inconsistent support for cookies across
devices. Some mobile devices do not implement cookies for example. In this paper we introduce a
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statistical method using online panel data to correct for these issues in aggregate.

2.2 Panel data

This method requires access to a high quality representative online panel. Typically a panel is
recruited using geographic address based sampling (ABS) using the U. S. Postal Service Comput-
erized Delivery Sequence File (CDSF) to match the US online population. This might include
over-sampling to account for difficult to recruit targets. Measurement technology can be leveraged
to monitor all online activity for individual panelists. For the purposes of this method, the panel is
treated as the “truth”. That is, we want our measurement system to mimic that reported by the
panel but to have the ability to measure campaigns too small to assess using the panel.

Panel data present several challenges and limitations. The first of these is the tracking of out
of home and/or work usage. The agreement to track panelist’s devices does not extent to their
employer-owned devices. Another important factor affecting the quality of individual level data is
panelist compliance. The use of non-registered devices and the sharing of individually registered
devices will distort panelist usage data. The cost of recruiting a high quality online panel is high,
which limits panel size and therefore the ability to measure smaller campaigns.

Panel attrition is another issue which makes it challenging to maintain the representativeness of
a panel despite probability-based recruitment and robust panel management processes. Bias can
therefore occur in panels due to undercoverage of subsets of the population. This results in the
demographic composition of the panel being biased with respect to the population. Demographic
variables such as age, gender, household income, and education level are known to affect online
behaviour. There is a growing base of statistical research on bias-correction of panels. In order to
reduce bias, the data can be adjusted to correct those errors. Weighting adjustments [5] aim to
reduce the variance of the estimates while adjusting for demographic differences between a sample
and the population. This helps to adjust for the effects of panel attrition, that may cause panels
to become less representative of the population over time. It is important to note that weighting
based on demographic variables alone is not guaranteed to eliminate selection bias as panel bias
may be related to factors other than demographics [6].

Several calibration methods exist such as generalized regression estimators (GREG) [7], RIM-
weighting [8] and post-stratification. The CPS data, described in the following section, allows
for calibrating the panel to the US online population on most key demographics. These methods
leverage weighting methods in the R “survey” package [9]. GREG performs well at aligning a panel
to the population, while it has the lowest variance among competing methods in our experience.

2.3 Population benchmarks

The Current Population Survey (CPS) [2], sponsored jointly by the U.S. Census Bureau and the U.S.
Bureau of Labor Statistics (BLS), is the primary source of labor force statistics for the population of
the United States. The CPS is the source of numerous economic statistics, including the national
unemployment rate, and provides data on a wide range of issues relating to employment and
earnings. The CPS also collects extensive demographic data that complement and enhance our
understanding of various population, economic and labor related measures, among many different
population groups, in the states and in substate areas. The School Enrollment and Internet Use
Supplement to the CPS [10] released in July 2011, contains a detailed breakdown of the US Internet
population by demography and geography. This is the most detailed and comprehensive public

Google Inc. 3



3 DEMOGRAPHIC CORRECTION MODELS

dataset on the US Internet population that we are aware of. It gives a detailed breakdown of the
joint distribution for this population on key demographics such as age, gender, household income,
education level and ethnicity. It also gives a detailed breakdown by geography to a sub-state level.
It is worth noting that the definition of an Internet user we derive from this data is broad. Anyone
who answered “yes” to either of the following questions would be regarded as an Internet user: Do
you access the Internet at any location outside the home? At home, do you access the Internet?
The current CPS data set surveys individuals age three and over.

3 Demographic Correction Models

The estimate of a campaign’s audience consists of taking the total number of ad impressions, unique
cookies exposed to the campaign, a subset of cookies which have PPD demographic labels, and then
breaking down the impressions and uniques cookies into the demographic groups. The cookies in
each group can be converted to unique users using the method from Section 4. The impressions
from each group, when divided by that group’s population number and multipled by 100, estimate
the GRPs for that group. Finally, these impressions divided by the number of exposed users from
that group, estimates the average frequency for that group. This section develops models to break
either impressions or cookies into the demographic groups. We begin by a simple example and
then add complexity before presenting the general model. Lastly, we describe how to evaluate the
performance of the models.

3.1 Simple Example

Consider a simple example using D demographic groups and one publisher. Suppose that the
PPD is unbiased in representing the population. Our only concern is possibly poor quality of the
PPD labels. We can quantify this quality by an unknown D x D misclassification matrix P where
[P ]ij = Pr(label i|truth j). Hence the diagonals of P represent the fraction of the labels that
are correct for each demographic group and represent a level of confidence of a correct label for
that group. If a campaign had reached cookies (or impression) with the demographic breakdown
represented by vector qtruth, then on average the PPD will estimate this as

qPPD ≈ P · qtruth

and if we know P then we could estimate the qtruth by inverting P 1

q̂truth = P−1 · qPPD

Estimates of P can be obtained perhaps by some subset of higher quality PPD or by leveraging
the panelist cookie data. Unfortunately, these type of estimates are not great and any estimation
errors can cause large changes in the inverse of P . Further, the assumption that the misclassification
matrix is same for all sites/campaigns is most likely incorrect. Hence, we need a more robust method
of estimating a correction matrix.

A better approach is to create a training set of campaigns and/or site visit data that is measured
by both the panel and PPD. Let this data consist of Ntrain campaigns/sites each large enough to
be confidently measured by the panel. For campaign (or site) i, let yi be the proportion of panelist

1P may not be invertible but we ignore this uninteresting case.
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cookies (or impressions) for each of the demographic groups (hence yi is a vector of length D) and
let xi be a D-length vector of similar metric from the PPD. We model the relationship as

yi = Axi + εi (1)

where A is D x D left-stochastic matrix 2. That is, it re-distributes the PPD demographic propor-
tions to better represent the actual population proportions for those exposed to the campaign or
who visited the site. The non-negative restriction can be relaxed but the estimated y elements may
then be negative. This can be fixed by setting all entries of y to max(y, 0) and then renormalizing:
ynew = y/|y|. This model can be fit via least squares using a constrained optimization routine if
there are constraints or by least squares or penalized least squares if there are no constraints.

3.2 General Model

The model presented above handles misclassification problems but not possible representation issues
of the PPD. Most PPD do not represent the online population as the demographics are collected
when users sign-up for their account and not all demographic groups are equally attracted to a
given publisher or equally willing to share this information. One approach to fix the representation
issue is to use propensity methods [11] to weight the PPD cookies to better represent the general
cookie population. These weights could be based on age, gender, site visited, and browser and/or
device. The cookie weights would also propogate to the impressions to provide impression weights.
This approach is tricky to implement correctly and beyond the scope of this paper. However, if
adequate weights are determined, then the model specified in (1) could be used after weights are
applied to the cookies or propogated to impressions. Our approach is to include the ability to
weight the PPD inside the correction matrix. That is, we modify our model to

yi = Axi/|Axi|+ εi (2)

where A is no longer a left-stochastic matrix although the entries should be non-negative. The
diagonals of A now are increased to upweight underrepresented demographic groups and decreased
to downweight overrepresented groups. However, since the model normalizes the estimate, the
actual entries of A do not have intuitive meaning since rescaling A will produce the same fit.

This model is problematic if the publisher providing the PPD is also a publisher participating in
the campaign or one of the sites visited. It is also a problem if the PPD is used as the targeting
criteria for a targeted campaign. The model makes the PPD look like the online population and
hence overcorrects the estimate for that publisher or those targeted cookies. The PPD should be
representative of the publisher’s site although the quality of the labels is still a concern. A general
model to handle this is

yi = (1− αi)Axi/|Axi|+ αiBxi + εi (3)

where αi represents the fraction of cookies (impressions) for the ith campaign either served on the
publisher’s site or via cookie targeting using the PPD. Hence, 1 − αi represents the fraction of
unlabeled cookies (or unlabeled impressions) for that campaign. If the PPD labels are perfect for
the publisher’s site, then B = I. But as in (1), if PPD has misclassification issues then B should
be a left-stochastic matrix. We do not expect PPD to be biased for estimating activity on that

2A left-stochastic matrix is a square matrix with non-negative entries and columns that sum to one.
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publisher’s site or for cookies targeted using that PPD. It might be possible to estimate B from
panel cookies that have PPD labels directly rather than via a model fit. Matrix A should be fitted
using either least squares or penalized least squares.

3.3 Model for Multiple PPD

Model (3) can be extended to handle multiple PPD. Suppose we have multiple PPD sources and for
the i-th campaign we can group cookies (impressions) into M + 1 disjoint groups. The first group
contains all unlabeled cookies (impressions) for the campaign. The other M groups represent sets of
PPD that contain labels for that group. For example, if we have two PPDs, then M might be three
with the first group consisting of cookies (impressions) with labels only from the first publisher, the
second group with labels only from the second publisher, and the third group having labels from
both publishers. When there are disagreements between publishers, a rule will be applied to either
use only one publisher and hence that cookie (impression) will be in one of the first two groups or
to probabilistically allocate that cookie to the “shared” group.

Now let the distribution of cookies (impressions) for the ith campaign be represented by αim for
the m = 1, . . . ,M groups and let αi· =

∑M
m=1 αim. Hence we have 1 − αi· unlabeled cookies

(impressions). Further, for each of the M groups we have xim which are the demographic proportion
estimates as before. To model the unlabeled cookies we use all of the labeled data so now xi =
(x′i1, x

′
i2, . . . , x

′
iM )′. The general model is then

yi = (1− αi·)Axi/|Axi|+
M∑
m=1

αimBmxim + εi (4)

where A is a D x DM matrix and there are M Bm left-stochastic matrices each of size D x D.
Clearly as M increases, the demands on the training data increase as the number of coefficients
increase linearly with M and hence a larger training dataset (Mtrain) is required or substantial
constraints or least squares penalties need to be applied.

3.4 Model Evaluation

A representative and weighted panel as described in Section 2.2 should provide relatively unbiased
estimates for the online population, and is arguably the best available benchmark against which
to estimate the relative error of adjusted cookie estimates. Although unbiased, the limited size of
the panel means that panel based benchmarks have high variance. When we directly compare our
audience estimates against direct panel based estimates, even for the largest campaigns, the true
measurement error attributed to our methodology is obscured by the variability attributed to the
panel. This requires the removal of the panel variance from the error estimation, as outlined below.

We are trying to estimate the relative error of the adjusted cookie estimates against the (unknown)
truth. Let pP and pC be the estimated proportions of the population belonging to a specific
demographic bucket from the panel and cookies, respectively. If we believe that the panel provides
an unbiased estimate, then we have E[pP ] as an estimate of the truth. The error we want to
estimate can therefore be expressed as E[(pC − E[pP ])2]. In practice we observe pC and pP .
When we condition on the actual demographic proportions E[pP ], it seems reasonable to assume
that variations around this estimate are independent—or stated otherwise, to assume conditional
independence between pP and pC . Then it follows that
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V ar(pC − pP ) = V ar((pC − E[pP ]) + (E[pP ]− pP ]))

= V ar(pC − E[pP ]) + V ar(pP − E[pP ])

= σ21 + σ22 (5)

The term σ21 in (5) represents the relative error we want to estimate. This can be viewed as relative
error of the cookie estimate to the panel estimate, if we had a really large panel. The second term is
the variance of the panel estimate, which we can estimate from the binomial distribution as p(1−p)

n
by plugging in the panel estimate pP for p. So typically, n is the number of panelists who reached
a site or were exposed to a campaign and pP is the ratio of subset of exposed panelist matching
that demographic label to n. When we subtract our estimate of the second component above
from the left-hand side of Equation 5, we obtain an unbiased estimate of the V ar(pC − E[pP ]).
This estimate could be negative for some campaigns, although we observe negative estimates for
a very small proportion of campaigns in practice. Averaging over many campaigns should give us
a better indication of the expected cookie deviation for the “truth” that is not obscured by the
panel variability. By using a Gaussian approximation, we can estimate average precision across

campaigns at a (1− α)× 100% confidence level as
z1−α/2×σ̂1

pC
.

4 Mapping Cookies to Users

It is widely known that the number of cookies that are exposed to a campaign may be much larger
than the number of real-world users. There are many factors that cause this discepancy. For
example, a user may have accessed a particular site from different computers. Or a user may have
cleaned their browser cookies and revisited the page. ComScore estimates [4] that using cookies
directly as a measurement of audience volume may inflate the numbers up to 2.5 times. We have
investigated the patterns of cookie deletion behavior and determined the parameters of a model
that transforms cookie counts to people counts.

Let L be some web location, it can be a campaign, a site, a URL, etc. Let T be some timespan.
We denote by CLT the number of cookies that have been observed at L in the duration of T . We
denote by PLT the number of people that have visited L in the duration of T . Let I be the whole
internet and consequently PIT be the total number of internet users during timespan T and CIT
the total number of cookies generated in the duration of T .

The probability of a randomly picked cookie visiting a web location L in timespan T can be
calculated as

P (cookie visits L in timespan T ) =
CLT
CIT

,

and analogously for a random person this probability is computed as

P (person visits L in timespan T ) =
PLT
PIT

.

Recall that for an event with probability p, the odds are defined as the number p
1−p . Thus we have

Odds(cookie visits L in timespan T ) =
CLT /CIT

1− CLT /CIT
=

CLT
CIT − CLT

,
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and

Odds(person visits L in timespan T ) =
PLT

PIT − PLT
.

Our investigations of panel data have indicated that the odds of a panelist and a cookie belonging
to a particular web audience are approximately linear:

PLT
PIT − PLT

= γT ·
CLT

CIT − CLT
. (6)

To determine the size of the real-world audience we can rearrange this relationship:

PLT =
γTCLT · PIT

CIT + CLT (γT − 1)
. (7)

Note that all counts that occur in the right side can be obtained for each time-interval T and web
location L from logs and panel data:

• CLT the number of cookies seen at the web location L in time-interval T is obtained from the
logs,

• CIT the total number of cookies generated by all users in the interval T is obtained from the
logs,

• PIT the total number of internet users active during time interval T can be estimated using
panel and internet census data.

In order to determine an appropriate γT we use the following algorithm:

1. For a set of web locations indexed by L (e.g. websites or campaigns) with each web location
having the number of panelists visting, NL, exceeding some threshhold, we count the number
of cookies and people pair

pL = (CL, PL).

2. For each pair pL calculate parameter γL that fits the data perfectly. This is easily calculated
by re-arranging Equation 6

γL =
PLCI − PLCL
CLPI − PLCL

3. Set γ to be a weighted median of γL where the weight of web location L is proportional to
NL.

We have also used panel data to explore how γT depends on T . It turns out that with reasonably
high accuracy for any T we have

γT = ∆ · CIT
PIT

,

where ∆ is a constant. ∆ varies from country to country, but is never far from 1.0. Therefore for
countries for which we do not have panel data we can apply the technology using ∆0 which is the
median of ∆ over all countries for which we have panel data. That is we have

γT =
CIT∆0

PIT
.

An illustration of the people and cookie relationship is presented in Section 6.1.
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5 Simulation

This section present the results of a simulation study to understand the behavior of the correction
models from Section 3. Two different simulations are shown with medium and severe misclassifi-
cation matrices as discussed below. For both simulations, we used a 5,000 person representative
panel and simulated 200 “training” campaigns and 1,000 “testing” campaigns that each reached at
least 100 panelists. In practice, we use the cookies and impressions measured from the panelists as
the calibration data. However, due to the difficulty of modeling and hence simulating cookie data,
we only simulated panelists as reached or not reached for each campaign. Hence our simulation
investigates the behavior of the demographic correction models and not the cookie-to-user model.

The overall reach of these campaigns were simulated using a beta distribution:

R ∼ Beta(a = 0.6, b = 13.0)

where R is the proportion of the total population reached by the campaign. We considered 14
demographic age/gender groups with age groups: ≤ 17, 18 - 24, 25 - 34, 35 - 44, 45 - 54, 55 - 64,
and 65+. The demographic proportions were simulated for each of the campaigns by simulating
the gender breakdown as

q
(G)
truth ∼ Beta(a = 6.0, b = 6.0)

and the age distribution as

q
(A)
truth ∼ Dirichlet(α = 15× (0.10, 0.17, 0.25, 0.15, 0.16, 0.11, 0.06)′)

and then creating qtruth by multiplying the respective elements of q
(G)
truth and q

(A)
truth. We deter-

mined if a panelist j was reached by campaign i by using a Bernoulli trial with probability
Ri × qtruth,i(d(j))/w(d(j)) where d(j) indicates which demographic group panelists j belongs to
and w(·) are the demographic population benchmarks discussed in Section 2.3. Any campaign that
failed to reach at least 100 panelists was dropped and replaced by a campaign with sufficient reach.

We calculated the PPD measured demographic proportions by using misclassifications and weight-
ing matrices specified for each simulation. That is, we calculated for each campaign i

qPPD,i = W · P · qtruth,i

where P is the simulation specific misclassification matrix (see Section 3.1) and W is a weighting
matrix. For each simulation, we weighted males twice that of females to mimic a publisher that
has twice as many males as females registered users. Hence, W is a 14× 14 diagonal matrix with
4/3 for male entries and 2/3 for female entries.

5.1 Medium Correction

The first simulation mimics a misclassification matrix where the significant misclassifications come
from gender and adjacent age groups. The misclassification matrix, P1 is shown in Table 1 and
has diagonal elements (correct classification rates) ranging from 0.64 - 0.75. For this simulation,
we inject additional noise by perturbing P1 for each campaign i by P1i = P1 + Ui where Ui is a
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matrix with each element Uniform(-0.02, +0.02). We set negative entries of Pi to zero and then
renormalize the columns.

Appendices that include all figures and tables are included at the end of the paper. Figure 1 shows
the results for the Male 18–24 group for 200 of the test campaigns. Figure 1(a) shows the unadjusted
PPD cookies and shows a tendency to over-predict (under-predict) small (large) campaigns for this
demographic group. On average, the root mean squared error (RMSE) for the unadjusted cookies
is 0.0193. Figure 1(b) shows the results for unconstrained regression (Model 1). For this model, any
negative estimates were shifted to zero and then the q̂i was renormalized. This model performed
the best with no apparent bias in the fit and an average RMSE of 0.0080. Figure 1(c) shows the
results of the normalized correction model (Model 2) fit using non-negative least squares. This
model does a partial correction as the RMSE has been reduced from the unadjusted cookies to
0.0186 but still has significant bias issues. For reference we include the panel based measurements
in Figure 1(d) - it has RMSE of 0.0164. The results for the panel are misleading as we require
each campaign to reach at least 100 panelists while the other methods could be used to measure
smaller campaigns. By construction of the simulation, the size of the campaigns do not affect the
non-panel results.

We also show the results for Female 45 - 54 in Figure 2. For this demographic bucket, the unadjusted
PPD cookies generally under predict and have larger RMSE of 0.0297. This is not surprising as the
PPD has twice as many men as women. Once again, the unconstrained regression performed well
with no apparent bias and RMSE of 0.0094. The normalized correction model fit using non-negative
least squares does only a partial adjustment and has RMSE of 0.0214 while the panel RMSE is
0.016. The RMSE results for all demographic groups are shown in Table 2.

5.2 Severe Correction

For this simulation we create a misclassification that mimics the impact of cookie sharing problems
- that is, gender and generational misclassifications. We generated P2 by

P2 = I14 + 0.3×
(

07 I7
I7 07

)
+ 0.15×

(
C C
C C

)
+ U

where Ik and 0k are the identity and zero matrices of size k,

C =



0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0


and U is a matrix with elements from Uniform(0, 0.04). The second and third terms create gender
and generational misclassification. Lastly, we renormalized the columns of P2. For this simulation
we did not perturb P2 by campaign. The generated P2 is given in Table 3. The diagonal entries
are lower than from the first simulation ranging from 0.46 - 0.57.

Again we show the results only for Males 18–24 and Females 45–54 and these are shown in Figures 3
and 4, respectively. The tendencies for this simulation are similar to the first simulation, although
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the magnitudes are different. For the unadjusted cookies we have RMSE of 0.0286 and 0.0464
for our two demographic groups while the unconstrained regression (1) does an even better job of
correcting these errors. Now the RMSE are 0.0048 and 0.0038. The normalized regression makes
partial corrections with RMSE of 0.0259 and 0.0271. The panel results are similar as before with
RMSE of 0.0158 for both demographic groups. All RMSE results are given in Table 4.

We have performed other simulations with different misclassification matrices, more severe weight-
ing, and with more severe campaign specific perturbations of the misclassification matrix. The
results typically are ranked the same as presented above although the magnitude of the RMSE are
different. As the misclassification matrix, the weights, or campaign specific perturbations increase,
all methods have larger RMSE. Across all the simulations, the unconstrained regression model con-
sistently had no trend bias although the tightness of the scatter around the identity line changes.
The normalized regression model had improved performance if the non-negatitivity constraint was
removed and any negative reach estimates were shifted to 0.

6 Illustrations

6.1 Converting Cookie Counts to People

The cookie-to-user model performance was evaluated using panel data on domains, campaigns, and
synthetic campaigns data. In particular, Figure 5 shows a scatterplot where the points are US-based
audiences of domains. The abscissa is the number of panel cookies observed at the domain and the
ordinate is the number of people reached. It is evident that the number of people reached can be
obtained as a function of the number of cookies reached. Our experiments have demonstrated that
the trend of the scatterplot remains constant for different timespans and countries. In Figure 6,
points represent domains and random synthetic media plans. Each synthetic media plan, M , is the
union of a set of domains Di. That is, a cookie or a person is considered to be reached by media
plan M if it visited at least one of the domains Di. This figure demonstrates that audiences of
domains and the union of domains have the same trend, and a single model can be used to predict
people audience for campaigns that run on one or multiple sites.

6.2 Case Study

The Google Nexus campaign was run from August 30, 2012 to September 30th, 2012. The campaign
served more than 500 million impressions across more than 20 sites that included pre-dominantly
news and technology sites. There was no demographic targeting on the campaign. The campaign
was large enough to be measured reliably using panel data. In Figure 7, we compare 3 different
estimates of the overall audience breakdown for this campaign. The first is a direct panel-based
estimate for the weighted panel (shown in green), while the second is estimated using our GRP
method (shown in red). The third estimate is obtained from counts of unadjusted YouTube cookies
with demographic labels (shown in blue). It is clear that the GRP estimates closely mimics the
direct panel based estimates, which is the aim of the method as it is calibrated to the panel. The
effect of the panel-based calibration is clear from the difference between the GRP estimates and
raw cookie-based YouTube estimate. Not only is the YouTube estimate here based on cookie counts
and not users, but there is a clear bias towards younger audiences, especially young males, relative
to the calibrated panel estimates.
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7 Conclusion

We have presented a method for measuring the reach and frequency of online ad campaigns by
auduence attributes. This method combines ad server logs, publisher provided user data, US
census data, and a representative panel to produce corrected cookie and impression counts by these
audience attributes. The method corrects for cookie issues such as deletion and sharing, and for
PPD issues such as non-representativeness and poor quality of labels. It also generalizes for multiple
PPD and for targeted campaigns. The method uses a model that converts cookie counts to users
counts.

We presented a simulation study which demonstrates that the method has the ability to correct
for non-representative and inaccurate PPD. Our simulation results show that the unconstrained
regression model consistently gave the best results. However, real data have nuances not considered
in the simulation and we advise to investigate the performance of multiple models on real world
data in practice. We also presented the performance of the methods on real data. We demonstrated
that the cookie to user model matches real data well, including media plans defined as domains
and collections of domains. Finally, we showed the measurement of an online campaign and showed
that the correction method matches the panel measured results.
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Unadjusted Cookies Unconstrained Regression Normalized Regression Panel

M17- 0.0179 0.0062 0.0150 0.0128
M18-24 0.0193 0.0080 0.0186 0.0164
M25-34 0.0202 0.0081 0.0199 0.0197
M35-44 0.0216 0.0082 0.0189 0.0159
M45-54 0.0182 0.0072 0.0195 0.0159
M55-64 0.0173 0.0071 0.0163 0.0136
M65+ 0.0171 0.0053 0.0130 0.0101

F17- 0.0163 0.0079 0.0146 0.0133
F18-24 0.0286 0.0092 0.0194 0.0163
F25-34 0.0427 0.0108 0.0215 0.0184
F35-44 0.0240 0.0094 0.0192 0.0161
F45-54 0.0297 0.0094 0.0214 0.0160
F55-64 0.0219 0.0081 0.0168 0.0139
F65+ 0.0138 0.0079 0.0185 0.0109

Table 2: Root Mean Squared Error for medium correction simulation
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Unadjusted Cookies Unconstrained Regression Normalized Regression Panel

M17- 0.0388 0.0036 0.0247 0.0131
M18-24 0.0286 0.0048 0.0259 0.0158
M25-34 0.0269 0.0035 0.0286 0.0201
M35-44 0.0218 0.0040 0.0208 0.0148
M45-54 0.0314 0.0058 0.0284 0.0150
M55-64 0.0409 0.0025 0.0264 0.0137
M65+ 0.0354 0.0026 0.0198 0.0101

F17- 0.0306 0.0034 0.0252 0.0133
F18-24 0.0496 0.0044 0.0270 0.0166
25-34 0.0754 0.0054 0.0286 0.0196

F35-44 0.0415 0.0069 0.0191 0.0158
F45-54 0.0464 0.0038 0.0271 0.0158
F55-64 0.0323 0.0056 0.0276 0.0132
F65+ 0.0186 0.0025 0.0224 0.0097

Table 4: Root Mean Squared Error for severe correction simulation
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Figures

Figure 1: Correction performance for medium correction – Males 18-24 – using (a) unadjusted cookies, (b)
unconstrained regression, (c) normalized regression, and (d) panels.
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Figure 2: Correction performance for medium correction – Females 45-54 – using (a) unadjusted cookies,
(b) unconstrained regression, (c) normalized regression, and (d) panels.
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Figure 3: Correction performance for severe correction – Males 18-24 – using (a) unadjusted cookies, (b)
unconstrained regression, (c) normalized regression, and (d) panels.
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Figure 4: Correction performance for severe correction – Females 45-54 – using (a) unadjusted cookies, (b)
unconstrained regression, (c) normalized regression, and (d) panels.
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Figure 5: Relationship between people and cookies reached for a set of domains
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Figure 6: Relationship between people and cookies reached for a set of synthetic media plans
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Figure 7: Overall audience composition estimates for Google Nexus campaign
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