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Abstract

We consider the case of ranking a very large
set of labels, items, or documents, which is
common to information retrieval, recommen-
dation, and large-scale annotation tasks. We
present a general approach for converting an
algorithm which has linear time in the size
of the set to a sublinear one via label par-
titioning. Our method consists of learning
an input partition and a label assignment to
each partition of the space such that preci-
sion at k is optimized, which is the loss func-
tion of interest in this setting. Experiments
on large-scale ranking and recommendation
tasks show that our method not only makes
the original linear time algorithm computa-
tionally tractable, but can also improve its
performance.

1. Introduction

There are many tasks where the goal is to rank a huge
set of items, documents, or labels, and return only
the top few to the user. For example, in the task of
recommendation, e.g. via collaborative filtering, one
is required to rank large collections of products such
as movies or music given a user profile. For the task
of annotation, e.g. annotating images with keywords,
one is required to rank a large collection of possible
annotations given the image pixels. Finally, in infor-
mation retrieval a large set of documents (text, im-
ages or videos) are ranked based on a user supplied
query. Throughout this paper we will refer to the en-
tities (items, documents, etc.) to be ranked as labels,
and all the problems above as label ranking problems.
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Many powerful algorithms have been proposed in the
machine learning community for the applications de-
scribed above. A great deal of these methods typically
rank the possibilities by scoring each label in turn, for
example SVMs, neural networks, decision trees, and a
whole host of other popular methods are used in this
way. We refer to these methods as label scorers. Many
of these methods, due to scoring labels independently,
are linear in the number of labels. Thus, unfortunately,
they become impractical when the number of labels
goes into the millions or more as they are too slow to
be used at serving time.

The goal of this paper is to make these methods us-
able for practical, real-world problems with a huge
numbers of labels. Rather than proposing a method
that replaces your favorite algorithm, we instead pro-
pose a “wrapper” approach that is an algorithm for
making those methods tractable while maintaining, or
in some cases even improving, accuracy. (Note, our
method improves testing time, not training time, and
as a wrapper approach is in fact not faster to train.)

Our algorithm works by first partitioning the input
space, so any given example can be mapped to a par-
tition or set of partitions. In each partition only a
subset of labels is considered for scoring by the given
label scorer. We propose algorithms for optimizing
both the input partitions and the label assignment to
the partitions. Both algorithms take into account the
label scorer of choice to optimize the overall precision
at k of the wrapped label scorer. We show how vari-
ants that do not take into account these factors, e.g.
partitioning independent of the label scorer, result in
worse performance. This is because the subset of la-
bels one should consider when label partitioning are
the ones that are both the most likely to be correct
(according to the ground truth) for the given inputs,
and the ones that the original label scorer actually
performs well on. Our algorithm provides an elegant



formulation that captures both of these desires.

The primary contributions of this paper are:

e We introduce the concept of speeding up a base
label scorer via label partitioning.

e We provide an algorithm for input partitioning
that optimizes the desired predictions (precision
at k).

e We provide an algorithm for label assignment that
optimizes the desired predictions (precision at k).

e We present results on real-world large scale
datasets that show the efficacy of our method.

2. Prior Work

There are many algorithms for scoring and ranking
labels that take time linear in the size of the label
set. That is because fundamentally they operate by
scoring each label in turn. For example, a one-vs-
rest approach (Rifkin & Klautau, 2004) can be used
by training one model for each label. The models
themselves could be anything from linear SVMs, ker-
nel SVMs, neural networks, decision trees, or a battery
of other methods, see e.g. (Duda et al., 1995). For
the task of image annotation, labels are often ranked
in this way (Perronnin et al., 2012). For collabora-
tive filtering, a set of items is ranked and a variety
of algorithms have been proposed for this task which
typically score each item in turn, for example item-
based CF (Sarwar et al., 2001), latent ranking models
(Weimer et al., 2007), or SVD-based systems. Finally,
in information retrieval where one is required to rank a
set of documents, SVMs (Yue et al., 2007; Grangier &
Bengio, 2008) and neural networks like LambdaRank
and RankNet (Burges, 2010) are popular choices. In
this case, unlike for annotation, typically only a single
model is trained that has a joint representation of both
the input features and the document to be ranked,
thus differing from the one-vs-rest training approach.
However, documents are still typically scored indepen-
dently and hence in linear time. The goal of our paper
is not to replace the user’s favorite algorithm of choice,
but to provide a “wrapper” to speed up these systems.

Work on providing sublinear rankings has typically
focused on proposing a single approach or speeding
up a specific method. Probably the most work has
gone into speeding up finding the nearest neighbors of
points (i.e. for k-nearest neighbor approaches), which
is a setup that we do not address in this paper. The
algorithms typically rely on either hashing the input
space e.g. via locality-sensitive hashing (LSH) (Indyk

& Motwani, 1998) or through building a tree (Bent-
ley, 1975; Yianilos, 1993). In this work we will also
make use of partitioning approaches, but with the aim
of speeding up a general label scorer method. For this
reason the approaches can be quite different because
we are not required to store the examples in the parti-
tion (to find the nearest neighbor) and we also do not
need to partition the examples, but rather the labels,
so in general the number of partitions can be much
smaller in our method.

Several recent methods have proposed sublinear clas-
sification schemes. In general, our work differs in that
we focus on ranking, not classification. For example,
label embedding trees (Bengio et al., 2010) partition
the labels to classify examples correctly, and (Deng
et al., 2011) propose a similar, but improved algo-
rithm. Other methods such as DAGs (Platt et al.,
2000), the filter tree (Beygelzimer et al., 2009), and
fast ECOC (Cissé et al., 2012) similarly also focus on
fast classification. Nevertheless, we do run our algo-
rithm on the same image annotation task as some of
these methods in our experiments.

3. Label Partitioning

We are given a dataset of pairs (z;,y;), i = 1,...,m.
In each pair, x; is the input and y; is a set of labels
(typically a subset of the set of possible labels D). Our
goal is, given a new example z*, to rank the entire set
of labels D and to output the top k to the user which
should contain the most relevant results possible. Note
that we refer to the set D as a set of “labels” but we
could just as easily refer to them as a set of documents
(e.g. we are ranking a corpus of text documents), or
a set of items (e.g. we are recommending items as in
collaborative filtering). In all cases we are interested in
problems where D is very large and hence algorithms
that scale linearly with the label set size are unsuitable
at prediction time.

It is assumed that the user has already trained a la-
bel scorer f(z,y) that for a given input and single
label returns a real-valued score. Ranking the labels
in D is performed by simply computing f(z,y) for all
y € D, which is impractical for large D. Furthermore,
after computing all the f(z,y), you still have the added
computation of sorting or otherwise computing the top
k (e.g. using a heap).

Our goal is given a linear time (or worse) label scorer
f(x,y), to make it faster at prediction time whilst
maintaining or improving accuracy. Our proposed
method, label partitioning, has two components: (i) an
input partitioner that given an input example, maps it



to one or more partitions of the input space; and (ii)
label assignment which assigns a subset of labels to
each partition. For a given example, the label scorer
is applied to only the subset of labels present in the
corresponding partitions, and is therefore much faster
to compute than simply applying it to all labels.

At prediction time, the process of ranking the labels
is as follows:

1. Given a test input z, the input partitioner maps
x to a set of partitions p = g(x).

2. We retrieve the label sets assigned to each par-

tition p;: L = U‘j’ilﬁpj, where £, C D is the

subset of labels assigned to partition p;.

3. We score the labels y € L with the label scorer
f(x,y), and rank them to produce our final result.

The cost of ranking at prediction time is additive in
the cost of assigning inputs to their corresponding par-
titions (computing p = g(x)) and scoring each label in
the corresponding partitions (computing f(x,y),y €
L). By utilizing fast input partitioners that do not
depend on the label set size (e.g. using hashing or
tree-based lookup as described in the following sec-
tion) and fixing the set of labels considered by the
scorer to be relatively small (i.e. |L| < |D|), we en-
sure the whole prediction process is sublinear in |D].
In the following sections we describe both components
of the label partitioner, the input partitioner and the
label assignment.

3.1. Input Partitioner

We consider the problem of choosing an input parti-
tioner g(xz) — p C P, which maps an input point z to
a set of partitions p, where there are P possible par-
titions, P = {1,..., P}. It is possible that g always
maps to a single integer, so that each input only maps
to a single partition, but this is not required.

There is extensive literature suitable for our input par-
titioning task. For example, methods adapted from
the nearest-neighbor approaches could be used as the
input partitioner, such as a hash of the input z (e.g.
(Indyk & Motwani, 1998)), or a tree-based cluster-
ing and assignment (e.g. hierarchical k-means (Duda
et al., 1995) or KD-trees (Bentley, 1975)). Those
choices may work well, in which case we simply need
to worry about label assignment, which is the topic
of section 3.2. However, the issue with those choices
is that while they may be effective at performing fully
unsupervised partitioning of our data, they do not take
into account the unique needs of our task. Specifically,

we want to maintain the accuracy of our given label
scorer f(x,y) whilst speeding it up. To summarize
our goal here, it is to partition the input space such
that examples that have the same relevant labels highly
ranked by the label scorer are in the same partition.

We propose a hierarchical partitioner that tries to op-
timize precision at k given a label scorer f(z,y), a
training set (x;,v;), i = 1,...,m, and a label set D as
defined earlier. For a given training example (z;,y;)
and label scorer we define the accuracy measurement
of interest (e.g. the precision at k) to be £(f(z;),y;)
and the loss to be minimized as £(f(z;),y;) = 1 —
0(f(z:),y;). Here f(z) is the vector of scores for
all labels f(:l?) = fD(I) = (f(xapl)v SR f(ma D\Dl)))v
where D; indexes the i*" label from the entire label
set. However, to measure the loss of the label parti-
tioner, rather than the label scorer, we need to instead
consider £(fy(z,)(xi),y;) which is the loss when rank-
ing only the set of labels in the partitions of z;, i.e.

fo@) (@) = (f(z,L1),..., f(z,Lir))))-

We can then define the overall loss for a given parti-

tioning as:
m

i=1
Unfortunately, when training the input partitioner the
label assignments £ are unknown making the compu-
tation of the above objective infeasible. However, the
errors incurred by this model can be decomposed into
several components. For any given example, it receives
a low or zero precision at k if either:

e It is in a partition where the relevant labels are
not in the set; or

e The original label scorer was doing poorly in the
first place.

Now, while we don’t know the label assignment, we do
know that we will be restricting the number of labels
per partition to be relatively very small (|£;| < |D|).
Taking this fact into consideration, we can translate
the two points above into tangible guidelines for de-
signing our label partitioner:

e Examples that share highly relevant labels should
be mapped to the same partition.

e Examples for which the label scorer performs well
should be prioritized when learning a partitioner.

Based on this, we now propose approaches for input
partitioning. To make our discussion more specific,



let us consider the case of a partitioner that works
by using the closest assigned partition as defined by
partition centroids ¢;,t =1,..., P:

g(x) = argmin, _, __pllz — |-

This is easily generalizable to the hierarchical case by
recursively selecting child centroids as is usually done
in hierarchical k-means and other approaches (Duda
et al., 1995).

Weighted Hierarchical Partitioner A straight-
forward approach to ensuring the input partitioner pri-
oritizes examples which already perform well with the
given label scorer is to weight each training example
with its label scorer result:

Sy

i=1 j=1

(i), yi)llwi = 5

In practice, for example, a hierarchical partitioner
based off of this objective function can be implemented
as a “weighted” version of hierarchical k-means. In our
experiments we simply perform the “hard” version of
this: we only run the k-means over the set of training
examples {(z;,y;) : €(f(zi),y:) > p}, we took p = 1.

Note that we would rather wuse £(fge,)(w:i),¥:)
than ¢(f(z;),y;) but it is unknown.  However,
(fgn(@i)yi) < Ufp(@i),vi), if yi € Ly, and
U(fy(z:) (i), yi) = 1 otherwise. That is, the proxy loss
we employ upper bounds the true one, because we have
strictly fewer labels than the full set so the precision
cannot decrease — unless the true label is not in the
partition. To help prevent the latter we must ensure
examples with the same label are in the same parti-
tion, which we do by learning an appropriate metric
in the following subsection.

Weighted Embedded Partitioners Building off
of the weighted hierarchical partitioner above, we can
go one step further and incorporate the constraint
that examples sharing highly ranked relevant labels
are mapped similarly in the partitioner. One way of
encoding these constraints is through a metric learning
step as in (Weinberger et al., 2006).

One can then proceed with learning an input parti-
tioner by optimizing the weighted hierarchical parti-
tioner objective above but in the learnt “embedding”

space:
m P
ZZ (e), yi) || Mwi — ¢ |*.
i=1j=1

However, some label scorers already learn a latent
“embedding” space, for example models like SVD and

LSI (Deerwester et al., 1990) or some neural networks
(Bai et al., 2009). In that case, one could consider per-
forming the input partitioning directly in that latent
space, rather than the input space, i.e. if the label
scorer model is of the form f(z,y) = ®,(x)"®,(y)
then the partitioning can be performed in the space
@, (z). This both saves the time of computing two em-
beddings (one for the label partitioning, and one for
the label scorer), and further partitions in the space of
features that are tuned for the label scorer, so is thus
likely to perform well.

3.2. Label Assignment

In this section we consider the problem of choosing a
label assignment £. To recap, we wish to learn this
given the following:

e A training set (z;,v;), i = 1,...,m with label set
D as before.

e An input partitioner g(z) built using the methods
in the previous subsection.

e A linear time label scorer f(z,y).

We want to learn the label assignment £; C D which
is the set of labels for the j** partition. What follows
is the details of our proposed label assignment method
that is applied to each partition. Let us first consider
the case where we want to optimize precision at 1, and
the simplified case where each example has only one
relevant label. Here we index the training examples
with index ¢, where the relevant label is y;. We define
a € {0, 117!, where o; determines if a label D; should
be assigned to the partition (a; = 1) or not (a; = 0).
These «; are the variables we wish to optimize over.
Next, we encode the rankings of the given label scorer
with the following notation:

e R, is the rank of label ¢ for example t:

—1+Z(5 3375,

J#i

> f(xt’ ))

e R, is the rank of the true label for example t.
We then write the objective we want to optimize as:
max ay, (1 — max oy 1
D (1= mag | o) (1)

subject to:
Q; € {07 1}; (2)

o] = C, 3)



where C is the number of labels to be assigned to the
partition. For a given example ¢, to maximize precision
at 1 two conditions must hold: (1) the true label must
have been assigned to the partition and (2) the true
label must be highest ranked of all assigned labels. We
can see that equation 1 computes exactly precision at 1
since the terms o, and (1 —maxg, ,<g, ,, i) measure
these two conditions respectively. Thus our proposed
objective function counts the number of training ex-
amples for which we have precision at 1 of 1.

Interestingly, note that the nature of label partitioning
means we can have situations where:

(i) the training example ¢ was labeled incorrectly in
the original label scorer, but is now labeled cor-
rectly by the label partitioner because the highly
ranked irrelevant labels are not assigned to the
partition; and

ii) the original label scorer labeled the example cor-
rectly, but is now incorrect because the relevant
label was not assigned to the partition.

It is thus the job of this optimization problem to in-
clude as many of the relevant labels in the partition
as possible, and to eliminate as many confusing labels
(high-ranking but incorrect) as possible, if by remov-
ing them more examples are then correctly labeled.
See figure 1 for an example.

bird [ sky ] [ sky ]
car house bird
D = house R = car |Ry = | house
mailbox bird car
sky mailbox | | mailbox |
mailbox [ sky ] [ bird ]
sky car sky
R3 = car |R4= |mailbox |R5 = | house
house house car
bird | bird | | mailbox |

Figure 1. Consider the precision-at-1 label assignment
problem of selecting 2 labels from D. Here R; are the
ranked labels for the examples (true labels are in bold).
While the selection of sky would correctly predict examples
1 and 2, sky appears above the true labels for examples 3-
5. The optimal selection would be car and house, which
results in examples 3-5 being correctly predicted since all
higher-ranked irrelevant labels would be discarded. This
selection problem illustrates the challenge we face in our
label assignment task (sec 3.2).

Unfortunately, the binary constraint (eq 2) renders the
optimization of eq 1 intractable, but we relax it to:
0 S Q5 S 1. (4)

max E ay, (1= max ;)
Y 1)
a5 ‘ R, i <Riy,

Now, the values of « are no longer discrete and we do
not use the constraint of eq. 3 but instead must rank
the continuous values «; after training, and take the
largest C' labels to be the members of the partition.

We now generalize the above to the case of measuring
precision at k > 1. Instead of seeing if there is at least
one “violating” label above the relevant label, we must
now count the number of violations above the relevant
label. Returning to an un-relaxed optimization prob-
lem, we have:

mgXZayt(l—q)( Z a;) (5)

Ry, i <Rt y,

subject to:
a; €40,1}, |of=C. (6)

Here, we can simply take ®(r) = 0 if » < k and 1
otherwise to optimize precision at k.

Up to now, we have only considered having a single
relevant label, but in many settings it is common for
examples to have several relevant labels, which makes
computation of the loss slightly more challenging. Let
us go back to considering precision at 1 for simplicity.
In this case the original objective function (eq 1) would
generalize to:

(1- i 7
max Z max avy ( R a;) (7)
subject to:

a; € {0,1}, |a|=C (8)

Here, y; contains several relevant labels y € y;, and if
any of them are top-ranked then we get a precision at
1 of 1, hence we can take the maxycy,.

We can combine our developments in equations 5 and
7 to formulate a cost function for precision at k& with
multi-label training examples. To make it suitable
for optimization, we relax the maxy,c,, in eq 7 to a
mean and approximate ®(r) with a sigmoid: ®(r) =
HTLT). Our objective then becomes

maxz Z ay (1 Z @i)) (9)

yEyr Rt,i<Rt,y

subject to

0<a; <1 (10)

For a single example, the desired objective is that a rel-
evant label appears in the top k. However, when this
is not the case the penalty does not reflect the actual
ranking position (i.e. our original cost is equivalent for
being ranked in position k£ + 1 or being ranked at posi-
tion |D|). As earlier we wish to deemphasize examples



for which the label scorer was already performing very
poorly. In order to reflect this we introduce a term
weighting examples by the inverse of the rank of the
relevant label using the original label scorer, following
(Usunier et al., 2009). Equations 4 and 9 now become,
respectively:

«
maxz — Y% (1— max o
> w(Rt,yt)( Ri,i <Ry, 2

mgxzt:l Z #iy)(l —®(

|yt vem

S a)

Ry i <Ry y

Here for simplicity we take w(Ry,) = (Riy)* A > 0
and in our experiments we set A = 1.0 (higher values
would further suppress examples with lower-ranked
relevant labels). These equations represent the final
relaxed form of our label assignment objective, which
we optimize using stochastic gradient ascent (Robbins
& Monro, 1951).

Optimization Considerations We consider the
case where the input partitioner g(x) is chosen such
that each input x maps to a single partition. Each
partition’s label assignment problem is thus indepen-
dent, which allows them to be easily solved in parallel
(e.g. using the MapReduce framework). In order to
further reduce the training time, for each partition we
can optimize over a subset of the full label set (i.e.
choose D C D,C < |D| < |D|). For each partition,
we choose the |25| labels that are the highest ranked
relevant labels among the partition’s training exam-
ples using the original label scorer. In all of our ex-
periments presented in the following section, we set
|D| = 2C. Note, in our experiments we found a neg-
ligible effect of reducing the parameter set size from
|D| to 2C. This might be explained by the fact that
for any partition the majority of labels in D will not
appear as relevant labels in any of the training exam-
ples. Since such labels would not receive any positive
gradient updates in our formulation, leaving them out
of the parameter set would have little effect.

Counting Heuristic Baseline By way of compar-
ison with our proposed label assignment optimization,
in our experiments we also consider a much simpler
heuristic: consider only the first term of equation (1),
ie. maxyy ,ay,. In that case the optimization re-
duces to simply counting the occurrence of each true
label in the partition, and keeping the C' most fre-
quent labels. This counting-based assignment provides
a good baseline for comparison with our proposed op-
timization. We show in our experiments that our com-
plete optimization outperforms this heuristic, presum-

ably because the second term also takes into account
the label scorer itself.

4. Experiments
4.1. Image Annotation

We first considered an image annotation task us-
ing the publicly available ImageNet dataset. Ima-
geNet is a large image dataset that attaches quality-
controlled human-verified images to concepts from
WordNet (Fellbaum, 1998). We used the Spring 2010
version, which contains about 9M images, from which
we kept 10% for validation, 10% for test, and the re-
maining 80% for training. The task is to rank the
15,589 possible labels that range from animals (“white
admiral butterfly”) to objects (“refracting telescope”).

We used a similar feature representation as in (Weston
et al., 2011) which combines multiple feature represen-
tations which are the concatenation of various spatial
and multiscale color and texton histograms for a total
of about 5%10° dimensions. Then, KPCA is performed
(Schoelkopf et al., 1999) on the combined feature rep-
resentation using the intersection kernel (Barla et al.,
2003) to produce a 1024 dimensional input vector.

In (Weston et al., 2011) it was shown that the ranking
algorithm WSABIE performs very well on this task.
WSABIE builds a label scorer of the form f(z,y) =
2U "Vy by optimizing a ranking loss that (approxi-
mately) optimizes precision at k by weighting the indi-
vidual ranking constraints per example based on their
rank. WSABIE was shown to be superior to unbalanced
one-vs-rest (see also (Perronnin et al., 2012)), PAMIR
(Grangier & Bengio, 2008), and k-nearest neighbors.
We therefore use WSABIE as our baseline linear time
label scorer that we want to speed up with label par-
titioning (although we could easily apply it to another
algorithm, such as one-vs-rest).

The result we obtained for WSABIE is a P@1 of 8.32%,
which is in line with the results reported in (Weston
et al., 2011) (there, 8.83% is reported at best, but on
a different train/test size and split). The main results
comparing the baseline label scorer with our label par-
titioning algorithm are given in Table 1.

We report several variants of our approach: with differ-
ent input partitioners (k-means, hierarchical k-means,
and LSH), different numbers of partitions and labels
per partition, resulting in different performance/speed
tradeoffs. We can achieve very similar accuracies to
the original label scorer (> 8.0%) whilst being up to
21x faster. We can be faster still, but with slightly
less accuracy. LP-k-means (where we weight examples



Table 1. Image Annotation Results

Number of Num. of labels pPal
Algorithm Input Partitioner partitions (P) per partition (C) Counting P@1  Speedup
Label Scorer (baseline) - - - - 8.32% 0x
Label Partitioner k-means 2048 250 7.82% 8.13% 6.3x
Label Partitioner LP-k-means 2048 250 7.98% 8.12% 6.3x
Label Partitioner k-means 1024 250 7.61% 8.07% 12.5x
Label Partitioner LP-k-means 1024 250 7.80% 8.13% 12.5x
Label Partitioner k-means 512 500 7.92% 8.26% 15.7x
Label Partitioner LP-k-means 512 500 7.93% 8.15% 15.7x
Label Partitioner k-means 512 250 7.46% 8.03% 21.0x
Label Partitioner LP-k-means 512 250 7.59% 8.07% 21.0x
Label Partitioner Hier-k-means 2048 500 7.54% 70T% 31.2x
Label Partitioner LP-Hier-k-means 2048 500 7.60% 7.91% 31.2x
Label Partitioner Hier-k-means 1024 500 7.49% 7.92% 31.3x
Label Partitioner LP-Hier-k-means 1024 500 7.53% 7.94% 31.3x
Label Partitioner Hier-k-means 1024 250 6.94% 7.64% 61.4x
Label Partitioner LP-Hier-k-means 1024 250 6.97% 7.67% 61.4x
Label Partitioner LSH 10-bit 500 5.87% 5.94% 26.6x
Label Partitioner LSH 10-bit 250 4.67% 5.04% 45.6x
Table 2. Video Recommendation Results
Number of Number of labels P@10 gain

Algorithm Input Partitioner partitions (P) per partition (C) counting ~ P@10 gain Speedup

Label Scorer (baseline) - - - 0% 0x

Label Partitioner LP-Hier-k-means 10000 1000 +5.4% +13.0% 990x

Label Partitioner LP-Hier-k-means 10000 10000 +3.2% +11.1% 99x

when training k-means as explained in section 3.1) is
also compared to k-means and brings some small gains.
Further, compared to the counting heuristic described
in section 3.2 for label assignment, we see consistent
larger improvements with our optimization method.

Our method reported in the table uses the “weighted
embedded partitioning” described in section 3.1
whereby the input partitioning is performed in the la-
tent space ®(z) of the label scorer (WSABIE) as this
gave the best results. However, we also ran the k-
means input partitioner in the original input space,
which is consistently worse. For example, for P = 1024
and C = 250 this gives 7.48% (compared to 8.07% in
Table 1) with label assignment optimization, or 6.76%
(compared to 7.61%) with the counting heuristic. Gen-
erally, however, the same trends apply when using a
partitioner in the input space, i.e. we see large gains
from label assignment optimization, and small gains
from input partition optimization (e.g. with the same
parameters the results go from 6.76% to 7.01%).

Further, as this particular label scorer operates in an
embedding space (which is not true in general) meth-

ods like LSH can be directly applied to partition both
inputs and labels, i.e. put the labels in the partitions
using Vy and the inputs using zU. We apply a ran-
dom projection matrix W and hash using the signs
of the resulting hyperplanes, as is common. We fur-
ther implement “spilling” by taking labels that differ
only by a few hash bits from the partition: we rank
the labels by the number of differing bits, and take up
to 250, 500, or 1000 labels. This results in a perfor-
mance of 2.10%, 3.27% and 4.32% respectively. This
is inferior to our method even when it has less labels
per partition (bottom two rows of Table 1). With
more bits LSH+spilling improves, e.g. with 16 bits
and 1000 labels it gets 5.07% but this is still worse
than our method with only 10 bits. Note that LSH
without spilling performs more poorly (e.g. even 4 bits
gives 2.91%, and more bits gets worse) indicating the
importance of labels appearing in multiple partitions,
which is a feature of our method. Some example label
assignments of our method are shown in Table 3.

Finally, although we optimize precision at k, recall is
an important and often reported metric for ImageNet.
As an example of recall performance, the baseline lin-



Table 3. Image Annotation: top scoring label assignments from a few partitions.

Semantically similar or otherwise

confusable labels tend to co-occur in partitions. The description given in the second column is our interpretation of the

content of the partition, and is not given in the training data.

Top Labels in A Few Random Partitions Description
whinchat, eurasian kingfisher, odonate, archilochus colubris, meadow pipit, whitethroat, stonechat
skylark, purple finch, sedge wren, damselfly, hummingbird, lintwhite, spinus pinus, yellowhammer, Birds
silvia atricapilla, western kingbird, bee eater, snake feeder, water strider

videocassette recorder, paring knife, straightener, handsaw, satellite receiver, roller, clawhammer, Various

vernier micrometer, pruning saw, hedge trimmer, cutoff saw, tinsnips, metal saw, read/write memory, Tools
torque wrench, towel rail, locking pliers, meat cleaver, mason’s trowel, twist drill, saber saw

diesel-hydraulic locomotive, school bus, train, passenger vehicle, shunter, public transport, tramway, Trains,

electric locomotive, trolley car, commuter train, shuttle bus, diesel-electric locomotive, diesel
locomotive, trolleybus, bookmobile, liner train, ambulance, pullman car, wagon

large vehicles.

french door, shoji, wall unit, entertainment center, revolving door, shutter,
french window, sliding door, bow window, wardrobe, casing, double door, bookshelf,
casement, partition, ticket office, casement window, window seat, pall, console, four poster

Doors, windows,
shelves, etc.

ear time WSABIE model has RQ5 of 19.7%. In com-
parison, the label partitioner optimized for precision at
1 with 2048 k-means input partitions and 250 labels
per partition (i.e. the same model as in the first row
of Table 1) has R@5 of 18.3% (18.0% for the counting
heuristic).

4.2. Video Recommendation

We next considered a much larger scale problem, that
of recommending videos from a large online video com-
munity. The million most popular videos are consid-
ered as the set D and our aim is to rank these videos
for a given user, to suggest videos that are relevant
to the user. The training data is thus of the form
where each training pair is based on an anonymized
user. For each user the input z; is a set of features
which indicate their preferences. These features are
generated by aggregating over each user the topics of
videos they are interested in. These collection of top-
ics are then clustered. There are 2069 of these clusters
that represent the user, of which 10 are active at any
time. The label y; is a set of known relevant videos.
The dataset consists of 100s of millions of examples
where each example thus has 2069 input features, and
on average on the order of 10 relevant videos. We set
aside 0.5M examples for validation, and 1M for test.

Our baseline label scorer WSABIE had a PQ10 that
gives an 108% improvement compared to applying
Naive Bayes (i.e. gives around double the perfor-
mance)! so the baseline seems relatively strong. We
then ran the label partitioner using hierarchical k-
means with 10000 partitions and various label assign-
ment set sizes, and results are given in Table 2. Our
method achieved a speedup of 990x whilst actually im-

"We report percentage improvements over the baseline
due to the proprietary nature of the dataset.

proving over the label scorer PQ10 by 13%. This re-
sult is not as impossible as it might seem: the label
scorer we are using is a linear model whereas the la-
bel partitioner is somehow a “non-linear” one: it can
change the label sets in different partitions of the input
space — and thus correct the mistakes of the original
scorer (in a way, this is like a re-ranker (Collins & Koo,
2005)). Note the optimization-based label partitioner
consistently outperforms the counting heuristic again.

Our label partitioner was used in the fielded video rec-
ommendation system where we attempted to improve
an already strong baseline machine learning system
(Davidson et al., 2010). In our experiments above we
used precision, but precision is merely a proxy for the
online metrics that matter more, such as video click
through rate and duration of watch. When evaluating
the label partitioner in the real-world system, it gave
statistically significant increases in both click through
rate and watch duration (approx 2%). Note that we
cannot compare it to the original label scorer in that
case as it is simply not feasible to use it.

5. Conclusions

We have presented a “wrapper” approach for speeding
up label scoring rankers. It employs a novel optimiza-
tion to learn an input partitioning and label assign-
ment that outperforms several baselines. The results
are either similar to, or better than, the original label
scorer, whilst being orders of magnitude faster. This
allowed our technique to be usable in a real-world video
recommendation system, which would otherwise not
have been feasible. Finally, while we feel that our pro-
posed label assignment is a good solution to the prob-
lem, the large performance differences between input
partitioners indicates that this remains an important
problem for future work.
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