

Large Scale Distributed Acoustic Modeling With Back-off N-grams Google Search by Voice

Ciprian Chelba, Peng Xu, Fernando Pereira, Thomas Richardson

Statistical Modeling in Automatic Speech Recognition

$$\hat{W} = \operatorname{argmax}_{W} P(W|A) = \operatorname{argmax}_{W} P(A|W) \cdot P(W)$$

- 6 P(A|W) acoustic model (Hidden Markov Model)
- 6 P(W) language model (Markov chain)
- ullet search for the most likely word string \hat{W}
 - due to the large vocabulary size—1M words—an exhaustive search is intractable

Voice Search LM Training Setup

- 6 correct google.com queries, normalized for ASR, e.g. 5th -> fifth
- vocabulary size: 1M words, OoV rate 0.57% (!), excellent n-gram hit ratios
- 6 training data: 230B words

Order	no. n-grams	pruning	PPL	n-gram hit-ratios
3	15M	entropy	190	47/93/100
3	7.7B	none	132	97/99/100
5	12.7B	1-1-2-2-2	108	77/88/97/99/100

Is a Bigger LM Better? YES!

- 6 PPL is really well correlated with WER.
- 6 It is critical to let model capacity (number of parameters) grow with the data.

Back to Acoustic Modeling: How Much Model Can We Afford?

- 6 typical amounts of training data for AM in ASR vary from 100 to 1000 hours
- frame rate in most systems is 100 Hz (every 10ms)
- assuming 1000 frames are sufficient for robustly estimating a single Gaussian
- 1000 hours of speech would allow for training about0.36 million Gaussians (quite close to actual systems!)
- We have 100,000 hours of speech! Where is the 40 million Gaussians AM?

Previous Work

- 6 GMM sizing: ^a $\log(\text{num. components}) = \log(\beta) + \alpha \cdot \log(n)$ typical values: $\alpha = 0.3$, $\beta = 2.2$ or $\alpha = 0.7$, $\beta = 0.1$
- same approach to getting training data as CU-HTK ^b
- 6 they report diminishing returns past 1350 hours, 9k states/300k Gaussians
- we use 87,000 hours and build models up to 1.1M states/40M Gaussians.

Workshop on Automatic Speech Recognition and Understanding, 2003.

^bGales at al., "Progress in the CU-HTK broadcast news transcription system,"

Google

IEEE Transactions on Audio, Speech, and Language Processing, 2006.

^aKim et al., "Recent advances in broadcast news transcription," in IEEE

Back-off N-gram Acoustic Model (BAM)

W= <S> action , sil ae k sh ih n sil BAM with M=3 extracts:

```
ih_1 / ae k sh ____ n sil frames
ih_1 / k sh ____ n sil frames
ih_1 / sh ___ n frames
```

Back-off strategy:

- back-off at both ends if the M-phone is symmetric
- if not, back-off from the longer end until the M-phone becomes symmetric

Rich Schwartz et al., Improved Hidden Markov modeling of phonemes for continuous speech recognition, in Proceedings of ICASSP, 1984.

Back-off Acoustic Model Training

- generate context-dependent state-level Viterbi alignment using: $H \circ C \circ L \circ W$ and the first-pass AM
- extract maximal order M-phones along with speech frames, and output (M-phone key, frames) pairs
- compute back-off M-phones and output (M-phone key, empty) pairs
- to avoid sending the frame data M times, we sort the stream of M-phones arriving at Reducer in nesting order
- cashe frames arriving on maximal order M-phones for use with lower order M-phones when they arrive.

MapReduce for BAM Training

N-best Rescoring

- load model into an in-memory key-value serving system (SSTable service) with S servers each holding 1/S-th of the data
- query SSTable service with batch requests for all M-phones (including back-off) in an N-best list

$$\log P_{AM}(A|W) = \lambda \cdot \log P_{first\ pass}(A|W) +$$

$$(1.0 - \lambda) \cdot \log P_{second\ pass}(A|W)$$

$$\log P(W, A) = 1/lmw \cdot \log P_{AM}(A|W) +$$

$$\log P_{LM}(W)$$

Experimental Setup

- 6 training data
 - baseline ML AM: 1 million manually transcribed Voice Search spoken queries—approx. 1,000 hours of speech
 - filtered logs: 110 million Voice Search spoken queries + 1-best ASR transcript, filtered at 0.8 confidence (approx. 87,000 hours)
- 6 dev/test data: manually transcribed data, each about 27,000 spoken queries (87,000 words)
- N = 10-best rescoring:
 - 7% oracle WER on dev set, on 15% WER baseline
 - 80% of the test set has 0%-WER at 10-best

Experimental Results: Maximum Likelihood Baseline

Model	Train	Source	WER	No.	M
	(hrs)		(%)	Gaussians	
$ML, \lambda = 0.6$	1k	base AM	11.6	327k	
$ML, \lambda = 1.0$	1k	base AM	<u>11.9</u>	327k	
$BAM, \lambda = 0.8$	1k	base AM	11.5	490k	1
$BAM, \lambda = 0.8$	1k	1% logs	11.3	600k	2
$BAM, \lambda = 0.8$	1k	1% logs	11.4	720k	1
$BAM, \lambda = 0.6$	9k	10% logs	10.9	3,975k	2
$BAM, \lambda = 0.6$	9k	10% logs	10.9	4,465k	1
$BAM, \lambda = 0.6$	87k	100% logs	10.6	22,210k	2
$\mathbf{BAM}, \lambda = 0.6$	87k	100% logs	10.6	14,435k	1

- 6 BAM steadily improves with more data, and model
- 6 phonetic context does not really help beyond triphones
- 1.3% (11% rel) WER reduction on ML baseline

Experimental Results: WER with Model Size

Experimental Results: WER with Data Size

Experimental Results: bMMI Baseline

0.6% (6% rel) WER reduction on tougher 9.8% bMMI baseline

Experimental Results: M-phone Hit Ratios

10-best Hypotheses for Test Data for BAM Using M=3 (7-phones) Trained on the Filtered Logs Data (87 000 hours)

left, right context size	0	1	2	3
0	1.1%	0.1%	0.2%	4.3%
1	0.1%	26.0%	0.9%	3.4%
2	0.7%	0.9%	27.7%	2.2%
3	3.8%	2.9%	2.0%	23.6%

For large amounts of data, DT clustering of triphone states is not needed

Experimental Results: Validation Setup

- 6 train on the dev set with $N_{
 m min}=1$
- 6 test on the subset of the dev set with 0% WER at 10-best; 80% utterances; 1st pass AM: 7.6% WER
- use only BAM AM score, very small LM weight.

Context type	M	WER, (%)
CI phones	1	4.5
CI phones	5	1.5
+ word boundary	1	1.8
+ word boundary	5	0.6

6 triphones do not overtrain

BAM: Conclusions and Future Work

- distributed acoustic modeling is promising for improving ASR
- expanding phonetic context is not really productive, whereas more Gaussians do help

Future work:

- 6 bring to the new world of (D)NN-AM
- 6 discriminative training
- wish: steeper learning rate as we add more training data

Parting Thoughts on ASR Core Technology

Current state:

- 6 automatic speech recognition is incredibly complex
- o problem is fundamentally unsolved
- 6 data availability and computing have changed significantly: 2-3 orders of magnitude more of each

Challenges and Directions:

- re-visit (simplify!) modeling choices made on corpora of modest size
- multi-linguality built-in from start
- better modeling: feature extraction, acoustic, pronunciation, and language modeling pronunciation, and language modeling

ASR Success Story: Google Search by Voice

What contributed to success:

- 6 DNN acoustic models
- clearly set user expectation by existing text app
- excellent language model built from query stream
- o clean speech:
 - users are motivated to articulate clearly
 - app phones do high quality speech capture
 - speech tranferred error free to ASR server over IP

