
S-links: Why distributed security policy requires secure introduction

Joseph Bonneau
Google Inc.

jcb@google.com

Abstract—In this paper we argue that secure introduction
via hyperlinks will be essential for distributing security policies
on the web. The “strict transport security” policy, which
makes HTTPS mandatory for a given domain, can already
be expressed by links with an https URL. We propose s-
links, a set of lightweight HTML extensions to express more
complex security policies in links such as key pinning. This is
the simplest and most efficient way to secure connections to
new domains before persistent security policy can be negotiated
directly, requiring no changes to the user experience and
aligning trust decisions with the user’s mental model. We show
how s-links can benefit a variety of proposed protocols and
discuss implications for the browser’s same-origin policy.

I. INTRODUCTION

HTTPS [13], which layers HTTP traffic over SSL/TLS [4]
for confidentiality and integrity, is the dominant protocol
for securing web traffic. Though there have been many
subtle cryptographic flaws in TLS (see [2] for an extensive
survey), the greatest concerns are incomplete deployment of
HTTPS (enabling stripping attacks [10]) and weaknesses in
the certificate authority (CA) system by which attackers have
obtained certificates for domains they did not own.

The emerging solution to HTTPS stripping is strict trans-
port security (HSTS) [7] through which browsers learn that
specific domains must only be accessed via HTTPS. HSTS
provides a model for scalable, end-to-end distribution of
security policy: browser preload HSTS for popular domains,
follow HTTPS links to reach new domains securely, and then
cache HSTS policies for frequently-visited domains when
HSTS headers are observed.

Following several high-profile CA failures and evidence
of fraudulent certificates being used in real-world network
eavesdropping attacks [15], many protocols have been pro-
posed to maintain security against an attacker with a rogue
certificate for a target domain signed by a trusted CA. This
is a challenging problem, and it remains unclear which of
several competing approaches will prove practical.

Any solution though must support varying security poli-
cies at different domains. Browsers can preload policies
for the largest domains and policy can be established by
continuity once a domain is securely reached, but this leaves
initial connections to many domains vulnerable. We advo-
cate that in-band secure introduction using the web’s existing
hyperlink model is the only viable approach to distributing
security policy without adding significant communication
overhead or changing the user experience.

II. THE STRICT TRANSPORT SECURITY MODEL

We extract several important design principles from the
deployment of HSTS to combat stripping attacks, which
occur when an active network attacker opportunistically pre-
vents HTTPS traffic by downgrading HTTPS links, blocking
HTTPS redirects and proxying traffic to the genuine server.
There are now turnkey software packages for performing
these attacks, namely sslstrip [10]. Browsers historically
relied on users to manually detect stripping, but usability
studies find that most users don’t notice the absence of
HTTPS indicators (such as padlock icons) at all [14].

HSTS is a binary (per domain1) security policy.2 Its
presence is invisible to users, requiring no user decisions for
security. It is also incrementally deployable, with individual
domains gaining protection unilaterally by opting in. HSTS-
protected domains can easily perform secure introduc-
tion of users to other HSTS-protected domains by serving
HTTPS links, with no vulnerability to a network attacker
stripping the HSTS upgrade for the new domain. Secure
introduction enables users to more easily change the parties
they rely on for security (trust agility) and, critically, to
more intuitively understand whom they are trusting when
connecting to a new domain (trust affordance).

A. Preloaded HSTS

The Chrome browser now ships with a preloaded HSTS
policy for approximately 150 domains, with Firefox devel-
oping a similar approach. The EFF’s HTTPS Everywhere
browser extension3 provides similar protection for a much
larger list of over 5,000 domains. Security for preloaded do-
mains reduces to maintaining a genuine, up-to-date browser.4

Of course, this approach can’t scale indefinitely. Based on
data from web crawls performed for Google search, over
15,000 domains are now serving HSTS headers. Future
growth will likely exceed the number of domains which can
be maintained by browser vendors and efficiently checked
during every connection.

1By default, HSTS is declared for a fully-qualified domain name, though
there is an optional includeSubDomains directive.

2HSTS has other security implications beyond requiring HTTPS, such
as preventing users from clicking through certificate error messages.

3https://www.eff.org/https-everywhere
4Chrome’s preload list has an expiration date if the browser is not

regularly updated, to prevent a non-updated browser from losing access
to domains if they cease to support HTTPS.

jcb@google.com
https://www.eff.org/https-everywhere

B. HSTS through continuity

After a successful HTTPS connection, domains can assert
an HSTS policy via an HTTP header. The browser will store
the HSTS policy for an arbitrary time period set by the
max-age directive. The policy can be renewed indefinitely
by future connections, maintaining security as long as the
domain is visited at least once per max-age period. This
can be described as a continuity protocol,5 reducing security
to a single vulnerable initial connection.6

C. Secure introduction to HSTS domains

Protecting initial connections requires querying a trusted
authority to determine if the new domain supports HTTPS.
The authority cannot be the target domain itself, because
an adversary can simply block HTTPS traffic and cause
the browser to infer that only HTTP is supported. The
authority must also be so reliable that browsers can hard-
fail if the authority doesn’t respond, otherwise the attacker
can similarly block traffic to the authority. This reliability
requirement makes out-of-band queries prohibitive.7

However, if a user navigates to a new HSTS domain from
a known HSTS domain, this introducer can implicitly serve
as a trusted authority by serving an HTTPS link. The link
serves as an assertion that the destination domain supports
HTTPS and the initial connection must fail otherwise. The
browser can then establish the new domain’s persistent
HSTS status via continuity. Thus, end-to-end security exists
under a simplified model of browsing behavior:

Linked web navigation model: users only reach
new domains via hyperlinks, beginning with a set
of domains with preloaded security policies.

This is a crude model which ignores users’ ability to type
in a new domain’s URL directly. However, although a large
number of web requests do come from direct navigation
(typing) or bookmarks, hyperlinks play a disproportionately
large role in discovering new websites, particularly from
search engines [12].

HSTS under a linked navigation model requires no user
decisions, with all violations resulting in hard failures that
are barely distinguishable from non-existent domains. Users
trust only their browser vendor and any sites at which
links are clicked. These trusted parties can be understood
and changed more easily than CAs, DNS servers, or other
“invisible” trusted parties, enabling relatively high trust
affordance and agility.

5HSTS can also be described as a “trust-on-first-use” (TOFU) scheme.
We use the more general term continuity which can describe protocols like
TACK which do not afford full trust upon initial connection.

6In addition to true initial connections, any connections after extended
inactivity or flushing of the browser’s HSTS state will be vulnerable.

7The OCSP protocol for checking a certificate’s revocation status is
instructive. All browsers skip OCSP checks if the server can’t be reached,
though this allows a network attacker to easily undermine the protocol.

III. PROPOSED SECURITY POLICIES

Several security protocols have been proposed to mitigate
rogue certificates. We list three approaches here:

A. Key pinning within certificate chains

Key pinning specifies a limited set of public keys8 which
a domain can use in establishing a TLS connection. At least
one public key in the pin set must appear somewhere in the
server’s certificate chain, enabling pinning to the server’s
end-entity public key, the key of the server’s preferred root
CA, or the key of any intermediate CA. This means rogue
certificates must include one of the pinned keys, removing
vulnerability to any CA not in the pin set. Similarly to
HSTS, Chrome has implemented preloaded pinning for a
small number of domains and the HPKP draft specification
enables servers to assert pins via HTTP headers [6].

B. Out-of-chain key pinning

Another approach is to specify a separate self-managed
public key which must sign all end-entity public keys,
in addition to requiring a certificate chain leading to a
trusted CA. This avoids fully trusting any external CA while
offering more flexibility than pinning to an enumerated set of
end-entity public keys. Conceptually, it is similar to pinning
to a domain-owned key in a CA-signed, domain-bound
intermediate certificate.9 TACK [11] proposes distributing
out-of-chain public keys using continuity,10 while Sovereign
Keys [5] proposes using a public append-only log.

C. Public logging

Certificate Transparency [9] (CT) is a proposal to detect
rogue certificates by recording all valid end-entity certifi-
cates in a publicly verifiable, append-only log. As currently
proposed, clients will begin to reject certificates lacking
proof of inclusion in the log after universal adoption11 by all
public CAs.12 While not part of the current draft proposal,
it’s possible that as CT is incrementally deployed supporting
domains will wish to assert a “CT-required” security policy
through browser preloads or a continuity protocol.

IV. DEVELOPING EXTENSIBLE SECURE LINKS

All of the above proposals suffer from untrusted initial
connections because there is no mechanism to declare se-
curity policy in links, unlike HSTS which is effectively
expressed by HTTPS links.

8Specifically, a key pinning policy will specify the hash of the complete
Subject Public Key Info field of an X.509 certificate.

9Domain-bound intermediates are possible using X.509’s
nameConstraints extension. However, this extension is not universally
supported and non-supporting clients will reject such certificates.

10Continuity in TACK is distinct from HSTS/HPKP in that clients only
retain a TACK policy for as long into the future as the policy has been
consistently observed in the past, subject to a maximum of 30 days.

11Even after universal adoption, clients must wait until all extant legacy
certificates have expired to require CT proofs.

12Private CAs, such as those used within an enterprise, are excluded.

A. Security pseudo-protocols and modifying URLs

One approach is to establish new pseudo-protocols for use
in URLs, just as https supplants http. This is straight-
forward for binary security policies.13 CT, for instance,
could benefit from an httpsct pseudo-protocol which
requires a CT log signature for any presented certificate.
Specifying more complex protocols like key pinning is
considerably more difficult. YURLs [3] are a proposal to
specify keys in URLs with the httpsy protocol,14 but
these are unwieldy to type and will be rejected by legacy
clients which can’t parse the new pseudo-protocol. URLs
have also (perhaps unwisely) taken on a critical role in the
security user interface as users are expected to recognize
them to determine which domain they are interacting with.
Composing security policies (for example, combining key
pinning and CT) requires further pseudo-protocols to be
developed. Finally, embedded security policy goes against
the original philosophy of URLs as the permanent location
of network resources. Security policy may evolve or expire
while a URL refers to the same content.

B. S-links: security attributes in HTML

We therefore propose s-links,15 specifying security policy
not in URLs but as HTML attributes in tags which indicate
connections between documents, such as the a (anchor)
tag which produces a hyperlink. Unlike URLs, new HTML
attributes are ignored by legacy user agents, invisible to
users, and easily extensible. They are explicitly not part of
a resource’s permanent location, but a means to perform se-
cure introduction so that persistent policy can be established
by continuity. A minimal example would be the following
s-link requiring key pins {k1, k2} and expiring at time t:
<a link-security="expiry=t;

pin-sha256=H (k1); pin-sha256=H (k2);"
href="https://www.example.com">secure

We leave details to our draft specification. Remaining
open questions include handling redirects and compressing
repeated s-link policies for pages with many links.

C. User experience of s-links

To ensure invisibility to end users, violations of s-link di-
rectives should produce hard failures with no “click through”
option. Savvy users may extract the raw URL, but most will
experience a traditional “broken link” and either choose a
different introducer or assume the new page is unreachable.
We assume, as today, that users trust the source web site
when clicking on a link, so a failure of that site’s security
policy is a hard error.

13One such proposal is httpsev, requiring HTTPS with an Extended
Validation certificate [8].

14YURLs are less flexible than the key pinning described by HPKP or
TACK, only specifying a single end-entity key hash.

15A working specification is provided at www.secure-links.org.

D. Malicious s-links

S-links should provide no new capability to malicious web
sites, including legitimate sites compromised by cross-site
scripting. To ensure this, s-links may only specify stricter
security policy than what would otherwise be enforced. This
limits malicious s-links to specifying a broken hyperlink,
which malicious links may already do.

E. Expiration

Valid s-links must include an expiry directive. This
prevents cached links from breaking if security policies
change. S-links include a specific expiration date (rather than
a time to live) because cached HTML can lose its origin date.
In practice, sites will discover policies to include in s-links
through continuity-based scanning16 of destination domains,
which should include an explicit expiration. For example, the
max-age directive in HPKP headers can be translated into
the expiry field of an s-link specifying key pins.

V. SECURE LINKS AND THE SAME-ORIGIN POLICY

Browsers isolate content using the same-origin policy,
where the origin is defined as the scheme, host, and port
of the content’s URL. This means content delivered over
HTTPS is isolated from any insecure HTTP content an
attacker injects with the same host and port. However,
content delivered over HTTPS but with different s-link
directives will represent separate fine-grained origins [8]
which are not isolated by the same-origin policy.

Without further consideration, this could enable an at-
tacker to undermine content reached via an s-link. For ex-
ample, if a user visiting https://secure.com follows
an s-link to https://target.com, an attacker with
a rogue certificate could inject an unprotected malicious
frame for https://target.com and potentially use it
to inject scripts [8] or initiate cross-frame navigation [1] of
the securely-loaded frame.17 A network attacker could insert
the malicious frame in real-time after observing the s-link-
protected request and ensure it loads before the protected
frame can negotiate a security upgrade.

One approach is to extend the same-origin policy [8] to
include security policies used to load each frame. However,
this approach can prevent valid intra-origin communication
as any variation in s-link policies would fork content into
isolated domains.

Crucially, s-links have a limited goal of reaching new
domains that will immediately negotiate a persistent security
upgrade (such as setting key pins via HPKP headers). For
this use case, there is no need to support content loaded from
the same origin under different security policies, only to

16We can’t expect all introducer domains to perform their own scanning.
Security policies may also be cached by public network notaries.

17These attacks require the attacker-controlled frame to have a JavaScript
reference to the secure frame. This can occur if the secure frame is given
a global name via window.open.

www.secure-links.org

track origin-wide security policy as it evolves. For example,
a crude but effective policy would be to flush all cached
resources whenever a domain’s security policy is made more
restrictive. This would include (at minimum) reloading any
open frames, evicting any HTTP-cached content, remov-
ing cookies, deleting HTML5 localStorage and AppCache
contents, and dropping any TLS session IDs. This would
extirpate any latent attacker-controlled resources.

A refinement of this approach is retroactive policy check-
ing. After a domain’s persistent security policy changes,
previously-loaded resources must be evicted only if they
were loaded over a TLS connection which would violate
the new policy. For example, when key pins are set, content
previously loaded under keys not in the new pin set must be
evicted. Because most domains will only mandate a policy
that they have already been complying with, retroactive
checking should rarely cause eviction in normal use.

In fact, retroactive policy checking is useful not only for s-
links, but to maintain security any time policy is upgraded,
such as updates to the browser’s preloaded policies. It is
less critical for non s-link protected continuity-based policy
upgrades because an attacker who can impersonate the
intended domain can prevent the upgrade altogether during
the unprotected initial connection.

A final subtlety is that eviction of active content (scripts)
must be atomic. That is, all active resources must be evicted
before any are reloaded. In the absence of this requirement,
the last potentially-malicious script to be removed could
maintain its presence by attacking newly delivered content.

A. Secure resource loading

S-link attributes can be included in tags like script,
enabling secure frames to load non-framed resources such
as JavaScript libraries, images, or CSS from third-party
domains which don’t set persistent security policy. Unlike
framed content, these resources inherit the origin of the
parent frame and hence will be inaccessible to attackers who
can impersonate the unprotected third-party domain.

VI. DISCUSSION AND CONCLUDING REMARKS

Hardening the web against rogue certificates will require
the gradual deployment of policies stricter than today’s
permissive global HTTPS policy. Based on the experience
of HSTS we argue that a combination of browser-preloaded
policies, continuity-based policy negotiation, and secure
introduction can provide a solution which is incrementally
deployable, reflects users’ current trust model, and provides
end-to-end security within a linked navigation model.

This blueprint remains years away from reality. It will
require further work by browser vendors to develop a
sustainable approach to preloading security policy for critical
domains and protecting the browser update process. It will
require effort by webmasters to declare support for new

security policies; HSTS suggests diffusion of new protocols
will take many years. Finally it depends on major hubs on
the web growing into a new role as notaries of security
policy around the web so that they can perform secure
introduction. Today’s search engines don’t yet consistently
provide HTTPS links to HSTS domains.

Still, we consider this the most likely path forward.
Changing the default HTTPS policy for the web appears
impossible, meaning domain-specific policies must be dis-
tributed. Adding network connections to every web request
to fetch security policy is a daunting hurdle. Therefore
we believe secure links are the most practical approach to
distributing new security policies as they become available.
They are also the most natural extensions of the web’s
traditionally decentralized structure and provide the best
hope of user-visible trust agility.

ACKNOWLEDGEMENTS

I would like to thank Trevor Perrin, Jeremy Clark, Ryan
Sleevi, Adam Langley, Umesh Shankar, Chris Palmer, Adam
Barth and Phil Ames for discussions which led to this paper.

REFERENCES

[1] A. Barth, C. Jackson, and J. C. Mitchell. Securing Frame
Communication in Browsers. Communications of the ACM,
52(6):83–91, 2009.

[2] J. Clark and P. C. van Oorschot. SSL and HTTPS: Re-
visiting past challenges and evaluating certicate trust model
enhancements. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, 2013.

[3] T. Close. YURLs. http://www.waterken.com/dev/YURL/,
2004.

[4] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246, May 2000.

[5] P. Eckersley. Internet-Draft: Sovereign Key Cryptography for
Internet Domains. 2012.

[6] C. Evans, C. Palmer, and R. Sleevi. Internet-Draft: Public
Key Pinning Extension for HTTP. 2012.

[7] J. Hodges, C. Jackson, and A. Barth. RFC 6797: HTTP Strict
Transport Security (HSTS). 2012.

[8] C. Jackson and A. Barth. Beware of Finer-Grained Origins.
Web 2.0 Security and Privacy, 2008.

[9] B. Laurie, A. Langley, and E. Käsper. Internet-Draft: Certifi-
cate Transparency. 2013.

[10] M. Marlinspike. New Tricks For Defeating SSL In Practice.
In Black Hat DC, 2009.

[11] M. Marlinspike and T. Perrin. Internet-Draft: Trust Assertions
for Certificate Keys. 2012.

[12] M. R. Meiss, F. Menczer, S. Fortunato, A. Flammini, and
A. Vespignani. Ranking web sites with real user traffic.
WSDM ’08. ACM, 2008.

[13] E. Rescorla. HTTP over TLS. RFC 2818, 2000.
[14] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The

Emperor’s New Security Indicators. In In Proceedings of the
2007 IEEE Symposium on Security and Privacy, 2007.

[15] C. Soghoian and S. Stamm. Certified Lies: Detecting and
Defeating Government Interception Attacks Against SSL.
Financial Cryptography and Data Security, 2012.

http://www.waterken.com/dev/YURL/

	Introduction
	The Strict Transport Security model
	Preloaded HSTS
	HSTS through continuity
	Secure introduction to HSTS domains

	Proposed security policies
	Key pinning within certificate chains
	Out-of-chain key pinning
	Public logging

	Developing extensible secure links
	Security pseudo-protocols and modifying URLs
	S-links: security attributes in HTML
	User experience of s-links
	Malicious s-links
	Expiration

	Secure links and the same-origin policy
	Secure resource loading

	Discussion and concluding remarks
	References

