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Abstract—This paper describes an efficient and effective de-
sign of Robust Spatio-Temporal Prediction based on Student’s
t distribution, namely, St-RSTP, to provide estimations based
on observations over spatio-temporal neighbors. The proposed
St-RSTP is more resilient to outliers or other small departures
from model assumptions than its ancestor, the Spatio-Temporal
Random Effects (STRE) model. STRE is a state-of-the-art
statistical model with linear order complexity for large scale
processing. However, it assumes Gaussian observations, which
has the well-known limitation of non-robustness. In our St-
RSTP design, the measurement error follows Student’s t
distribution, instead of a traditional Gaussian distribution. This
design reduces the influence of outliers, improves prediction
quality, and keeps the problem analytically intractable. We
propose a novel approximate inference approach, which ap-
proximates the model into the form that separates the high
dimensional latent variables into groups, and then estimates
the posterior distributions of different groups of variables
separately in the framework of Expectation Propagation. As a
good property, our approximate approach degeneralizes to the
standard STRE based prediction, when the degree of freedom
of the Student’s t distribution is set to infinite. Extensive
experimental evaluations based on both simulation and real-life
data sets demonstrated the robustness and the efficiency of our
Student-t prediction model. The proposed approach provides
critical functionality for stochastic processes on spatio-temporal
data.

Keywords-Spatio-Temporal Process; Expectation Propaga-
tion; Student’s t Distribution.

I. INTRODUCTION

Predicting spatial and temporal data is an essential com-

ponent in many emerging applications in geographical infor-

mation systems, medical imaging, urban planning, economy

study, and climate forecasting. In the real world, most

physical, biological, or social processes involve some degree

of spatial and temporal variability [1]. It is suggested that

any application that requires dynamic and stochastic process

as a component should take spatial and temporal depen-

dencies into account [2]. In these processes, an efficient

and robust spatiotemporal prediction approach helps identify

the causalities due to environmental effects, and forecast

the impact of changes. Applications of such an approach

include predicting traffic of an unsensored road segment

using nearby traffic sensors, and estimating average income

using known samples in similar geographic locations.

There have been two paradigms for spatio-temporal pre-

diction, Kriging based and dynamical (mechanic or prob-

abilistic) specification based. The Kriging based paradig-

m basically extends spatial dimensions (d) with an ex-

tra time dimension and focuses on the modeling of the

variance-covariance structure between the observations in

the (d + 1)-dimensional space. The dynamic specification

based paradigm considers spatio-temporal processes through

a dynamical-statistical (or state space based) framework. In

this framework the observations in the current state are de-

pendent on its previous states through dynamic mechanical

(or probabilistic) relationships. Our work focuses on the dy-

namic statistical paradigm, which can be explicitly specified

based on the knowledge of the phenomenon under study. It

always leads to a valid variance-covariance structure, and

allows fast filtering, smoothing, and forecasting [3].

One emerging research challenge for spatio-temporal pre-

diction is to efficiently model massive spatio-temporal data

that have been collected by using advanced remote sensing

technologies. For example, NASA collects data on the order

of 100,000 observations per day from satellites. Big data

challenges from smartphone usages have recently attracted

a lot of research efforts [4]. Given the large data volume,

most traditional spatio-temporal statistical models fail to

process in either memory space or execution time, even in

supercomputing environments. Although recent progresses

have been made [5], the preceding works are still unable to

achieve near-real-time performance and thus not suitable for

processing massive streaming spatial data.

As the most recent advancement, [2] presents a spatio-

temporal random effects (STRE) model that reduces the

problem into a fixed dimension problem and makes it pos-

sible to do fast filtering, smoothing, and forecasting with a

linear order time complexity. The STRE model assumes that

1) the spatial dependence can be captured by a predefined

set of basis functions; 2) the temporal dependence can

be modeled by a latent first-order Gaussian autoregressive

process; and 3) the measurement error can be modeled by

a Gaussian distribution. These assumptions make the STRE

model mainly applicable to linear dynamic environments

However, the spatio-temporal dynamics of real appli-

cations are usually nonlinear, and some of the STRE’s

distribution assumptions are often violated. For example, the
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data may have a number of outliers, such as random hard-

ware failures in digital control systems [6], sensor faults in

aerospace applications [7], cochannel fading and interference

in wireless communications [4], and traffic incidents and

malfunctioning detectors in urban traffic networks [17]. This

paper presents a robust spatio-temporal prediction approach

for applications in nonlinear dynamic environments where

some of the STRE assumptions are violated.

In recent years, robust methods have received much

attention for a variety of learning problems(e.g., [8], [9],

[10], [11], [6], [12]). The majority of these methods can be

summarized using a probabilistic framework [8] in which the

measurement error is modeled by a heavy tailed distribution,

instead of the traditional Gaussian distribution. However,

employing heavy tailed distributions makes the prediction

process analytically intractable. Although stochastic simula-

tion methods have been applied to estimate an approximate

posterior distribution, for example via MCMC or particle

filtering [9], they are very computationally intensive. An

efficient expectation propagation algorithm [10] was pre-

sented for robust Gaussian process regression based on the

Student’s t distribution. Similar efforts include a variation-

al inference approach [11] for robust Student’s t mixture

clustering, a robust Kalman filter [6] based on the Huber

distribution, and a Kalman smoother [12] based on the

Laplace distribution.

This paper focuses on robust prediction in a probabilistic

framework. We propose an observation model for spatio-

temporal prediction based on Student’s t. Because of its

good robustness properties, the Student’s t can be altered

continuously from a very heavy tailed distribution to the

Gaussian model with the degrees of freedom parameter.

Further more, this work resolves the main challenge of the

student-t based model, which is the analytically intractable

inference of high dimensional latent variables. The main

contributions of our study can be summarized as follows.

• We formalize an innovative robust prediction model for

spatio-temporal data in a systematical framework;

• We approximate the robust prediction model such that

the high-dimensional latent variables can be separated

into groups that can be optimized iteratively.

• We present novel implementations of Expectation Prop-

agation (EP) in order to efficiently estimate the poste-

rior distributions of latent variables.

• We validate the robustness and the efficiency of the

proposed St-RSTP model compared with the regular

STRE model by an extensive simulation study and

experiments on two real data sets.

The rest of the paper is organized as follows. Prelimi-

naries on the formulation and inference algorithms of the

regular STRE model is reviewed in Section II. Section III

presents the robust spatio-temporal prediction model, St-

RSTP, followed by the detailed approximation prediction

techniques based on EP in Section IV. Simulation study and

evaluation of our proposed robust smoothing algorithm on

two real world data sets are illustrated in Section V. Finally,

we conclude our work in Section VI.

II. THEORETICAL BACKGROUNDS

This section reviews the Spatio-Temporal Random Effects

(STRE) model and STRE-based spatio-temporal prediction.

A. Spatio-Temporal Random Effects Model
The STRE model is a recently proposed statistical mod-

el for processing large spatio-temporal data in linear or-

der time complexity [2]. The STRE model is used to

model a spatial random process that evolves over time,

{Yt(s) ∈ � : s ∈ D ⊂ �2, t = 1, 2, · · ·}, where D is the s-

patial domain under study, and Yt(s) is the nonspatial

measurement (e.g., temperature) at location s and time t.
A discretized version of the process can be represented as

{Y1,Y2, · · · ,Yt,Yt+1, · · · }, (1)

where Yt = [Yt(s1,t), Yt(s2,t), · · · , Yt(smt,t)]
T . The sam-

ple locations {s1,t, s2,t, · · · , smt,t} can be different spatial

locations at different time t. Observations Zt and latent

observations Ytare given by the data process,

Zt = OtYt + εt, t = 1, 2, · · · , (2)

where Zt is an nt-dimenstional vector (nt ≤ mt), Ot is an

nt×mt incidence matrix, used to handle missing values that

are related to locations where no observations are available,

and εt = [εt(s1,t), · · · , εt(snt,t)]
T ∼ Nnt(0, σ

2
ε,tVε,t) is

a vector of white noise Gaussian processes, with Vε,t =
diag(vε,t(s1,t), · · · , vε,t(snt,t)). Particularly, var(εt(s)) =
σ2
ε,tv(s) > 0, σ2

ε,t is a parameter to be estimated, and

v(s) is known. The white noise assumption implies that

cov(εt(s), εu(r)) = 0, for t �= u and s �= r.

The vector Yt is given by the spatial process:

Yt = Xtβt + νt, t = 1, 2, · · · , (3)

where Xt = [xt(s1,t), · · · ,xt(smt,t)]
T , xt(si,t) ∈ �p, 1 ≤

i ≤ mt, represents a vector of covariates, and the coefficients

βt = (β1,t, · · · , βp,t)
T are general unknown. The random

process νt captures the small scale variations. For traditional

spatio-temporal Kalman filtering models, a large number of

parameters need to be estimated with high computational

costs due to the high data dimensionality during the filtering,

smoothing, and forecasting processes. As a key advantage

of the STRE model, it models the small scale variation νt
as a vector of spatial random effects (SRE) processes

νt = ST
t ηt + ξt, t = 1, 2, · · · , (4)

where St = [St(s1,t), · · · , St(smt,t)], St(si,t) =
[S1,t(si,t), · · · , Sr,t(si,t)]

T , 1 ≤ i ≤ mt, is a vector of

r predefined spatial basis functions, such as wavelet and

bisquare basis functions, and ηt is an r-dimensional zero-

mean Gaussian random vector with an r × r covaraince

matrix given by Kt. The first component in Equation (4)

denotes a smoothed small-scale variation at time t, captured

by the set of basis functions St.
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The second component in Equation (4) captures the micro-

scale variability similar to the nugget effect as defined in

geostatistics [2]. It is assumed that ξt ∼ Nmt(0, σ
2
ξ,tVξ,t),

Vξ,t = diag(vξ,t(s1,t), · · · , vξ,t(smt,t)), and vξ,t(·) de-

scribes the variance of the micro-scale variation and is

typically considered known. Note that the component ξt
is important, since it can be used to capture the extra

uncertainty due to the dimension reduction in replacing νt
by ST

t ηt. The coefficient vector ηt is assumed to follow a

vector-autoregressive process of order one,

ηt = Htηt−1 + ζt, t = 1, 2, · · · , (5)

where Ht refers to the so-called propagator matrix, ζt ∼
N (0,Ut) is an r-dimensional innovation vector, and Ut

is named as the innovation matrix. The initial state η0 ∼
Nr(0,K0) and K0 is in general unknown.

Combining Equations (2), (3), and (4), the (discretized)

data process can be represented as

Zt = Otμt +OtS
T
t ηt +Otξt + εt, t = 1, 2, · · · , (6)

where μt = Xtβt is deterministic and the other components

are stochastic.

B. STRE based Spatio-Temporal Prediction

Given a set of observations {Z1, · · · ,ZT }, the spatio-

temporal prediction problem is to predict the latent (or

de-noised) values {Y1, · · · ,Yt}. As discussed in Subsec-

tion II-A, the incidence matrix Ot allows for the specifi-

cation of missing observations, which makes it possible to

concurrently predict the latent Y values for both observed

and unobserved locations. This is a smoothing problem if

t < T ; and a filtering problem if t = T ; and a forecasting

problem if t > T . Readers are referred to [2] for the detailed

STRE based prediction equations.

III. PROBLEM FORMULATION

This section introduces the new Robust Spatio-Temporal

Prediction model based on Student’s t, St-RSTP, and de-

scribes the problem of estimating the posterior distributions

p(Yt|Z1:t) and p(Yt|Z1:T ) for spatial prediction.

A. Robust Spatio-Temporal Prediction Model

The Robust Spatio-Temporal Prediction model based on

Student-t (St-RSTP) considers Student’s t distribution to

model the measurement error, instead of the traditional

Gaussian distribution. Student’s t distribution has a heavier

tail than Gaussian distribution. The tail heaviness is con-

trolled by setting the degrees of freedom (ν). When the

degree of freedom approaches infinity, Student’s t distribu-

tion becomes equivalent to Gaussian distribution. Student’s

t distribution has been used in a number of statistical

models, and has been shown effective for a variety of robust

processes [1], [10].

We use the same symbols and definitions as in subsection

II-A. The St-RSTP model can be formalized as

Zt = OtYt + εt, (7)

Yt = Xtβt + ST
t ηt + ξt, (8)

ηt = Htηt−1 + ζt. (9)

As a key difference from the STRE model, the measurement

error εtn now follows a Student’s t distribution Student-
t(0, ν, σ) with the probability density function as

p(εtn) =
Γ( ν+1

2 )

Γ( ν2 )
(
1

πνσ
)

1
2 (1 +

ε2tn
νσ

)−
ν
2− 1

2 , (10)

where ν is the degrees of freedom and σ is the scale

parameter.

B. Problem Formulation for Robust Prediction
Given the observations {Z1, · · · ,ZT }, the predictive pro-

cess is to estimate the latent variables {Y1, · · · ,Yt} at

sampled and unsampled locations, where t = 1, 2, · · ·
The estimation of Y variables at unsampled locations is

realized by using the incidence matrix Ot in the St-RSTP

model, where Ot ∈ Rnt×mt , nt refers to the number of

observations at sampled locations, and mt − nt refers to

the number of unsampled locations that are of interest for

prediction.

The objective of this paper is to estimate the expecta-

tion and variance-covariance of the posterior distributions

p(Yt|Z1:T ), t = 1, 2, · · · , denoted as Yt|T and Σt|T , re-

spectively. Yt|T will be regarded as the prediction values,

and Σt|T will be applied to estimate confidence intervals.

Specifically, if t < T , the predictive process is called

smoothing; if t = T , the predictive process is called filtering;

and if t = T + k, k > 0, the predictive process is called

k-step forecasting.

According to the STRE model decomposition as shown

in Equation 6, we can first estimate the mean and variance-

covaraince matrix of the joint posterior p(ηt, ξt|Z1:T ). The

components Yt|T and Σt|T can then be estimated by linear

transformations. However, the total dimension of ηt and ξt
is “r+mt”. This high dimensionality makes the estimation

process computationally expensive even using advanced

convex optimization techniques.

IV. APPROXIMATE SPATIO-TEMPORAL PREDICTION

In this section, we first present an approximate St-RSTP

model, such that the posterior distributions of latent variables

{ηt, ξt}Tt=1 can be estimated iteratively. EP based approxi-

mate algorithms are then designed in order to efficiently

infer the posterior distributions p(ηt|Z1:T ) and p(ξt|Z1:T ).

A. Approximate St-RSTP Model
Let ηt|T ≡ E[p(ηt|Z1:T )], Pt|T ≡ V ar[p(ηt|Z1:T )],

ξt|T ≡ E[p(ξt|Z1:T )], and Rt|T ≡ V ar[p(ξt|Z1:T )]. It

follows that

Yt|T = Xtβt + ST
t ηt|T + ξt|T , .
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In order to efficiently estimate the variance-covariance

matrix Σt|T , we make the approximation as

Σt|T ≈ ST
t Pt|TSt +Rt|T . (11)

Based on the above strategy, the major task is to conduct

Gaussian approximations to p(ηt|Z1:T ) and p(ξt|Z1:T ):

p(ηt|Z1:T ) ∼G N (ηt|T ,Pt|T ) (12)

p(ξt|Z1:T ) ∼G N (ξt|T ,Rt|T ). (13)

A popular strategy is to calculate the maximum-a-

posterior (MAP) estimations of the above posteriors using

numerical optimization techniques (e.g., gradient decent, in-

terior point algorithms), and then calculate the corresponding

Hessian matrices at the MAP locations. However, there exist

no analytical forms of the posteriors

p(ηt|Z1:T ) =

∫
p(ξt, ηt|ZT )dξt, (14)

p(ξt|Z1:T ) =

∫
p(ξt, ηt|ZT )dηt, (15)

and the application of numerical optimizations is difficult,

because no analytical forms of gradient and Hessian matrix

can be calculated. The following presents several approxi-

mations to make the estimation of the posteriors tractable.

Phase I: Approximate Estimation of ηt|T and Pt|T
The St-RSTP model can be reformulated as follows

Zt = OtXtβt +OtS
T
t ηt +Otξt + εt, (16)

ηt = Htηt−1 + ζt (17)

The component ξtn captures a micro-scale variation and

is modeled by a white noise Gaussian process with mean

zero and variance var(ξ(s; t)) = σ2
ξv
′
t(s). The component

εtn is a Student’s t process with mean zero and variance

var(ε(s; t)) = σ2
εvt(s). An approximation is made as

ξ̃t = Otξt + εt, (18)

ξ̃tn ∼ Student-t(0, ν, σ̃). (19)

The approximate St-RSTP model can be reformulated as

Zt = OtXtβt +OtS
T
t ηt + ξ̃t, (20)

ηt = Htηt−1 + ζt. (21)

Figure 1 shows the graph model representation about the

statistical relationships between observation Zt and latent

variables ηt and ξt.

Figure 1: Approximate St-RSTP Graphic Model

Based on the above approximate St-RSTP model, the

subsequent subsection (IV-B) presents an efficient EP-based

algorithm to conduct Gaussian approximation of p(ηt|Z1:T ).

Phase II: Approximate Estimation of ξt|T and Rt|T
In order to estimate ξt|T and Rt|T , we need to first

conduct Gaussian approximation of the posterior p(ξt|Z1:t).
The joint posterior distribution

p(ξt, ηt|Z1:t) = p(ξt, ηt,Zt|Z1:t−1) (22)

= p(Zt|ηt, ξt)p(ξt|ηt)p(ηt|Z1:t−1).

Given p̂(ηt−1|Z1:t−1) ∼ N (ηt−1|t−1,Pt−1|t−1) estimat-

ed in Phase I, it follows that

p̂(ηt|Z1:t−1) ∼ N (ηt|t−1,Pt|t−1), (23)

where ηt|t−1 = Htηt−1|t−1,

Pt|t−1 = HtPt−1|t−1H
T
t +Ut.

The posterior p(ξt, ηt|Z1:t) can be approximated as

p̂(ξt, ηt|Z1:t) = p(Zt|ηt, ξt)p(ξt)p̂(ηt|Z1:t−1). (24)

Integrating out ηt, we obtain

p(ξt|Z1:t) =

∫
p(ξt, ηt|Zt)dηt

≈
∫

p(Zt|ηt, ξt)p(ξt)p̂(ηt|Z1:t−1)dηt

≈
∫

p̂(ξt, ηt|Z1:t)dηt. (25)

Notice that the components p(ξt) and p̂(ηt|Z1:t−1) are Gaus-

sian. By applying Gaussian approximation to p(Zt|ηt, ξt),
the posterior p̂(ξt, ηt|Z1:t) is hence approximated as Gaus-

sian as well, and the analytical form of the above integration

(25) can be obtained. An efficient EP-based algorithm is

presented in subsection IV-C.

Note that in Phase I and Phase II, it is required that t ≤ T .

That means, the results are only suitable for smoothing and

filtering. Given the filtering estimations ηt|T and Pt|T by

Phase I, the forecasting estimations ηt|T , Pt|T , ξt|T , and

Rt|T , where t = T + k and k > 0, can be obtained based

on the regular STRE model [2], because it is unnecessary

to consider outliers in future “observations”.

ηT+k|T =

(
T+k∏

i=T+1

Hi

)
ηt|T , (26)

PT+k|T =
T+k−1∑
i=T+1

⎧⎪⎨
⎪⎩
⎛
⎝ T+k∏

j=i+1

Hj

⎞
⎠Ui

⎛
⎝ T+k∏

j=i+1

Hj

⎞
⎠

T
⎫⎪⎬
⎪⎭+

(
T+k∏

i=T+1

Hi

)
PT |T

(
T+k∏

i=T+1

Hi

)T

+UT+k,

ξT+k|T = 0,RT+k|T = 0.

Theorem 1. If the degree-of-freedom parameter of the
Student’s t distribution used in the St-RSTP model is set
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to infinite, then the estimation results of p(ηt|Z1:T ) and
p(ξt|Z1:T ) by Phase I and II, as well as the prediction
results by Equations (10) and (11), are equivalent to the
exact estimation and prediction results of the standard STRE
model.

Proof: The proof is removed due to space limit.

The above theorem presents a pleasant theoretical prop-

erty of our proposed St-RSTP model. It shows that the

standard STRE is a special case of our robust model.

Figure 2: Factor Graph Presentation of St-RSTP

B. EP-Based Estimation of ηt|T and Pt|T

In order to apply EP to the estimation problem, we first

present the factor graph [13] representation in the framework

of dynamic Bayesian networks as shown in Figure 2. From

Figure 2, the joint distribution of latent variables and obser-

vations, forward and backward message passing components

α(·) and β(·) can be derived from literature [14], as showed

below:

p(η1:T ,Z1:T ) = p(η1)p(Z1|η1)
T∏

t=2

p(ηt|ηt−1)p(Zt|ηt),

αt(ηt) = p(Zt|ηt)
∫

p(ηt|ηt−1)αt−1(ηt−1)dηt−1,

βt−1(ηt−1) =

∫
p(ηt|ηt−1)p(Zt|ηt)βt(ηt)dηt. (27)

The posterior distribution of latent variable can be re-

formalized as the production of factor functions:

p(η1:T |Z1:T ) ∝
∏
t

Ωt(ηt−1, ηt), (28)

where each factor function is represented as

Ωt(ηt−1, ηt) := p(ηt|ηt−1)p(Zt|ηt),

and Ωt(η0, η1) := p(η1)p(Z1|η1), when t = 1.

Recall that p(Zt|ηt) follows a Student’s t distribution, the

estimation of Equation (27) is intractable. It can be further

approximated as the following factorized form

q(η) =
∏
t

qt(ηt−1, ηt) ∝
∏
t

Ω̂(ηt−1, ηt), (29)

where ˆ indicates an approximation of the corresponding

symbol.

Combining Equations (27) and (28), the smoothing latent

variable can be estimated by

p(ηt|Z1:T ) ≈ qt(ηt) ∝ α̂t(ηt)β̂t(ηt) (30)

p(ηt−1, ηt|Z1:T ) ≈ p̂t(ηt−1, ηt), (31)

∝ α̂t−1(ηt−1)p(ηt|ηt−1)p(Zt|ηt)β̂t(ηt)

= α̂t−1(ηt−1)Ωt(ηt−1, ηt)β̂t(ηt).

Furthermore, given that from the factorial form,

p̂t(ηt−1, ηt) = qt−1(ηt−1)qt(ηt), (32)

plugging Equations (29), (30), (31) into Equation (32) leads

to the simplified approximation form:

Ω̂t(ηt−1, ηt) = β̂t−1(ηt−1)α̂t(ηt). (33)

The EP algorithm refines the approximate posterior q(η)
iteratively by recomputing passing messages. As indicated

in Equation (33), in order to estimate the approximate

factor Ω̂new
t (ηt−1, ηt), we need to estimate β̂new

t−1 (ηt−1) and

α̂new
t (ηt). One-slice posterior distribution can be acquired

by integrating one latent variable from two-slice posterior

distribution. When we compute the one-slice posterior, the

corresponding message can be calculated by Equation (30).

Hence, by combining Equations (31) and (32), these two

messages can be obtained by following two steps: 1) approx-

imating p̂t(ηt−1, ηt) ∝ α̂t−1(ηt−1)p(ηt|ηt−1)p(Zt|ηt)β̂t(ηt)
as a Gaussian distribution by Laplace Approximation

p̂t(ηt−1, ηt) ≈LA N (ηt−1, ηt | μ,Σ), (34)

where μ and Σ match the first and second moments

of p̂t(ηt−1, ηt); 2) integrating out ηt−1 (or ηt) to obtain

α̂new
t (ηt) (or β̂new

t−1 (ηt−1)):

α̂new
t (ηt) ∝

∫ N (ηt−1, ηt | μ,Σ)dηt−1

β̂t(ηt)
, (35)

β̂new
t−1 (ηt−1) ∝

∫ N (ηt−1, ηt | μ,Σ)dηt
α̂t−1(ηt−1)

. (36)

The above strategy outputs the estimated messages α̂t(ηt)
and β̂t(ηt), t = 1, · · · , T , each of which follows a Gaussian

distribution, with known parameters. The posterior distribu-

tions of p(ηt|Z1:t), p(ηt|Z1:T ) can be estimated as

p̂(ηt|Z1:t) =
1

Z1:t
α̂t(ηt),

p̂(ηt|Z1:T ) =
1

Z1:T
α̂t(ηt)β̂t(ηt), (37)

where Z1:t and Z1:T are the normalization factors. The

mean and variance-covariance matrix ηt|T and Pt|T can be

estimated readily from (37).

C. EP-Based Estimation of ξt|T and Rt|T
As illustrated in the above Phase II, this subsection

focuses on the EP-based Gaussian approximation of the

posterior p(ξt|Z1:t):

p(ξt|Z1:t) ∼G N (ξt|t,Rt|t). (38)
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Based on the above Gaussian approximation, as well as the

Gaussian approximations p(ηt|Z1:t) ∼G N (ηt|t,Pt|t) and

p(ηt|Z1:T ) ∼G N (ηt|T ,Pt|T ) conducted in the subsection

IV-B, the parameters ξt|T and Rt|T can be conveniently

estimated by the regular STRE model as shown in [2].

The joint distribution p̂(ξt, ηt|Z1:t) comprises a product

of factors in the form

p̂(ξt, ηt|Z1:t) =

Nt∏
n=1

{p(Ztn|ηt, ξtn)p(ξtn)} p̂(ηt|Z1:t−1). (39)

We approximate p̂(ξt, ηt|Z1:t) as a product of factors

q(ξt, ηt) =

Nt∏
n=1

{
qn(ξtn, ηt|μ̂tn, Σ̂tn)p(ξtn)

}
p̂(ηt|Z1:t−1), (40)

where p(Ztn|ηt, ξtn) is approximated by the Gaussian func-

tion

qn(ξtn, ηt|μ̂tn, Σ̂tn) ∼ N (μ̂tn, Σ̂tn), (41)

and μ̂tn and Σ̂tn are unknown parameters to be estimated.

Notice that, given the estimated p̂(ηt|Z1:t−1), Equation (24)

indicates that the sets of variables {ξt, ηt} and {ξs, ηs} are

independent when t �= s. Different from the EP algorithm

in Section IV-B, which needs to propagate the messages

backward and forward to the variables at different time

stamps, the EP algorithm for estimating q̂(ξt, ηt) can be

conducted separately for different time stamps. The detailed

EP algorithm for estimating p(ξt, ηt|Z1:t) can be described

as follows:

1) Estimate the approximate factors p̂(ηt−1|Z1:t−1) by

the EP algorithm proposed in Section IV-B. Estimate

p̂(ηt|Z1:t−1) by Equation (23).

2) Initialize the factors qn(ξtn, ηt|μ̂tn, Σ̂tn), n =
1, · · · , Nt, by setting μ̂tn = [0] and

Σ̂tn =

∣∣∣∣ 1 −ST
tn

−Stn StnS
T
tn

∣∣∣∣σ2
ξ .

3) Until convergence (iterate on n = 1, · · · , Nt):

a) Remove the factor qn(ξtn, ηt|μ̂tn, Σ̂tn) from

q(ξt, ηt) by division

q\n(ξt, ηt) ∝ q(ξt, ηt)

qn(ξtn, ηt|μ̂tn, Σ̂tn)
. (42)

b) Estimate the new posterior qnew(ξt, ηt) by

matching the first and second moments of

q\n(ξt, ηt)p(Ztn|ηt, ξtn).
c) Update the new factor

qnew(ξtn, ηt|μ̂tn, Σ̂tn) =
qnew(ξt, ηt)

q\n(ξt, ηt)
. (43)

Evaluating the above EP algorithm, the number of re-

quired iterations is greater than Nt, which is the size of

locations at time stamp t. For each iteration, it needs

to evaluate the new posterior qnew(ξt, ηt) by setting the

first and second order moments of qnew(ξt, ηt) equal to

those of q\n(ξt, ηt)p(Ztn|ηt, ξtn). An efficient strategy is

to explore the special structure of the factorized forms (39)

and (40). The dependency between ξtn and {ξts, s �= n}
is realized only through ηt, and the joint distribution of

ηt and {ξts, s �= n} is Gaussian. Hence, we are able to

obtain the analytical form (q̃n(ξtn, ηt)) by marginalization

over {ξts, s �= n}. The factor q̃(ξtn, ηt) can be efficiently

approximated as a Gaussian form f̃(ξtn, ηt) by matching the

first and second order moments using iterative reweighted

least squares (IRLS) [15].

V. EXPERIMENTS

This section evaluates the effectiveness and efficiency of

our proposed St-RSTP prediction algorithms based on a

simulation study and comprehensive experiments on two real

data sets, including an Aerosol Optical Depth (AOD) data set

collected by NASA and a region-wide traffic volume (TV)

data set collected in the City of Bellevue, WA.

A. Experiment Design
Given the raw data, we first conducted a preprocess to

generate original observations Z1:T by cleaning the data

set, converting the observations into a close-to-symmetric

distribution, and selecting a study region. The second step

was to estimate model parameters based on the clean data

set by applying the EM estimation method proposed by [16].

The third step was to run the STRE smoothing on the clean

data set to obtain the set of smoothed values Ŷ1:T as the

ground truth for evaluation. The fourth step was to randomly

add isolated or region (cluster of) outliers into the clean data

to obtain the contaminated data set Z̃1:T (except for TV).

The fifth step was to apply the STRE prediction algorithm

and the proposed St-RSTP prediction algorithm to estimate

Y
(s)
1:T and Y

(sr)
1:T , respectively. The final step was to calculate

the mean absolute percentage error (MAPE) and root mean

squared error (RMSE) by comparing Y
(s)
1:T and Y

(sr)
1:T with

Y1:T .

The superscripts (sr) and (s) of MAPE and RMSE refer

to the St-RSTP processing and the STRE processing, respec-

tively. If MAPE(s) (or RMSE(s)) is larger than MAPE(sr)

(or RMSE(sr)), we can conclude that our proposed algorithm

is more robust than the STRE algorithm.

B. Simulation Study
This section presents a simulation study on the robustness

of the proposed St-RSTP prediction algorithm, compared

with that of the STRE algorithm. In this work, we con-

sidered the same simulation model as employed in recent

STRE related papers [2], [16], to generate spatio-temporal

simulation data.

The spatial domain was designed as one dimension and

had the observation locations, D = {s : s = 1, · · · , 256}.
The temporal domain had the observation timestamps t =
1, 2, · · · , 50. We assumed that the trend component μ(s; t)
was zero and simulated the processes Y (s; t) and Z(s; t)
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according to Equations (2) and (3). The small scale (au-

toregressive) process {ηt} was generated by the matrix

parameters H and U. The spatial basis functions S were

defined by 30 W-wavelets from the first four resolutions.

We considered two types of outliers, isolated outliers

and regional (cluster of) outliers. For isolated outliers, we

randomly picked locations and timestamps, and then shifted

the observation to a larger value 5. We generated cases with

5, 15, and 35 random outliers. For regional outliers, we

fixed the center of the region and set region sizes (number

of outliers) to 5, 15, and 35. The temporal dimension of

the region was fixed to a 6 units window. Note that, other

combinations of the time and spatial locations had also been

tested and similar patterns were observed.
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(a) t = 4, 5 regional outliers
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(b) t = 7, 35 regional outliers
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(c) t = 44, 35 isolated outliers

Figure 3: STRE vs. St-RSTP using simulation data

1) Simulation Results: We conducted both St-RSTP and

STRE smoothing, filtering, and forecasting in a variety

of simulated scenarios with isolated and regional outliers.

Several case studies are discussed as follows. Figure 3

illustrates the impacts of isolated and regional outliers on

the filtering algorithms at three different timestamps with

various number of outliers. Each sub-figure has four curves

that are related to the original observations Zt, the con-

taminated observations Z̃t, the filtered values Y(s) via the

regular STRE algorithm, and the filtered values Y(sr) via

our proposed St-RSTP algorithm, respectively. The X-axis

refers to location index, with totally 256 distinct locations.

The Y-axis denotes the Z values. The symbol t refers to

time stamp. As shown in the figures, with the increasing

number of outliers, the STRE curve was clearly distorted at

an increasing degree. On the contrary, our proposed robust

filtering algorithm demonstrated strong resilience to outlier

effects. Even in the situation of high rate contaminations

(35 isolated outliers, around 13% percentage in Figure 3(c)),

our proposed algorithm could still recover the latent random

variables Yt very well.

Figure 3 (a) and (b) illustrates the impacts of regional

outliers on the two filtering algorithms with different outlier

region size. When the outlier region size was small (5

adjacent outliers), our proposed robust filtering algorithm

performed very well, whereas the STRE filtering algorithm

was already misguided by the outliers and the filtered curve

segment around the outlier region was clearly distorted. On

the other hand, outside the outlier region, the filtered curve

generated by St-RSTP was almost identical to the filtered

curve generated from the STRE filtering algorithm. This

indicates that when there are no outliers, our algorithm

performs similarly as the regular STRE model, but when

outliers appeared, our algorithm tends to be more resilient

to the outliers.

However, we also observed that large region outliers have

significant impacts on both the STRE and St-RSTP, in Figure

3 (b). When we increased the region size to 35, both St-

RSTP and STRE filtering algorithms were misguided and

the filtered values around the outlier region were close to

outlier values. This could be interpreted by the STRE model

assumptions (See Section II-A) that define spatio-temporal

dependencies between Z(si;u) and Z(sj ; t), with i �= j or

u �= t. Particularly, the STRE model assumes a Markov

Gaussian process to model spatial dependencies between

Z(si; t) and Z(sj ; t), i �= j. Observations will have a high

spatial correlation if they are spatially close. For temporal

dependency, the STRE model assumes a first order Markov

process. That is, except for the dependence on the other

locations at the current time t, Z(s; t) is also dependent

on its previous time stamp observations Zt−1. To con-

clude, the STRE model considers spatial Gaussian process,

log-1 temporal autocorrelation, and white noise (Gaussian

distribution) to model the whole data variation. Spatio-

temporal outliers can be interpreted as the observations that

have low correlations with their spatio-temporal neighbors

and can not be regarded as the normal measurement error

(white noise). When a data set has outliers, for the standard

STRE model the additional variations due to outliers will

be captured by distorting the spatio-temporal dependencies.

The white noise component can not handle large deviations

due to the non-heavy tail distribution characteristics. This

explains the distorted STRE curves as shown in Figures 3. A

specific spatio-temporal autocorrelation pattern is associated

with certain degree of sharpness of the resulting filtered

curves. In comparison, our St-RSTP model uses Student’s
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Table I: Model Robustness Comparison using Different Simulation Settings

Outlier Size MAPE(sr) MAPE(s) RMSE(sr) RMSE(s) MAPE(sr) MAPE(s) RMSE(sr) RMSE(s)

Type (O) (O) (O) (O) (R) (R) (R) (R)

5 1.2554 2.1253 0.3534 0.7105 6.5712 10.656 0.2468 0.3341
Isolated 15 1.3436 4.8988 0.3313 0.8400 6.6204 20.061 0.2466 0.3575
Outliers 35 1.6939 7.7223 0.3497 1.2457 6.7262 11.337 0.2498 0.4085

Regional 5 2.1965 14.047 0.5454 3.4465 6.6423 11.050 0.2536 0.3938
Outliers 35 132.14 138.94 4.5852 4.7571 7.2288 10.824 0.2537 0.3301

Table II: Model Robustness Comparison use the AOD Data

MAPE MAPE MAPE RMSE RMSE RMSE
(O) (R) (A) (O) (R) (A)

STRE 3.3475 3.9940 3.9682 0.4309 0.3799 0.3821
St-RSTP 2.2176 2.1619 2.1641 0.3322 0.3244 0.3247

improve 33.8% 45.9% 45.5% 22.9% 14.6% 15.0%

t distributions to model white noise (or the measurement

error). When outliers appear, our St-RSTP model directly

captures the additional large variations due to outliers as

white noise. When the outlier region becomes large, how-

ever, it becomes possible to directly use the spatio-temporal

autocorrelations to capture the outlier variations. Intuitively,

we are able to use a smooth curve to fit the observations well.

This potentially explains why the St-RSTP model could not

recover the true Y values around the outlier region, when

the outlier region size was large.

Table I illustrates the robustness of the filtering algorithms

based on different settings of outliers. In this table, (O)
refers to outliers, and (R) refers to non-outliers. It can

be observed that St-RSTP algorithm always outperformed

the STRE filtering algorithm in all the scenarios we have

experimented. Although we observed the similar results for

1-step forecasting, we only present the forecasting results

for the real data sets due to the space limit.

C. Aerosol Optical Depth Data Experiments

The AOD data set was collected by NASA’s Terra satellite

with MISR (Multi-angle Imaging Spectro Radiometer) on

board. Because the AOD data are heavily right-skewed, we

applied log transformation log(AOD) to convert the 40-

day level-3 data (with spatial resolution (0.5◦×0.5◦) and

temporal resolution (1 day)) into a close-to symmetric dis-

tribution. Each time unit is defined as an exclusive eight-day

period. We focus on the data collected in a rectangle region

D between longitudes 14◦ and 46◦ and between latitudes

14◦ and 30◦, as shown in Figure 4(a). The number of level-

3 observations (pixels) in the region is 32 × 64 = 2048.

Other geographical regions had also been studied and similar

patterns were obtained.

In order to evaluate the robustness of different filtering

and forecasting algorithms on the AOD data, we randomly

set 5% locations in every timestamp and replaced the obser-

vations with value 5, which is outside the normal range of

the observations (−0.0843± 0.4958).

A similar STRE model specification as used in [2] was

applied in this simulation. We detrended the observations

Zt by the residuals Zt −Xtβ to Zt. After this process, the

observations Z no longer had trend components and could be

called as detrended observations. The unknown parameters

σ2
ε , K1, and {Ht,Ut}, t = 1, · · · , 5, in basis functions

S were estimated by using the EM estimation algorithm

proposed by [16].

Figures 4 illustrate the robustness of our St-RSTP filtering

and forecasting algorithms compared with that of the regular

STRE algorithms at timestamp t = 5. Figure 4(a) shows our

study region, which was within the white box on the map.

Figure 4(b) shows the heatmap of the detrended observations

Zt=5. Figure 4(c) displays the contaminated observations

Z̃t=5, in which we injected an red-color outlier dots in the

image. Figure 4(d) shows the STRE filtering results on the

clean detrended observations Zt=5, and Figure 4(e) displays

the STRE filtering results on the contaminated observations

Z̃t=5. Figure 4(f) shows the St-RSTP filtering results on

Z̃t=5. By comparing Figure 4(e) and (f) with the original

filtering results shown in Figure 4(d), we can observe that

the regular STRE filtering results were clearly distorted by

the region outliers round the neighborhood area. However,

our St-RSTP filtering results in Figure 4(f) were still very

close to the original filtering results in Figure 4(e). Similarly,

the 1-step forecasting results in Figure 4(g) and 4(h) showed

that the St-RSTP produced more accurate prediction than the

STRE.

To demonstrate the results in a more comprehensive way,

Table II presents the average results on all the five time units,

where (O) refers to outlier region, (R) refers to non-outlier

region, and (A) refers to all the region. It can be clearly

observed that the St-RSTP achieved much lower MAPE and

RMSE than the STRE filtering algorithm in both outlier and

nonoutlier regions.

D. Case Study on Traffic Volume Data
The traffic volume data were collected in the City of

Bellevue, WA. The data was managed by the Smart Trans-

portation Application and Research Laboratory (STAR Lab)

at the University of Washington, Seattle. In this set of exper-

iments, 17 detectors located in NE 8th Ave was selected as

the test route because it’s a major city corridor, with annual

average weekday traffic of 37,700 (veh/day). Weekday data

(Tuesday, Wednesday and Thursday) collected from first two

weeks of July, 2007 were used for training and the last two
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(b) Detrended Observation Zt=5
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(c) Contaminated Z̃t=5
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(d) STRE on Zt=5
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(e) STRE Filter on Z̃t=5
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(f) St-RSTP Filter on Z̃t=5
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(g) STRE Forecast on Z̃t=5
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(h) St-RSTP Forecast on Z̃t=5

Figure 4: STRE vs. St-RSTP on AOD data sets at time unit 5

weeks of June, 2007 were used for cross validation. The

verification data were collected during the first week of July

in 2008. In this study, all data were aggregated into 5-minute

intervals to reduce the effect of random noise. In total, the

detector data collected on on 17 detectors within 5376 time

intervals were evaluated.
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(a) t = 5th day, detector #3
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(b) t = 5th day, detector #16

Figure 5: STRE vs. St-RSTP using the TV data on 5th day

Figure 5 shows the comparison results on two detectors

with different real-world outlier rates. The X-axis refers to

the 192 timestamps from 5 am to 9 pm, and the Y-axis

refers to the traffic volume, aggregated at 5 minute intervals.

Figure 5(a) shows the traffic volume from detector #3 with

one significant spike reached 1900 around 9 am, which was

probably caused by malfunctioning. On this detector, the

STRE filtering algorithm had a spike over 500 triggered by

the outlier, and its 1-step forecasting had a even higher spike

right after the real one. On the other hand, the St-RSTP

smoothed the spike to around 300, which is closer to their

spatial neighbors. The St-RSTP 1-step prediction produced

the volumes very similar to its smoothed curve. Figure 5(b)

shows the results on detector 16 with vibrating volumes

throughout the day. Because this detector was located close

to detector #3 on the same route, the outlier on detector #3
affected the STRE process on detector #16. As can be ob-

served from the figure, the STRE approach had a significant

spike on the filtering curve at exactly the same time when

the outlier appeared on detector #3; and a higher spike on

the forecasting curve right after the outlier appeared. On the

contrary, although the St-RSTP did filtering and forecasting

by considering spatial and temporal neighbors as well, its

process successfully resisted the impact from the spatially

neighboring outlier. Besides that, one can also notice that the

St-RSTP handled the vibrations on the original volume more

smoothly than the STRE. More specifically, the St-RSTP

forecasting gave smoother volumes than its filtering. This

suggested that both St-RSTP filtering and forecasting are

robust on the temporal domain. These patterns are consistent

with what we observed from the simulation study and the

AOD results.

E. Time Cost

Table III presents the execution time comparisons between

our St-RSTP model and regular STRE model. The com-

parisons are under Windows 7 Professional 64-bit operat-

ing system, Intel core i7-Q740, 1.73GHz (CPU), 8.00 GB

(RAM). We compare all the scenarios in simulation data

and the whole set in AOD data. The result shows that the

St-RSTP can reach ten times in execution time comparing

to that of STRE algorithms under all tested simulation data

scenarios. But in the AOD dataset, St-RSTP outperformed
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the regular STRE algorithms in the all 5 time units. Our

St-RSTP algorithm estimated small-scale and micro-scale

variation separately. The estimation went through all the

timestamps one by one, so it would cost less time and

outperform STRE in a dataset with fewer timestamps.

Table III: Comparison of Time Cost using the Simulated and

AOD Data

Dataset Outliers (#) STRE (Sec) St-RSTP (Sec)

S
im

u
la

ti
o

n
D

at
a

Isolated
Outliers

5 2.95 29.10
15 3.03 29.19
35 3.14 29.64

Regional
Outliers

5 2.72 28.28
15 2.87 28.54
35 2.88 28.28

AOD Data 5% 69.07 26.58

Note: The simulated data has 256 locations and 50 time units. The AOD

data has 2048 locations and 5 time units.

On the other hand, time costs of St-RSTP and STRE on

the simulation data with various location sizes are illustrated

in Figure 6, where the X-axis shows the number of locations

in log scale, and the Y-axis represents the execution time

in seconds. As can be clearly observed, both St-RSTP

and STRE had increased time costs when the number of

locations grew up. Although the St-RSTP took longer to

execute when the number of locations changed from 32 to

1024, the St-RSTP has shown better scalability than the

STRE as the time differences reduced from tens of times

to about 30%.
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Figure 6: Time Cost vs. Number of Locations

VI. CONCLUSION

This paper proposes a robust and effective design of

spatio-temporal prediction based on Student’s t distribution,

St-RSTP. This prediction model inherits the ability of pro-

cessing large scale spatio-temporal data with linear time

complexity from STRE, and provides enhanced tolerance to

outliers or other small departures. An approximate inference

approach in the framework of Expectation Propagation is

proposed to support the analytical intractable inference of

Student’s t model in near linear time. The robustness and the

efficiency of our Student-t based prediction model have been

demonstrated in extensive experiments evaluations based on

both simulation and real-life data sets. The proposed ap-

proach provides critical functionality for stochastic processes

on spatio-temporal data.
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