
Janus: Optimal Flash Provisioning for Cloud Storage Workloads

Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji
François Labelle, Nate Coehlo, Xudong Shi, C. Eric Schrock

{calbrecht,aamerchant,mstokely}@google.com,mhwaliji@gmail.com
{flab,natec,xdshi,eschrock}@google.com

Google, Inc.

Abstract
Janus is a system for partitioning the flash storage tier
between workloads in a cloud-scale distributed file sys-
tem with two tiers, flash storage and disk. The file system
stores newly created files in the flash tier and moves them
to the disk tier using either a First-In-First-Out (FIFO)
policy or a Least-Recently-Used (LRU) policy, subject to
per-workload allocations. Janus constructs compact met-
rics of the cacheability of the different workloads, using
sampled distributed traces because of the large scale of
the system. From these metrics, we formulate and solve
an optimization problem to determine the flash allocation
to workloads that maximizes the total reads sent to the
flash tier, subject to operator-set priorities and bounds on
flash write rates. Using measurements from production
workloads in multiple data centers using these recom-
mendations, as well as traces of other production work-
loads, we show that the resulting allocation improves the
flash hit rate by 47–76% compared to a unified tier shared
by all workloads. Based on these results and an analysis
of several thousand production workloads, we conclude
that flash storage is a cost-effective complement to disks
in data centers.

1 Introduction

Disks are slow, and not getting much faster, even as their
capacities grow: the random I/O operations possible per
gigabyte stored on disk continues to decline. We can
compensate for this by adding flash storage, which sup-
ports a much higher I/O rate per byte of storage capacity.
Since flash is expensive per byte compared to disk, it is
best to provision a relatively small amount of flash to
store the most frequently accessed data.

Storage needs in a large cloud environment are of-
ten highly varied between different users and workloads
[15, 23]. Hence, distributing the available flash capacity
uniformly between the workloads is not ideal from either

a performance or a cost perspective. Instead, we seek
to leverage the differences between the competing users
and workloads to optimize the provisioning of flash.

Our system, Janus, provides flash provisioning and al-
location recommendations for both individual users and
system administrators of large cloud data centers, where
many users share the resources. Janus uses sparse traces,
such as Dapper traces [22], to build a compact charac-
terization of how effective flash storage is for different
workloads. Where flash provisioning decisions are made
by individual users, this characterization can be used to
determine how much flash storage is cost-effective to
purchase. For the case where resources are provisioned
and allocated centrally by a system operator, we set up
an optimization problem to partition the available flash
between workloads so as to maximize the overall reads
from flash and show how to solve it efficiently.

Janus recommendations are used by several produc-
tion workloads in our distributed file system, Colos-
sus [17]. We provide evaluations of the effectiveness
of the recommendations from measurements on some of
these workloads, and additional evaluations using traces
of other production workloads. Our workload character-
izations show that most I/O accesses are to recently cre-
ated files. Based on this observation, files are placed in
the flash tier upon creation and moved to the disk tier us-
ing FIFO or LRU eviction policies. Our results show that
the recommendations allow 28% of read operations to be
served from flash by placing 1% of our data on flash.

The three main contributions of this paper are:
• A characterization of storage usage patterns in a

large private cloud focusing on the age of data
stored and I/O rates to recently written data (§ 4).
• An optimization problem formulation for flash allo-

cation to groups of files to maximize read rates of-
floaded to flash weighted by priorities and bounded
by maximum flash write rates (§ 6).
• Experimental results from an implementation for

the Colossus file system (§ 8).



2 Related Work

Several types of multi-tier storage systems [16] have
been developed for memory, solid state drives, disk,
and tape. These include Hierarchical Storage Manage-
ment (HSM) [7, 12], multi-tier stores [24], multi-tier file
systems [2], hybrid disk/flash storage [19], and extent-
based enterprise volume management [24, 13]. Most
include automated methods for migrating data between
tiers based on I/O activity levels, performance require-
ments set by administrators, or explicit rules defined by
users or administrators. However, none of these have fo-
cused on a distributed, cloud-scale deployment, which
adds issues of provisioning policies and workload moni-
toring compatible with distributed management.

Several storage design tools, such as Minerva [3] and
DAD [4], advocate principled, automated approaches to
choose appropriate storage parameters for disk arrays
based on workloads and desired availability characteris-
tics. However, these tools typically provide only coarse-
grained recommendations about RAID levels for storage
volumes, unlike the data placement decisions for differ-
ent files in a multi-tiered cloud storage environment de-
scribed in this paper.

Studies on the distributed file system in Sprite [5] and
the local file system in 4.2 BSD [20] showed the utility of
characterizing user activity, access patterns, and file life-
times when evaluating caching strategies. Blaze [6] an-
alyzed access patterns affecting caching in a distributed
file system using traces of I/O activity obtained by mon-
itoring storage related remote procedure calls (RPCs).
We similarly monitor storage RPCs in our distributed file
system, but we also needed to use sampling and other sta-
tistical techniques due to the system scale.

TIP [21] used explicit hints of future I/O accesses pro-
vided by the application programmer to determine which
data to prefetch and when. Janus does not rely on the ex-
plicit programmer action of adding hints to the API us-
age of the system. Instead, we predict the cacheability of
different user workloads automatically from online mea-
surements of past usage. Kroeger [14] predicts file access
patterns in the context of prefetching at the Linux kernel
level by using the sequence of past accesses; however, it
is not clear how it could be extended to the distributed
case.

Our approach is most closely related to the work of
Narayanan et al. [18], which analyzed several enterprise
workload traces to evaluate the economic feasibility of
replacing disks with flash storage. We focus on a larger
cloud storage environment, develop an algorithm for
making good allocation choices between different work-
loads, and reach significantly different conclusions about
the effectiveness and economics of using flash in this
manner.

3 System Description

Janus provides flash storage allocation recommendations
for workloads in a distributed file system, such as Colos-
sus, in a large private cloud data center. The underly-
ing storage is a mix of disk and flash storage on distinct
chunkservers, structured as separate tiers. Upon creation,
files may be placed in the flash tier, and later moved to
disk using a FIFO or LRU policy. We use this insertion
on write mechanism rather than the insertion on read
used in most caches because it is more suitable for our
system. The distributed nature of file systems like GFS
and Colossus makes insertion on read policies more ex-
pensive than insertion on write for some metrics we in-
tend to optimize, in particular the volume of read activity.
Because data access occurs directly between chunkserver
nodes and clients, and not every chunkserver node con-
tains flash capacity, an insertion on read policy that does
not rely on the client for write back must perform an ad-
ditional read in order to populate the data into flash stor-
age. Additionally, the write back into flash storage can
not be assumed to be instantaneous as the operation re-
quires reading data from disk, transferring across a local
network link, and finally a write into the flash media.

Many users and applications may use this system, ei-
ther directly, or through higher level storage components
such as Bigtable [8]. The flash tier can be partitioned
between workloads. The main scenario we consider is
where the system operator has a fixed amount of total
flash available in the system, and wants to maximize the
fraction of reads offloaded to flash storage; however, in
some cases, it may be preferable to offload high-priority
workloads.

Workloads can correspond to users, applications, or
specified groups of files. For example, an application
may have separate logging, data, and metadata compo-
nents, and these could be different groups. In structured
data, a table or a set of columns may be a group. Exactly
how the workloads are formed is outside the scope of this
paper; we just assume that these groupings exist, perhaps
manually created. We may associate a priority weight
with each workload; the higher the priority weight, the
more important it is to accommodate its reads from flash
storage. The precise mechanism for choosing workload
weights is again outside the scope of this paper, but for
example, the administrator could assign different weights
to different workload types. Our goal is to determine au-
tomatically how to divide the available flash between the
workloads to optimize the reads from flash.

The allocation recommendations are made by an of-
fline optimization solver that runs periodically to adjust
to changes in the workload behaviors and the available
flash storage. A key input to the solver is a compact
representation of both the age of the data stored in each

2



0 5000 10000 15000

1 sec

1 min

1 hour

1 day

30 days
1 year

Job Number (sorted by y−axis)

M
ea

n 
A

ge
of

 B
yt

es
 R

ea
d 

(lo
g)

Figure 1: Mean age of bytes read differs significantly by user.

workload group, and the read rate of the data by age.
These are obtained by scanning the file system metadata
and sampled traces of I/O activity.

The operation of Janus can be broken into three steps:
• Collection of input data about the age of bytes

stored and age of data accessed for different
workloads to generate a characterization of how
cacheable each workload is (§ 4).
• Solving an optimization problem to allocate flash

amongst the workloads (§ 6).
• Coordination with the distributed file system to

place data from different workloads on flash us-
ing the computed write probabilities and flash sizes
from the solver (§ 8).

4 Workload Characterization

Storage in our data centers is shared between thousands
of users and applications. Applications include content
indexing, advertisement serving, Gmail, video process-
ing, as well as smaller applications, such as MapReduce
jobs owned by individual users. A large application may
have many component jobs. The workload characteris-
tics and demands of jobs in data centers are typically
highly varied between users and jobs. Figure 1 shows the
variation of mean read age over different jobs in our data
centers. All read ages are well represented: there are jobs
accessing very young (1 minute old) to very old (1 year
old) data. However, different jobs also have very differ-
ent read hotness, as shown in Figure 4, so we cannot con-
clude that the aggregate reads are evenly distributed over
data of different ages. Instead, we need to define a metric
that lets us compare how many read operations would be
served by flash storage for a given flash allocation to that
workload.

4.1 Cacheability Functions

The cacheability function (which we define more for-
mally below) tells us the rate of read hits we are likely
to get for a workload if we allocate it a given amount of
flash. To compute this for FIFO eviction, we need two

1m 10m 1h 6h 1d 7d 30d 1y

0

4PiB

8PiB

12PiB

C
um

. R
ea

d 
R

at
e

C
um

. B
yt

es
 S

to
re

d

Age (log)

0

0.2M/s

0.4M/s

0.6M/s

0.8M/s

1.0M/s
Bytes Stored
Read Operations

Figure 2: Cumulative distribution function of the bytes stored,
and read operations sorted by the (FIFO) age of the data for a
particular workload. These CDFs are a graphical representation
of the histograms collected as inputs to the cacheability curves,
which are different for each user and used in the optimization
formulation. 50% of the data stored by this particular user is
less than 1 week old, but that corresponds to over 90% of the
read activity.

inputs for each workload: how much data there is of a
given age, and how many reads there are to files of a
given age. For LRU eviction, the corresponding two in-
puts are the amount of data with a given temporal locality
and the rate of reads to files with that temporal locality.

We define two age metrics: FIFO age and LRU age,
which are used with the corresponding eviction policies
(although we will just say “age” where the disambigua-
tion is not needed). The FIFO age of a file (and of all
the data in the file) is the time since the file was created.
The LRU age of a file, which is a measure of the tempo-
ral locality of its reads, is approximately the maximum
time gap between reads to the file since it was created
(see Section 8.7 for a precise definition).

Obtaining the distribution of FIFO age is straightfor-
ward: we scan the file system metadata, which includes
the create time of each file, to build a histogram of the
FIFO age of bytes stored for each group. To build a his-
togram of the read rates of data by FIFO age, we need to
look at the read accesses, which we obtain from traces.
Since the read rate in the data centers is enormous, it is
not practical to consider every read to the data in each
workload. Instead, we sample the reads from every job
using Dapper [22, 9], an always-on system for distributed
tracing and performance analysis. Dapper samples a
fraction of all RPC traffic and, by looking at the age of
the requested data at the time of each RPC, we can popu-
late a second histogram of the number of read operations
binned by age of the data read. Crucially, each of these
two histograms has the same bucket boundaries for data
age, which later lets us join the histograms.

Computing the corresponding histograms for LRU age
is similar, except that computing the LRU age requires
the time-gaps between read operations to a file. Dapper
traces do not suffice in this case, since not every I/O to

3



0k/s

200k/s

400k/s

600k/s

800k/s

0PiB 2PiB 4PiB
Data Sorted by Age

R
ea

d 
O

ps

Figure 3: The number of read operations for a given amount of
the youngest data (by FIFO age) for a particular user.

a file is captured. We built instead a distributed tracing
mechanism that samples based on the file identifier and
captures every I/O for the files so selected.

The two input histograms of data age and read age for
a specific workload can then be combined to construct a
cacheability function.
Definition (Cacheability Function): For a workload the
cacheability function φ maps the amount of flash allo-
cated to the workload to the rate of reads absorbed by
the flash storage. In particular, φ(x) gives the number of
read operations that go to the youngest x bytes of data.

Figure 3 shows an example of a cacheability function
computed by joining the histograms of read rate and data
size by age in Figure 2. Joining the histograms is simple
because the age bins are the same. From the histograms
for a specified workload we derive the cumulative func-
tion f giving the amount of data younger than a certain
age, and the cumulative function g giving the read oper-
ations to files that are younger. Essentially, for each flash
allocation x, we can look up the age f−1(x) of the files
that can be stored (assuming the youngest are stored) and
then look up the rate of read hits for files of that age or
younger:

φ(x) = (g ◦ f−1)(x) = g(f−1(x))

We compute the cacheability function by linear in-
terpolation between the bins, and hence the function is
piecewise linear, a fact we later use in the optimization.
Assuming that these distributions are stationary, the com-
position gives us the read hit rate for the flash allocation.
Also, because of the way we separately defined file age
for FIFO and LRU eviction, this method works in both
cases.

5 Economics and Provisioning

Narayanan et al. [18] argued that replacing disk with
flash storage was not cost-effective. Prices for flash have
fallen considerably since then, but has this conclusion

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

IO
P

S

●
●

1 GiB 1 TiB 1 PiB

1

10

100

1K

10K

100K

1M

2008−era IOPS/GiB Break−even Line for Flash
Current IOPS/GiB Break−even Line for Flash

Bytes Stored

Figure 4: Peak IOPS and capacity requirements for user work-
loads in a shared data center. IOPS is the 95th percentile
over 10 minute intervals. Workloads above the break-even line
would be cost-effective to store entirely on flash. The two filled
red dots are for the workloads in Table 1, and come from other
data centers. The lower dot is for the workload in Figure 3.

changed? To analyze this, following Narayanan, we find
the break-even point, which is the IOPS/GiB threshold
determining whether a workload would be cheaper on
flash storage or on disk. This threshold can be derived
from the IOPS/$ of disk, Id, and the GiB/$ of flash,
Gf , since a workload with I IOPS and G GiB will cost
G/Gf on flash and at least I/Id on disk (more for cold
data). Therefore, workloads with IOPS/GiB greater than
Id/Gf are better served from flash, and by using a disk
with high Id for this cutoff, we are being conservative in
recommending workloads to go entirely on flash.

For our example IOPS/$ efficient retail drive, we use
the Seagate Savvio 10K.3, which costs around $100. The
disk specifications [1] indicate an IOPS capacity around
150 ((seek time+avg latency)−1), or 1.5 IOPS per dollar
for disk. On the other hand, recent news reports [10]
indicate that we can get about 1 GiB of flash per dollar;
together these give a break even point of 1.5 IOPS per
GiB, which is much smaller than the 2008 value ≈ 60.
As displayed in Figure 4, we find that, at least for some
workloads, it is cost-effective to place all data in flash.
Even for other workloads close to the break-even point,
using flash may be justified by the resulting improvement
in latency.

In addition, many workloads could benefit from
putting their youngest data on flash using Janus. We now
consider how much flash is cost-effective for an individ-
ual workload. For a workload with read operations rate
rater, write operations rate ratew, capacity size c, and

4



Workload 1 2
Data size (PiB) 5.2 6.1
Access rate (k ops/sec) 1172 2214
Janus Savings (%) 29 12
Janus Flash (%) 0.42 2.1

Table 1: Storage demands and savings from a price optimiza-
tion using Janus, which correspond to solid red dots in Figure
4. The savings is over the best all-disk or all-flash solution. The
flash % is the percentage of the user data in flash.

cacheability function φ(), a disk (IOPS, GiBdisk) de-
mand of (rater + ratew, d), could be replaced with a
disk + flash (IOPSdisk, GiBdisk, GiBflash) demand of

(rater + ratew − φ(x), d− x, x)

To determine the amount of flash, x, that a user should
purchase, and their benefit from using the system, we
impose a pricing structure, then have each user purchase
flash to minimize costs. We avoid pricing complica-
tions arising from the balance of cold and hot data in
a shared storage system, and put ourselves in the IOPS
constrained framework where we sell disk based entirely
on IOPS, so that cost is determined by

cost(x) =
(rater + ratew − φ(x))

Id
+

x

Gf
(1)

and we note that the optimization of cost is simplified
by the fact that φ is piecewise linear between histogram
buckets.

In Table 1 we consider this optimization for some
workloads and display the price savings, along with the
percentage of data that goes on flash, in the optimal con-
figuration. We note that while workload 2 is hotter on
average, workload 1 gets a greater benefit from a smaller
amount of flash because of its steep cacheability curve
(Figure 3).

6 Optimizing the Flash Allocation for
Workloads

We now describe how we determine the best flash alloca-
tion for each workload, given the cacheability functions
derived in Section 4. Specifically, we seek to maximize
the aggregate rate of read operations served from flash
subject to a bound on the total available flash. The work-
loads may have different priority weights, in which case
we maximize the aggregate weighted rate of reads from
flash.

We assume that the cacheability functions are piece-
wise linear and concave. As mentioned previously, the
piecewise linear assumption always holds since we com-
pute the function by linearly interpolating between a fi-
nite number of points (corresponding to the bins of the

histogram from which we derive it). The concavity as-
sumption is equivalent to assuming that the read rates
for each workload’s data decrease monotonically with in-
creasing data age. This assumption holds usually, but not
always. We will show in the next section how to relax the
assumption where it matters.

Weighted Max Reads Flash Allocation Problem
Instance:
• A set of workloads; for each workload i is given the

total data di, the cacheability function as a piece-
wise linear function φi : [0, di]→ R, and a priority
weight ρi.
• A bound on the total flash capacity F .

Task:
Find for each workload i the allocated flash capac-
ity xi, 0 ≤ xi ≤ di, maximizing the total priority
weighted flash read rate

∑
i ρi φi(xi), and subject to

the constraint of the total flash capacity
∑
i xi ≤ F .

Let the segments of the piecewise linear function ρi φi
be ai,j + bi,j x for j = 1, . . . , ni. Since φi is concave,
ρi φi can be expressed as the minimum of the functions
corresponding to its linear segments:

ρi φi(x) = min
1≤j≤ni

{ai,j + bi,j x}

By replacing ρi φi(x) with the variable yi, we transform
the task into a linear program:

max
∑
i

yi

s.t. yi ≤ ai,j + bi,j xi for each workload i
and each segment j∑

i

xi ≤ F

0 ≤ xi ≤ di for each workload i

(2)

This optimization problem can be solved with an LP
solver. We solve it directly as explained at the end of the
next section.

7 Optimization with Bounded Write Rates

Limiting flash write rate is important to avoid flash wear
out and also reduces the impact of flash writes (which are
slow) on read latencies. We now describe how to allocate
flash so as to maximize the reads from flash while limit-
ing the write rate to flash. We also show how to approxi-
mately relax the concavity assumption on the cacheabil-
ity function. The cacheability function for a workload
may be non-concave if the read rate increases some time
after it is created, for example, if there is a workload
that begins processing logs with some delay after they
are created.

5



30

15

0

20

10

30

Age
0

10

20

30

Total
read rate

30

15

45

Flash read
rate: 45

Flash read
rate: 60

Flash Allocation A
Write probability: 1

Flash Allocation B
Write probability: 2/3

Total flash size: 2

data in flash

Figure 5: Example for non-concave cacheability and fractional
write probability: Data blocks and read rates of a workload for
different age ranges are shown at steady state. The workload
has one block of data with age between 0 and 10 and a read
rate of 30, a second block of data with age between 10 and 20
and a read rate of 15, and a third block of data with age between
20 and 30 and a read rate of 45. Storing all data younger than
age 20 in flash (highlighted) gives a hit rate of 45 (left). With
a write probability of 2/3, we place less new data in the same
flash but keep it longer, until age 30 (right). This captures the
higher read rate for data between ages 20 and 30, for a total
flash hit rate of 90 * 2/3 = 60. The write rate to flash also
decreases by 1/3.

We only consider insertion into flash upon write, so
that the write rates per workload are independent of the
flash allocation. For simplicity, we also ignore priority
weights here, but this extension is straightforward.

The flash write rate can be controlled either by limit-
ing the workloads that have data in flash or by writing
only a fraction of each workload’s new data into flash.
We implement the latter by setting a write probability,
and for each new file, deciding randomly with that prob-
ability whether to insert it into flash. Figure 5 shows an
example with one workload where decreasing the write
probability decreases the flash write rate and increases
the flash read hits. This is only possible if the cacheabil-
ity function is non-concave.

In general, if the workload i has a flash capacity xi and
a write probability pi the data can stay in flash for as long
as if the workload has a flash capacity of xi

pi
but all new

data is written to flash. Hence, the flash read rate for the
workload i with cacheability function φi is pi φi(xi

pi
).

Bounded Writes Flash Allocation Problem
Instance:
• A set of workloads; for each workload i is given

the total data di, a continuous piecewise linear
cacheability function φi : [0, di] → R, and a write
rate wi.
• A bound on the total flash write rate W .
• A bound on the total flash capacity F .

Task:
Find, for each workload i, the allocated flash capac-
ity xi, 0 ≤ xi ≤ di and the flash write probabil-
ity pi, 0 ≤ pi ≤ 1, maximizing the total flash read
rate

∑
i pi φi(

xi

pi
) and subject to the constraint of the

total flash write rate and total flash capacity. Formally:

max
∑
i

pi φi

(
xi
pi

)
s.t.

∑
i

pi wi ≤ W∑
i

xi ≤ F

0 ≤ xi ≤ di for each workload i
0 ≤ pi ≤ 1 for each workload i

(3)

While the problem has linear constraints, the objective
is not linear. Our approach is to (a) relax the constraint
on the write rate via Lagrangian relaxation; (b) remove
the dependence on the write probability pi in the objec-
tive function; (c) linearize the objective; and (d) solve the
resulting linear program with a greedy algorithm.

We relax (remove) the write rate bound
∑
i piwi ≤

W and change the objective function by subtracting the
write rate with a write penalty factor λ ≥ 0:∑

i

pi φi

(
xi
pi

)
− λ pi wi (4)

An optimal solution for the relaxed problem with a to-
tal write rate equal to the bound (i.e.,

∑
i piwi = W ) is

an optimal solution of the original problem (3). Proof:
If there is a better solution for the original problem (3),
its read rate is higher but its write rate cannot be larger.
Hence, this solution is also a better solution for the re-
laxed problem, which contradicts the optimality.

Since the total write rate found by the relaxed opti-
mization decreases monotonically with increasing λ, we
can find the best λ, where the total write rate closely
matches the bound, using binary search.

Since the constraints on the write probabilities pi are
independent of the other variables, we can remove the de-
pendence on the write probabilities as follows. Let hλi (x)
represent the contribution of workload i with allocated
flash size x to the objective (4) when maximized. Then:

hλi (x) = max
0≤p≤1

p φi

(
x

p

)
− λ pwi

= max
z≥x

x

z
(φi(z)− λwi)

= x max
z≥x

φi(z)− λwi
z

Since the function φi is continuous and piecewise lin-
ear, (φi(z) − λwi)/z is monotonic with z in each seg-
ment. Hence the above maximum can be found by eval-
uating it only at the breakpoints of φi. By processing the
breakpoints of φi in decreasing x-coordinate the func-
tion hλi (x) can be computed in linear time.

6



Next, we linearize the resulting objective
∑
i h

λ
i (xi).

hλi is concave if φi is, which is usually the case because
read rates decline with age. If not, we replace it with its
concave upper bound by removing some breakpoints of
the piecewise linear function. We argue later that this has
only a small impact on the optimality of the result. As in
the previous section, we rewrite hλi (x) as the minimum
of the linear functions corresponding to its segments and
get a linear program that has the same form as (2).

Finally, we solve this linear program with a greedy al-
gorithm. We start with the solution xi = 0, yi = 0
for each workload i and then successively increase the
allocated flash xi of the workload that has the highest
ratio of increase in the objective function to flash allo-
cation, as long as flash can be allocated. Except for the
last incremental allocation, the flash allocation to each
workload corresponds to a breakpoint of its cacheabil-
ity function. The algorithm has a runtime complexity of
O(nk log k) where n is the maximum number of pieces
of the piecewise linear functions φi and k is the number
of workloads.

The result is optimal if hλi is concave. If not, we can
show that the error in the objective value due to the con-
cave approximation is bounded by the objective incre-
ment of the last step. Hence, we are close to optimality if
the last incremental flash allocation is small. This is cer-
tainly the case if the workload is partitioned into many
small workloads, which is, in any case, preferable for
optimal allocation.

8 Evaluation

In this section, we evaluate the effectiveness of the algo-
rithms described in the previous sections on production
storage workloads in Google data centers. Section 8.1
describes the production environment, and Section 8.2
introduces the datasets and terminology used for the eval-
uation. The remainder of the section evaluates the rec-
ommendations produced by Janus both on production
workload deployments that used the recommendations
and on traces of other production workloads.

8.1 File Placement in Colossus

Colossus (the successor of GFS [11]) is a distributed
storage system with multiple master nodes and many
chunkservers that store the file data. File system clients
create new files by a request sent to a master node, which
allocates space for it on chunkservers it selects. We eval-
uated Janus in a Colossus system extended as follows.

When a file is created, a Colossus master node decides,
based on the amount of flash space available for the cor-
responding workload and the write probability assigned
to it, whether it should be placed on disk or on flash,

and accordingly allocates space. Eviction from flash is
designed to take advantage of the already existing file
maintenance scanner process. The file is tagged with an
eviction time (TTL), which is computed from the flash
allocated to that workload and the workload’s write rate.
The scanner process periodically checks whether the file
has exceeded its eviction time, and if so, moves it to
disk. The eviction time (TTL) in its current implemen-
tation is not updated after it is set, effectively producing
an approximate FIFO eviction policy. An arriving file
creation request sometimes finds the flash storage full;
in this case, the master will write it to disk, regardless
of whether it would otherwise have chosen to write it to
flash.

8.2 Datasets and definitions

In the remainder of Section 8, we evaluate Janus based
on several datasets.

A Colossus cell is a separate instance of the Colossus
system. Separate cells are typically located in different
facilities. Each cell has its own masters, chunkservers,
and files, and each cell independently manages user
quota.

The first three datasets come from multi-user cells,
with workloads corresponding to different users of the
cell.

Dapper A 37-day Dapper sample of read-write activity
over 10 cells. The first 30 days are used for training
(computing the cacheability functions), and the last
7 days are used for evaluation.

Janus Deployment Data from limited deployments of
production workloads using Janus recommenda-
tions in 4 cells. In these deployments, flash was
assigned only to a single workload. The training
period consisted of a 30 day of Dapper sample prior
to the deployment.

Multi-User Cell A 1-week trace of all read-write activ-
ity to a 1% sample of files in a single cell. The 6th
day is used for training, and the 7th day is used for
evaluation. The first 5 days are used in Section 8.7
to determine whether a file is cached by LRU. This
cell had 407 workloads.

The last dataset comes from a cell where all activity
comes through Bigtable. Files are separated into work-
loads based on tokens that Bigtable encodes in the file
name for different tables and columns.

Single-User Cell A full trace of read-write activity in a
single-user Colossus cell for 30 minutes. The first
15 minutes are used for training, and the second 15
minutes are used for evaluation. The cell had 541

7



workloads, and contained over 10,000 machines. A
configuration change was needed to collect the data,
leading to the short duration of the trace, but it con-
tains adequate data because of the size of the cell
and the fact that the trace is not sampled.

The read rate for each workload is the number of read
operations per second, excluding in-memory cache hits.
The flash read rate is the number of read operations per
second that is served from flash. The flash hit rate is
the flash read rate as a percent of the read rate. In some
cases, we report the normalized flash hit rate, which is
the flash read rate for a workload as a percent of the total
read rate among all workloads in the cell. In particular,
the cell-wide flash hit rate is the sum over all workloads
of the normalized flash hit rate.

The size of a workload is the logical number of bytes
stored, excluding overhead from replication or erasure
coding. Analogous to the terminology for read rates, we
also have flash size, flash size percentage and normalized
flash size percentage.

The write rate of a workload is the number of bytes per
second of new data written. Again, this excludes over-
head from replication or erasure coding. Again, we also
have flash write rate and flash write percentage.

Given a cell-wide flash size, or equivalently a flash
size percentage, we form an allocation of flash to dif-
ferent workloads using the optimization. The allocation
consists of a Flash Size and a Write Probability for each
workload in the cell. This allocation is used in the evalu-
ation period to compute various metrics of interest, such
as flash hit rates.

8.3 Does the Past Predict the Future?

Our optimization is based on sampled historical data.
Here, we investigate the stability of estimated per-
workload flash hit rates between training and evaluation
periods in the Dapper dataset. In Section 8.4, we will
consider how well estimated flash hit rates correspond
with values from an actual deployment.

We chose 10 cell-wide flash size percentages between
0.1% and 10%. For each flash size percentage and each
cell, we optimized the allocation of flash to workloads.
Figure 6 uses these allocations to plot per-workload flash
hit rates in the evaluation period against those in the
training period. The figure shows that flash hit rate dur-
ing evaluation is typically within 7% of the flash hit rate
during training. This range of variability is small enough
for the resulting system to be effective.

8.4 Janus Deployment

Due to the Colossus’s use of approximate FIFO (de-
scribed in Section 8.1), we must compute eviction TTLs

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●
●●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●
●●

●
●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●

●
●
●
●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●●●●●●●

●

●
●

●●●●●
●

●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●

●●●●●●●●●●●●●●●

●

●
●

●●●●●
●

●●● ●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●●

●

●
●

●●●●●
●

●●● ●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●
●

●

●

●

●●●●●
●

●●● ●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●●
●

●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●
●

●

●

●

●●●●●
●

●●● ●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●
●

●
●●●●●●●●

●
●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●
●

●

●

●

●●●●●
●

●●● ●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●
●●

●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●
●

●

●

●

●●●●●
●

●●● ●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●
●●

●●●●● ●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●●●●●●●
●

●

●

●

●●●●●
●

●●● ●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●

●

●●●
●

●●

●

●●●●●●●

●

●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●
●●

●●●●●
●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●

●●●●●●
●

●

●

●

●●●●●
●

●●● ●

●

●●●●●●●●●

●

●●●●●●
●

●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●
●

●

●●●
●

●●

●

●●●●●●●

●

●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●

●●●●
●

●

●●●●●
●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●
●

●

●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●
●

●●●●●●
●

●

●

●

●●●●●
●

●●●
●

●

●●●●●●●●●

●

●●●●●●
●

●●●●●●●●●●●●●
●

●●

●

●●

●

●●●●●●●●●●●
●
●

0 20 40 60 80 100

0

20

40

60

80

100

Flash Hit Rate (%), Training

F
la

sh
 H

it 
R

at
e 

(%
),

 E
va

lu
at

io
n

y = x
y = x ± 7

Figure 6: Flash hit rate during training and evaluation periods,
estimated from the Dapper dataset. Each point represents a sin-
gle workload in a single cell with a given cell-wide flash size
percentage.

from each workload’s allocation. Janus computes the
TTLs using file age histograms from the training period.
However, the file age distribution may change between
training and deployment. For example, a workload may
start writing new data at a high rate, or it may exhibit
peak-to-trough variability not captured in histograms av-
eraged over the 30-day training period. In these cases,
using fixed TTLs may cause the workload to exceed its
allocated flash size, and Colossus will write new files to
disk until flash usage decreases. Hence, a workload’s ac-
tual flash usage can fluctuate over time.

Figure 7 shows flash usage for a single workload over
two days in one cell. The workload’s allocated flash size
was 100 TiB. Each day, actual flash usage fluctuates from
45 TiB to 100 TiB due to peak-trough variations. We
accommodated this variation by decreasing the allocated
flash size so as not to exceed the actual allocation.

Figure 7 also shows the workload’s flash read rate dur-
ing the period. On average, we get around 30k flash read
ops/sec, with a peak of more than 40k flash read ops/sec.
From the 30 day training period, we predicted a flash
read rate of 33k flash read ops/sec.

Table 2 shows results for this workload over deploy-
ments in four different cells. The average of estimated
and measured flash hit rates over those cells were 22.8%
and 23.5% respectively, a 3% difference. For cell A, the
measured flash hit rate (27%) was significantly higher
than the estimated value (17%), partly because we manu-

8



Wed Thu
0

20

40

60

80

100
F

la
sh

 U
sa

ge
 (

T
iB

)

0

8k

16k

24k

32k

40k

F
la

sh
 R

ea
d 

R
at

e 
(o

ps
/s

)

Flash Usage
Flash Read Rate

Figure 7: Flash usage and Flash read rate for one workload over
two days after Janus deployment.

allocated average estimated measured
workload flash flash flash flash

Cell size size usage hit rate hit rate
A 3.26 PiB 80 TiB 62 TiB 17% 27%
B 3.34 PiB 100 TiB 72 TiB 29% 31%
C 3.47 PiB 60 TiB 50 TiB 19% 16%
D 3.26 PiB 100 TiB 63 TiB 26% 20%
Avg 3.33 PiB 85 TiB 62 TiB 22.8% 23.5%

Table 2: Janus performance with one workload in four cells.

ally adjusted the parameters to maximize the space usage
and allow the group to hit the quota.

8.5 Comparing Alternative Allocation Methods

In this section, we compare alternative methods for gen-
erating flash allocations. Optimized FIFO allocation
uses the methods described above. We can also set per-
workload flash size proportional to read rate or propor-
tional to size. Both read rate and size are the average
usages measured over the training period. Lastly, we can
assign flash size such that the eviction TTL is the same
for all workloads. This is effectively a single FIFO for
all workloads. These and all subsequent comparisons are
made using trace-based analysis rather than direct mea-
surement, since Janus was only deployed with optimized
FIFO eviction (denoted Opt FIFO in the tables).

Table 3 shows cell-wide flash hit rates for the single
and multi-user cells. In the multi-user cell, the flash hit
rate improves from 19% to 28% when changing from
single FIFO to optimized FIFO, representing a 47% im-
provement. In the single-user cell, the relative improve-
ment was even larger — from a 42% hit rate to 74%, a
76% relative improvement.

Especially in the single-user cell, optimized alloca-
tion outperforms the other methods. Table 4 shows that
the poor performance of non-optimized methods in the
single-user cell is due to allocating large amounts of flash
to workload 117. This workload comprises 10% of the
cell’s read rate, but 43% of the cell’s size. Optimized

Dataset Multi-User Single-User Single-User
Flash Size (%) 1.0% 5.3% 5.3%

Additional No flash for
Constraints workload 117

Opt FIFO 28% 74% 74%
Prop. Read Rate 26% 64% 64%

Single FIFO 19% 42% 45%
Prop. Size 14% 15% 21%

Table 3: Flash hit rates achieved by 4 different allocation meth-
ods for the single and multi-user cells. The cell-wide flash size
percentages were 5.3% for the single-user cell and 1.0% for the
multi-user cell.

allocation assigns no flash to this workload, since other
workloads provide a better read rate to size ratio.

The last column of Table 3 shows that the flash hit rate
under Single FIFO and Proportional to Size improves if
we constrain workload 117 to receive no flash. However,
Proportional to Read Rate does not improve, as removing
workload 117 exposes the next few workloads that have
a high read rate to older data.

The improvement between single FIFO and optimized
FIFO in the multi-user cell can also be attributed to a
single workload. This is discussed further in Section 8.7.

Normalized Flash Hit Rate (%)
Workload Opt FIFO Prop Reads FIFO Prop Size

1 11.8 10.8 8.1 3.5
2 7.9 7.9 4.2 1.3
3 7.7 5.5 6.0 2.2
4 7.4 7.4 3.8 1.1
5 5.7 5.7 2.2 0.5
9 4.0 4.0 4.0 0.3

10 3.9 4.2 4.2 0.3
117 0.0 0.6 0.9 1.0

Others 25.4 17.6 8.5 4.6
Total 73.7 63.8 41.9 14.7

Normalized Flash Size Percentage (%)
Workload Opt FIFO Prop Reads FIFO Prop Size

1 0.82 0.59 0.22 0.04
2 0.08 0.41 0.02 0.00
3 1.19 0.62 0.71 0.17
4 0.09 0.38 0.02 0.00
5 0.04 0.31 0.01 0.00
9 0.01 0.20 0.01 0.00

10 0.00 0.21 0.01 0.00
117 0.00 0.25 0.99 2.26

Others 3.02 2.27 3.26 2.77
Total 5.25 5.25 5.25 5.25

Table 4: Flash hit rates and size for selected workloads in the
single-user cell. Workloads are numbered in decreasing order
of flash read rate under optimized FIFO allocation.

9



0 20 40 60 80 100

0

20

40

60

80

Flash Write Percentage (%)

F
la

sh
 H

it 
R

at
e 

(%
)

Cell 1
Cell 2
Cell 3
Cell 4

Figure 8: Flash hit rate for given bounds on the flash write
percentage for four cells in the Dapper dataset.

0 20 40 60 80 100

5

10

20

50

100

Flash Write Percentage (%)

T
T

L 
(h

ou
rs

)

Cell 1
Cell 2
Cell 3
Cell 4

Figure 9: Average TTL of data written to flash for given
bounds on the flash write percentage for four cells in the Dap-
per dataset.

8.6 Impact of Bounded Flash Write Percentage

In Section 7 we showed how the flash write percentage
can be bounded at the cost of a lower flash hit rate.

Figure 8 shows the optimized flash hit rate for vari-
ous bounds on the flash write percentage. The right-
most point on each curve corresponds to unbounded flash
write percentage. In each cell, the optimized unbounded
value is above 90%. As we decrease the bound, the flash
hit rate decreases slowly at first, and it decreases quickly
once the bound falls below 60%.

Figure 9 shows the average TTL of the new data writ-
ten to flash for the same cells and the same flash alloca-
tion solutions. As the bound on the write rate is tight-
ened, less data is written to flash but it stays there longer.

8.7 Evaluation of LRU Eviction

We have so far seen the performance of Janus with FIFO
eviction. We now turn to an evaluation with LRU evic-
tion.

LRU Cacheability Functions and Censoring

In Section 4, we briefly described cacheability functions
for LRU eviction. We make this description more formal
here.

A file will be in the cache if the maximum gap between
reads is lower than the TTL. We re-define the notion of
age to reflect this heuristic. The LRU age of a file at
time t is

Age(t) = max (t1 − t0, ..., tn − tn−1, t− tn)

where t0 is file creation time, and t1, ..., tn are the times
of the n reads in interval [t0, t). The smaller the LRU age
of a file is, the more temporal locality its reads have. The
cacheability function, φ(x), gives the flash read rate if
the x bytes with the lowest LRU age are placed on flash.

To compute the age of a file at t, we require a full
trace of read operations during [t0, t). In many cases, the
full trace is not available. Suppose the trace is available
only during [tS , t), with tS > t0. The resulting read age
measurement is censored.

We deal with censoring by considering the two ex-
tremes. Upper bound age assumes that there were no
reads between t0 and tS . Lower bound age assumes that
there was continuous read activity between t0 and tS , so
that Age(tS) = 0. The upper bound of the cacheability
function is obtained by using upper bound age for size
and lower bound age for read rates, and vice versa for
the lower bound of the cacheability function.

Evaluation of LRU using Multi-User Cell Dataset

Figure 10 shows the cacheability function for a single
FIFO / LRU. With 1% flash size percentage, the flash hit
rates are 19% for a single FIFO and 36%–40% for a sin-
gle LRU. The marked points allocate flash to workloads
using optimized FIFO / LRU. The flash hit rates are 28%
for optimized FIFO and 44%–48% for optimized LRU.

Table 5 shows normalized flash hit rates for various
workloads. Most of the improvement between FIFO and
LRU can be attributed to the cacheability of workload 1,
which is a Bigtable service shared by many users. LRU
assigns 3.4x–3.5x as much flash to workload 1, and ob-
tains 4.5x–5.1x as high a flash read rate as FIFO. This
accounts for a 14.4–16.7 percentage-point increase in the
cell-wide flash hit rate. Even optimized FIFO does not
achieve this high a flash read rate for workload 1, because
the workload’s cacheability function is much steeper for
LRU than for FIFO.

10



0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

Flash Size (%)

F
la

sh
 H

it 
R

at
e 

(%
)

LRU (Upper Bound)
LRU (Lower Bound)
FIFO
Optimized Points

Figure 10: Cacheability curve for a single FIFO and single
LRU. The marked points represent optimized flash hit rates for
FIFO and LRU.

Table 5 also shows that workload 2 accounts for most
of the difference between optimized and single versions
of FIFO/LRU. In fact, both optimized FIFO and LRU
put the entire contents of workload 2 on flash, increasing
the cell-wide flash read hit by 7.3%. Workload 2 is a
Bigtable used to serve static webpage content.

These results are robust to adjusting the period used
for training. Of our 7-day dataset, we used the 7th day
for evaluation and the 6th day for training; the remaining
days were used only to compute the file ages. If the 5th
day is used instead for training, then the cell-wide flash
hit rate is 28.5% under optimized FIFO, and 44.4–49.1%
under optimized LRU. Using the 4th day, we get 27.0%
under optimized FIFO and 42.7–48.1% under optimized
LRU. These numbers are similar to those in Table 5.

While LRU eviction performs better than FIFO for
many workloads, there is a substantial associated over-
head. The LRU age of a file depends on accesses to
all its component chunks, and hence the eviction scan-
ner must gather information from multiple chunkservers
before determining whether a file should be evicted. By
comparison, computing the FIFO age is simple because
it depends only on the static creation time of the file.

9 Conclusions

The falling price of flash storage has made it cost-
effective for some workloads to fit entirely in flash. As
the I/O rate per byte supported by disks continues to de-
cline, flash storage also becomes a critical component
of the storage mix for many more workloads in modern
storage systems. However, because flash is still expen-
sive, it is best to use it only for workloads that can make
good use of it. With Janus, we show how to use long-
term workload characterization to determine how much

Normalized Flash Hit Rate (%)
Workload FIFO Opt FIFO LRU Opt LRU

1 4.1 5.3 18.5 – 20.8 15.8 – 16.9
2 0.0 7.3 0.0 – 0.0 7.3 – 7.3
3 0.1 0.9 1.3 – 2.1 1.6 – 6.1
4 3.0 1.9 5.6 – 6.1 4.9 – 5.3
5 6.4 5.7 4.6 – 4.7 6.8 – 5.2

Others 4.9 6.7 5.8 – 5.9 7.2 – 7.2
Total 18.5 27.8 35.9 – 39.5 43.6 – 47.9

Normalized Flash Size Percentage (%)
Workload FIFO Opt FIFO LRU Opt LRU

1 0.13 0.22 0.46 – 0.44 0.20 – 0.15
2 0.00 0.08 0.00 – 0.00 0.08 – 0.08
3 0.00 0.08 0.03 – 0.03 0.04 – 0.17
4 0.18 0.03 0.11 – 0.11 0.07 – 0.08
5 0.42 0.35 0.20 – 0.21 0.38 – 0.28

Others 0.25 0.22 0.18 – 0.19 0.22 – 0.21
Total 0.98 0.98 0.98 – 0.98 0.98 – 0.98

Table 5: Flash hit rate and size per workload assuming single
and optimized FIFO/LRU. Workloads are ordered in decreasing
order of flash read rate under Optimized LRU. The two num-
bers for LRU respectively use the lower and upper bounds of
the cacheability function. Assumes cell-wide flash size per-
centage of 1% during the training period, which became 0.98%
during evaluation since the amount of data increased slightly.

flash storage should be allocated to each workload in a
cloud-scale distributed file system.

Janus builds a compact representation of the
cacheability of different user I/O workloads based on
sampled RPC traces of I/O activity. These cacheabil-
ity curves for different users are used to construct a lin-
ear optimization problem to determine the flash alloca-
tions that maximize the read hits from flash, subject to
operator-set priorities and write-rate bounds.

This system has been in use at Google for 6 months.
It allows users to make informed flash provisioning deci-
sions by providing them a customized dashboard show-
ing how many reads would be served from flash for a
given flash allocation. Another view helps system ad-
ministrators make allocation decisions based on a fixed
amount of flash available in order to maximize the reads
offloaded from disk.

Based on evaluations from workloads using these rec-
ommendations and I/O traces of other workloads, we
conclude that the recommendation system is quite ef-
fective. In our trace-based estimates, flash hit rates us-
ing the optimized recommendations are 47-76% higher
than the option of using the flash as an unpartitioned tier.
We find that application owners appreciate learning how
much flash is cost-effective for their workload.

11



Acknowledgments

Janus would not have been possible without the help of
many individuals and teams. We are especially grate-
ful to Jun Luo, Adam Gee, Denis Serenyi, and the en-
tire Colossus team for their early collaboration on this
project. Andy Chu, Herb Derby, Lawrence Greenfield,
Sean Quinlan, Paul Cychosz, Salim Virji, and Gang Ren
also contributed ideas or helped with the data collection
and analysis on which Janus is built. We are grateful
to John Wilkes, Florentina Popovici, our shepherd Kai
Shen, and our anonymous referees for their feedback on
improving the presentation.

References

[1] Retrieved 2013/01/09: http://www.
google.com/shopping/product/
7417866799343902880/specs.

[2] AGUILERA, M. K., ET AL. Improving recoverabil-
ity in multi-tier storage systems. In DSN (2007),
IEEE, pp. 677–686.

[3] ALVAREZ, G. A., ET AL. Minerva: An automated
resource provisioning tool for large-scale storage
systems. ACM Trans. Comput. Syst. 19, 4 (2001),
483–518.

[4] ANDERSON, E., ET AL. Quickly finding near-
optimal storage designs. ACM Trans. Comput. Syst.
23, 4 (2005), 337–374.

[5] BAKER, M., ET AL. Measurements of a distributed
file system. In SOSP (1991), ACM, pp. 198–212.

[6] BLAZE, M. A. Caching in large-scale distributed
file systems. PhD thesis, Princeton University,
1993.

[7] CANAN, D., ET AL. Using ADSM Hierarchical
Storage Management. IBM Redbooks. 1996.

[8] CHANG, F., ET AL. Bigtable: a distributed stor-
age system for structured data. In OSDI (2006),
USENIX, pp. 205–218.

[9] COEHLO, N., MERCHANT, A., AND STOKELY,
M. Uncertainty in aggregate estimates from sam-
pled distributed traces. In Workshop on Manag-
ing Systems Automatically and Dynamically (MAD
2012), USENIX.

[10] GASIOR, G. SSD prices down 38% in 2012,
but up in Q4, 2013. Retrieved 2013/01/29:
http://techreport.com/review/24216/ssd-prices-
down-38-in-2012-but-up-in-q4.

[11] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-
T. The Google file system. In SOSP (2003), ACM,
pp. 29–43.

[12] GRAY, J., AND PUTZOLU, F. The 5 minute rule for
trading memory for disc accesses and the 10 byte
rule for trading memory for CPU time. In SIGMOD
(1987), ACM, pp. 395–398.

[13] GUERRA, J., ET AL. Cost effective storage us-
ing extent based dynamic tiering. In FAST (2011),
USENIX, pp. 273–286.

[14] KROEGER, T., AND LONG, D. Design and imple-
mentation of a predictive file prefetching algorithm.
In ATC (2001), USENIX, pp. 105–118.

[15] LOBOZ, C. Z. Cloud resource usage: extreme dis-
tributions invalidating traditional capacity planning
models. In Workshop on Scientific Cloud Comput-
ing (ScienceCloud 2011), ACM, pp. 7–14.

[16] MASSIGLIA, P. Exploiting multi-tier file
storage effectively. Retrieved 2013/01/29:
https://snia.org/sites/default/
education/tutorials/2009/spring/
file/PaulMassiglia_Exploiting_
Multi-Tier_File_StorageV05.pdf,
2009.

[17] MCKUSICK, M. K., AND QUINLAN, S. GFS:
Evolution on fast-forward. Communications of the
ACM 53, 3 (2010), 42–49.

[18] NARAYANAN, D., ET AL. Migrating server storage
to SSDs: analysis of tradeoffs. In EuroSys (2009),
ACM, pp. 145–158.

[19] OH, Y., ET AL. Caching less for better perfor-
mance: Balancing cache size and update cost of
flash memory cache in hybrid storage filesystems.
In FAST (2012), USENIX.

[20] OUSTERHOUT, J. K., ET AL. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In SOSP
(1985), ACM, pp. 15–24.

[21] PATTERSON, R. H., ET AL. Informed prefetching
and caching. In SOSP (1995), ACM, pp. 79–95.

[22] SIGELMAN, B. H., ET AL. Dapper, a large-scale
distributed systems tracing infrastructure. Tech.
rep., Google, Inc., 2010.

[23] STOKELY, M., ET AL. Projecting disk usage based
on historical trends in a cloud environment. In
Workshop on Scientific Cloud Computing (Science-
Cloud 2012), ACM, pp. 63–70.

[24] WILKES, J., GOLDING, R. A., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID hierarchical
storage system. ACM Trans. Comput. Syst. 14, 1
(1996), 108–136.

12


