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Abstract

Language modeling for automatic speech recognition (ASR)
systems has been traditionally in the verbal domain. In this
paper, we present finite-state modeling techniques that we de-
veloped for language modeling in the written domain. The first
technique we describe is for the verbalization of written-domain
vocabulary items, which include lexical and non-lexical enti-
ties. The second technique is the decomposition—recomposition
approach to address the out-of-vocabulary (OOV) and the data
sparsity problems with non-lexical entities such as URLs, e-
mail addresses, phone numbers, and dollar amounts. We evalu-
ate the proposed written-domain language modeling approaches
on a very large vocabulary speech recognition system for En-
glish. We show that the written-domain language modeling im-
proves the speech recognition and the ASR transcript render-
ing accuracy in the written domain over a baseline system us-
ing a verbal-domain language model. In addition, the written-
domain system is much simpler since it does not require com-
plex and error-prone text normalization and denormalization
rules, which are generally required for verbal-domain language
modeling.

Index Terms: language modeling, written-domain, verbaliza-
tion, decomposition, speech recognition

1. Introduction

Automatic speech recognition systems transcribe utterances
into written language. Written languages have lexical entities
(e.g. “book”, “one”) and non-lexical entities (e.g. “12:30”,
“google.com”, “917-555-5555”). The form of the linguistic
units output from an ASR system depends on the language mod-
eling units. Traditionally, the language modeling units have
been the lexical units in verbal form. The reason for that is
we need the pronunciations of the language modeling units for
the phonetic acoustic models. Therefore, the common approach
has been to pre-process the training text with text normaliza-
tion rules. The pre-processing step expands the non-lexical en-
tities such as numbers, dates, times, dollar amounts, URLs (e.g.
“$10”) into verbal forms (e.g. “ten dollars”). With this verbal-
domain language modeling approach, the speech recognition
transcript in verbal language needs to be converted into a prop-
erly formatted written language to present to the user [1, 2].
However, this approach presents some challenges. The pre-
processing of training text and the post-processing of the speech
transcript are ambiguous tasks in the sense that there can be
many possible conversions [3].

An alternative approach, though not common, is written-
domain language modeling. In this approach, the lexical and
non-lexical entities are the language modeling units. The pro-
nunciation lexicon generally handles the verbalization of the
non-lexical entities and providing the pronunciations. One ad-
vantage of this approach is that the speech transcripts are in

written language. Another advantage is that we benefit from the
disambiguation power of the written-domain language model
to choose the proper format for the transcript. However, this
approach suffers from OOV words and data sparsity problems
since the vocabulary has to contain the non-lexical entities.

In this paper, we propose a written-domain language mod-
eling approach that uses finite-state modeling techniques to ad-
dress the verbalization, OOV and data sparsity problems in the
context of non-lexical entities.

2. Written-Domain Language Modeling

We need solutions for two problems to build a language model
on written text without first converting to the verbal domain.
The first problem is the verbalization of the written-domain vo-
cabulary items, which can be lexical or non-lexical entities. The
pronunciations for the lexical entities can be easily looked up
in a dictionary. On the other hand, the non-lexical entities are
more complex and structured open-vocabulary items such as
numbers, web and e-mail addresses, phone numbers, and dol-
lar amounts. For the verbalization of the non-lexical entities,
we build a finite-state transducer (FST) as briefly described in
section 2.1. ! The second problem is the OOV words and data
sparsity problems for the non-lexical entities. For this problem,
we propose the decomposition—recomposition approach as de-
scribed in section 2.2

2.1. Verbalization

We previously proposed a method to incorporate verbal expan-
sions of vocabulary items into the decoding network as a sep-
arate model in addition to the context-dependency network C,
the lexicon L, and the language model G, which are commonly
used in weighted FST (WFST) based ASR systems [3]. For this
purpose, we construct a finite-state verbalizer transducer V' so
that the inverted transducer ¥ ~! maps vocabulary items to their
verbal expansions. With this model, the decoding network can
be expressedas D = C o LoV oG.

We use grammars to expand non-lexical items to their ver-
bal forms. These grammars rely on regular expressions and
context-dependent rewrite rules, and are commonly used for
text pre-processing and verbal expansion for text-to-speech and
text pre/post-processing for speech recognition. They can be
efficiently compiled into FSTs [4, 5]. The verbalization model
V1 effectively transforms written non-lexical items into lexi-
cal items that can be looked up in the lexicon. The approach
maintains the desired richness of a written-domain language
model, together with the simplicity of a verbal-domain lexicon.

I'The verbalization approach as applied in a French ASR system will
be presented in the ICASSP conference [3]. We describe it here briefly
for the sake of completeness and clarity of the explanation for the ex-
tended application of it in an English ASR system.



: T < training corpus
: L < vocabulary of static pronunciation lexicon
: C < context-dependency model
V < vocabulary of T
D <« FST for decomposition rewrite rule
R < aset of FSTs for verbalization rewrite rules
S < build_segmenter_model (T, L)
M0
: forallv € Vdo
d < rewrite (v, D)
if d # € then
d < segment_composite_words (d, S)
M [v] < mark_tokens (d)
else
M ] v
end if
: end for
. T' « decompose_corpus (T, M)
: Gq + train_language_model (T")
. R < build_restriction_model (M) (see Figure 2)
. V' <= build_verbalization_model (V, R)
. L < build_pronunciation_model (L)
: N« CoLoVoProj(RoGq)
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Figure 1: Pseudocode to build the decoding graph for the
written-domain language modeling.

2.2. Decomposition—Recomposition

The verbalization model does not solve the OOV words and
data sparsity problems for the non-lexical entities. For instance,
even with a language model vocabulary size of 1.8 million, the
OOV rate for the web addresses is 32% as calculated over the
web addresses in a voice search test set. Modeling such in-
vocabulary entities as a single unit suffers from the data sparsity
problem. Moreover, the verbalization model does not address
the pronunciation of composite tokens, e.g. “nytimes.com”. We
present an approach to model these entities better and to allevi-
ate these problems. Our approach is based on the decomposition
of these entities into the constituting lexical units, while offering
a method to combine these units back in the FST framework.

The pseudocode for building the decoding graph in the
written-domain language modeling is given in Figure 1. The
decomposition transducer D is compiled from a set of rewrite
grammar rules. These rules are implemented to decompose
non-lexical entities and add special tokens to mark the begin
and end of the decomposed segments. For instance, the rewrite
grammar rule that we use for URLs decomposes “nytimes.com”
to “[url] *nytimes dot com [/url]”. This rewrite grammar rule
also marks the tokens that might be a composite token with a
special symbol (*). These marked composite tokens require fur-
ther processing to find correct pronunciation.

We build a statistical model for segmenting composite to-
kens on line 7. The segmentation of the composite tokens
is needed to give a proper pronunciation using the pronuncia-
tion lexicon L. For this purpose, we train a unigram language
model G over the vocabulary of the static pronunciation lexi-
con. Then, we construct an FST S, so that the inverted trans-
ducer S~' maps the vocabulary symbols to their character se-
quences. The composition of two models, S o G is a weighted
FST that can be used for segmenting the composite words. To
accomplish that, we simply construct an FST model 7" for the

M < associative array mapping vocabulary tokens to seg-
mented tokens {e.g. “nytimes.com” — “[url] ny~ times~
dot~ com~ [/url]”}

w <— compensation cost for the language model probability
estimation P([marker]|context)
n<0,Q I+ F«+ {0}

for all (¢,s) € M do

if t = s then
E + EU{0,t,t0,0}
else

S « tokenize(s) {S is list of token segments}
b < pop_front(S), e < pop_back(S)
q + state[b]
if ¢ = —1 then
q + statelb] < n+n+1
Q<+ QU {q}
E«+ EU {07b7b7 fw,q}U{q,e,e,w,O}
end if
for all s € S do
E + E U{q,clear_marker(s),s,0,q}
end for
end if
end for
R <+ Determinize(Q, I, F, E)

Figure 2: Pseudocode for the construction of the restriction—
recomposition model R.

character sequences of an input word, compose with the seg-
mentation model (7" o S o GGy), find the shortest path and print
the output labels.

The decomposition transducer D is used to decompose each
token in the vocabulary V on line 10. If the token is decom-
posed, we try to segment the decomposed tokens marked with
the special symbol (*) using the statistical segmentation model
S on line 12. For the URL example, the segmented tokens will
be “[url] ny times dot com [/url]”, since for the “nytimes” the
most likely segmentation will be “ny times”.

We mark each token segment except the marker tokens with
a special symbol (~) on line 13 to differentiate them from the
other tokens in the training corpus. We store the segmenta-
tion for each token in the vocabulary. For the example, the
segmented and marked tokens will be “[url] ny~ times~ dot~
com~ [/url]”. If the token cannot be decomposed with the de-
composition transducer, we store the token itself as the segmen-
tation. Using the stored segmentations M of the tokens in the
vocabulary, we decompose the training corpus 7 to obtain 7~
on line 18. Then, we train an n-gram language model over the
decomposed corpus 7 and it is efficiently represented as a de-
terministic weighted finite-state automaton [6] G4 on line 19.

We construct a finite-state restriction—recomposition model
R using the token segmentations on line 20. The pseudocode
for the construction of R is given in Figure 2. This algorithm
constructs a WEST R = (Q, I, F, E), where Q is a finite set of
states, I C (@ is a set of initial states, /' C @ is a set of final
states, F is a finite set of transitions {p, ¢, 0, w, ¢}, where p is
the source state, ¢ is the input label, o is the output label, w is
the cost of the transition, and g is the target state.

An example restriction model for a toy vocabulary of
“world”, “news”, “times”, “nytimes.com” with the URL de-
composition is shown in Figure 3. The start state O maps all the
regular words to themselves. We add the special begin marker
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Figure 3: Example restriction—recomposition model R for a toy
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vocabulary of “world”, “news”, “times”, “nytimes.com”.

“[url]” as a transition label to a new state (1) and add the spe-
cial end marker “[/url]” as a transition label to the start state
(0). We add the transition label with the input decomposed
segment and the output decomposed segment marked with a
special symbol (~) at this state for each decomposed segment.
We can optionally add some rewards and costs to the special
marker transitions as shown in Figure 3 to compensate the lan-
guage model probability estimation for the special begin marker
P([url]|context).

On line 21, we build a verbalization model V" using the vo-
cabulary V and a set of FSTs R for verbalization rewrite rules.
We build a finite-state pronunciation lexicon L on line 22.

The final step on line 23 constructs the decoding graph N.
The restriction model R and the language model G4 are com-
posed to get the restricted language model, R o G4. This re-
striction guarantees that the paths in the language model start-
ing with the special begin marker token end with the special
end marker token. This is required to get the boundaries of the
segmented tokens, so that we can use a simple text processing
step to combine the segments and construct the proper written
form for these entities. The restricted language model is pro-
jected on the input side to obtain the final restricted language
model Proj(R o G¢4) without the marking symbol (~). Then,
we compose with the verbalizer V', the lexicon L, and the con-
text dependency model C' to get the decoding graph N. Note
that, the segmented tokens can contain non-lexical entities such
as numbers. Therefore, the decomposition approach still de-
pends on the verbalization model for the verbalization of these
entities. For instance, the segmented URLs can contain num-
bers and the verbalization model can provide all the alternative
verbalizations for them.

With the proposed approach, the speech recognition tran-
scripts contain the segmented forms for the non-lexical entities
that we choose to decompose. However, the begin and end
of these segments are marked with the special tokens. There-
fore, we apply a simple text denormalization to the transcripts
to combine these segments and remove the special tokens. For
instance, a possible transcript with this approach will be “go to
[url] ny times dot com [/url]” and it will be simply normalized
to “go to nytimes.com”.

The segmentation of the non-lexical entities alleviates the
data sparsity problem. In addition, it addresses the OOV prob-
lem for these entities, since the language model trained over the
segments can generate unseen entities by combining segments
from different entities.

3. Systems & Evaluation

Our acoustic models are standard 3-state context dependent (tri-
phone) HMM models which use a deep neural network (DNN)
to estimate HMM-state posteriors [7]. The DNN model is a
standard feed-forward neural network with 4 hidden layers of
2560 nodes. The input layer is the concatenation of 26 consecu-
tive frames of 40-dimensional log filterbank energies calculated
on 25ms windows of speech every 10ms. The 7969 softmax
outputs estimate the posterior of each state. We use 5-gram
language models pruned to 23 million n-grams using Stolcke
pruning [8]. An FST-based search [9] is used for decoding.

We measure the recognition accuracy of numeric entities
such as numbers, times, dollar amounts, and web addresses by
evaluating a metric similar to the word error rate (WER). We
specifically split the entities to two different groups, numeric
and web address. We call this metric the entity error rate (EER).
To compute the EER, we first remove all the tokens not match-
ing the entity type from the recognition hypothesis and the refer-
ence transcript, then calculate the standard word error rate over
the remaining entities.

3.1. Baseline Verbal-Domain System

The language model used for the baseline verbal-domain sys-
tem is a 5-gram verbal-domain language model obtained by
Bayesian interpolation technique [10]. A dozen individually-
trained Katz-backoff n-gram language models from distinct
data sources in verbal domain are interpolated. The language
models are pruned using Stolcke pruning [8]. The sources
include typed data sources (such as anonymized web search
queries and SMS text) and unsupervised data sources consisting
of ASR results from anonymized utterances which have been
filtered by their recognition confidence score. The data sources
used vary in size, from a few million to a few billion sentences,
making a total of 7 billion sentences. The vocabulary size of
this system is 2 million.

In the verbal-domain system, the web addresses are handled
by using some text normalization and denormalization FSTs for
splitting the web addresses to lexical entities in the language
model training data and combining the lexical entities in the
speech recognition transcript to form a web address if it is in
the list of known web addresses.

3.2. Written-Domain System

The written-domain language model was trained using similar
data sources and techniques to the baseline system but in writ-
ten domain. The unsupervised data source of speech recog-
nition transcripts in written domain was obtained by redecod-
ing anonymized utterances. For redecoding, we used an ini-
tial written-domain language model trained on SMS text, web
documents, and search queries. We applied simple text nor-
malizations to clean up the training text (e.g. “8 pm” — “8
p-m.”). We also filtered the speech recognition transcripts by us-
ing their recognition confidence scores. The unsupervised tran-
scripts provide domain adaptation for the final language model.
We used all the data sources to train the final language model.
The vocabulary size of this system is 2.2 million.

For the written-domain system, we used a set of rewrite
grammar rules to expand entities including numbers, time, and
dollar amounts in English into verbal forms. These rules were
used to build the verbalization transducer that can generate ver-
bal expansions for digit sequences, times, postal codes, decimal
numbers, cardinal numbers, ordinal numbers, and time. Table 1



Table 1: A list of rewrite grammar rules with examples for ver-

balization.
Rule Written Form Verbal Form
Cardinal 2013 two thousand thirteen
Digit 2013 two zero one three
Two-digit 2013 twenty thirteen
Ordinal 23rd twenty third
Timel 3:30 three thirty
Time2 3:30 half past three
Dollarl $3.30 three dollars thirty cents
Dollar2 $3.30 three thirty dollars

Table 2: Word error rates for verbal-domain and written-
domain systems on three test sets.
‘ Verbal-Domain(%) ‘ Written-Domain(%)

Search 32.1 32.1
Mail 8.3 7.8
Unified 12.5 12.0

shows a simplified list of verbalization grammar rules.

We focus on improving recognition accuracy for web ad-
dresses and phone numbers. We used simple rewrite gram-
mar rules to decompose web addresses (“google.com” — “[url]
*google dot com [/url]”) and phone numbers (“555-5555” —
“[phone] 555 55 55 [/phone]”), as described in section 2.2.

3.3. Experimental Results

The systems were evaluated on three anonymized and randomly
selected test sets that match our current speech traffic patterns
in English. The first test set — Search has 41K utterances and
consists of voice search utterances. The second one — Mail has
18K utterances and consists of e-mail dictation utterances. The
final one — Unified has 23K utterances and is a unified set of
voice search and dictation utterances. All test sets are hand-
transcribed in written domain and we measure the speech tran-
scription accuracy in written domain.

The baseline verbal-domain system uses a set of denormal-
ization FSTs to covert recognition transcripts in verbal form
to corresponding written forms (e.g. “ten thirty p.m.”—*“10:30
p-m.”). Table 2 shows the performance of the baseline verbal-
system on the Search, Mail, and Unified test sets. Without the
denormalization FSTs, the performance drops significantly be-
cause of the verbal and written mismatch. For instance, on
the Unified test set the word error rate increases from 12.5%
to 13.9% without the denormalization.

In the written-domain system, there is no text denormaliza-
tion rule applied to the recognition transcript except a simple
one to combine the token segments marked clearly as discussed
in section 2.2. As Table 2 shows, the written-domain system
outperforms the verbal-domain system by 0.8% and 0.7% on
Mail and Unified test sets. Because some entities have ambi-
guities in verbal-to-written conversion and require context to
distinguish, using verbalizer and decomposer in the language
model provides context to resolve the ambiguities. However,
the text denormalization rules used in verbal-domain system are
completely independent of the language model and have issues
to resolve these ambiguities.

We specifically look at recognition results on numeric enti-
ties (numbers, dollar amounts, phone numbers, times) and URL
entities (web addresses) and report entity error rates in Table 3.

Table 3: Entity error rates for numeric and URL entities of
verbal-domain and written-domain systems.
‘ Verbal-Domain(%) ‘ Written-Domain(%)
Numeric 68.9 59.5
URL 57.7 54.1
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Figure 4: WER at various normalized real-time factors.

We use the Search test set for these experiments. There are 2525
numeric entities with only 18 OOV numeric entities (0.7%) and
1202 URL entities in the Search test set. There are no OOV
URL entities since we use the decomposition—recomposition
approach to decompose the URLs. If we don’t use this ap-
proach, the OOV rate for URL entities is 32% as calculated over
the URL entities in the test set. The written-domain system per-
forms better than the verbal-domain system for both numeric
error rate and URL error rate.

Figure 4 shows the word error rate of the systems for var-
ious real-time factors obtained by changing the beam width of
the decoder. Both systems can improve accuracy further by sac-
rificing speed. The saturated performance of the written-domain
system is better than that of the verbal-domain system.

4. Conclusion

We presented two techniques for the written-domain language
modeling in the finite-state transducer framework. The verbal-
ization and the decomposition—-recomposition techniques work
together to address the verbalization, OOV words, and data
sparsity problems in the context of non-lexical entities. The
written-domain language modeling using the proposed ap-
proaches overcomes the shortcomings of the verbal-domain lan-
guage modeling. First of all, it simplifies the speech recogni-
tion system by eliminating complex and error-prone text nor-
malization and denormalization steps. Secondly, it signifi-
cantly improves the speech transcription accuracy in written
language, since we receive an advantage from the contextual
disambiguation of the written-domain language model. Finally,
the decomposition—recomposition approach together with the
verbalization model provides an elegant and contextual lan-
guage model integrated solution for the pronunciation and mod-
eling of non-lexical entities.
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