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Rogue Femtocell Owners: How Mallory Can

Monitor My Devices
David Malone, Darren F. Kavanagh and Niall R. Murphy

Abstract—Femtocells are small cellular telecommunication
base stations that provide improved cellular coverage. These
devices provide important improvements in coverage, battery
life and throughput, they also present security challenges. We
identify a problem which has not been identified in previous
studies of femtocell security: rogue owners of femtocells can
secretly monitor third-party mobile devices by using the fem-
tocell’s access control features. We present traffic analysis of
real femtocell traces and demonstrate the ability to monitor
mobile devices through classification of the femtocell’s encrypted
backhaul traffic. We also consider the femtocell’s power usage
and status LEDs as other side channels that provide information
on the femtocell’s operation. We conclude by presenting suitable
solutions to overcome this problem.

Index Terms—Femtocell, security, traffic analysis, cellular
devices, rogue owners.

I. INTRODUCTION

Femtocells allow operators to provide improved coverage

in a cellular network by providing low-power base stations

which can be installed in homes and offices. The standard-

isation and security of femtocells has received considerable

attention recently [1], [2]. The femtocell uses a customer’s

broadband connection to backhaul traffic to the mobile op-

erator’s network. Accordingly, this creates security concerns,

and consequently femtocells use security protocols such as

IPsec [3], which encrypt IP traffic that is sent to or from

the Mobile Network Operator (MNO). Customers may also

be concerned about a third party’s device connecting to their

femtocell, because, for example, the customer typically pays

for the backhauled traffic. Consequently, femtocells have an

access list (ACL) feature whereby only cellular devices with

phone numbers from a configurable set can connect. This is

sometimes referred to as a closed access femtocell [4].

In this paper, we consider the prospect that a malicious

customer, Mallory, uses their femtocell to monitor mobile

devices, belonging to a third party, Alice. By adding a device

to Mallory’s femtocell’s ACL, Mallory can secretly allow

Alice’s device to backhaul traffic through Mallory’s network

without Alice’s knowledge. While this traffic will be encrypted

and authenticated, IPsec does not provide protection against

traffic analysis, and so Mallory will be able to make certain

inferences about the mobile device. For example, Alice might

be Mallory’s neighbour, and by adding Alice’s phone to

the ACL for Mallory’s femtocell, Mallory can attempt to
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identify when Alice makes calls, by observing patterns in the

encrypted traffic. In such an attack, the femtocell now acts

like a rogue femtocell, because Mallory controls the network

used for backhaul, and therefore can capture the traffic, albeit

in encrypted format. This attack can occur without Alice’s

knowledge or consent. In contrast to other recent attacks on

femtocells [5], this requires no modification of the femtocell’s

hardware or software.

Femtocell security was considered during its standardisation

[1], [6], however issues still remain [2], [4], [7]. In [8]

the authors classify a number of attacks on femtocells. The

attack we describe here has similarities to attack 5 (man-

in-the-middle) listed in [6], [8]. However, our attack differs

in a significant way, because it is entirely passive and not

foiled by authentication of the femtocell or the application of

cryptography to communication between the femtocell and the

MNO’s network. While traffic analysis has been considered

on the air interface, traffic analysis of the backhaul network

is easier to achieve, and requires no specialist equipment. A

computer and an Ethernet hub, or similar device, are sufficient

to perform traffic analysis. From the literature, it appears that

this new attack has not been studied before or included in

previous classifications of attacks on femtocells. As this attack

was not identified during standardisation or documented in the

literature, it seems likely that femtocell deployments are not

being secured against this attack.

Fig. 1 illustrates the system architecture, showing how the

femtocell that is to be subject to traffic analysis integrates

into the cellular network. Again, note that this set-up does

not require any attack on the femtocell device (hardware)

itself, instead packets to and from the femtocell are passively

monitored. This traffic is labelled as DST (destination) and

SRC (source), respectively. Likewise, monitoring of the fem-

tocell’s power usage or status LEDs is passive and requires no

modification of the femtocell.

In the following sections, we demonstrate this attack using

traffic traces from a live femtocell. We identify basic traffic

characteristics that can be used in the traffic analysis. Using

these, we derive features that can identify common activities

of mobile devices, such as sending SMS (short message

service) messages, making calls, web activity, etc. We then

demonstrate that by using multiple femtocells we can correlate

calls and so potentially identify who is involved in the calls.

We also consider power usage and the femtocell’s status

LEDs as sources of additional information. Finally, we propose

solutions to mitigate this problem.
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Fig. 1. Rogue femtocell setup, showing integration into the mobile network.

II. ANALYSIS OF SINGLE FEMTOCELL TRAFFIC

In this section, we first describe our basic experimental

setup. Then we look at the features available to us for traffic

analysis of the backhauled traffic from a single femtocell,

and show how these relate to the activity of a device on

the femtocell. Finally, we show a simple scheme for traffic

classification based on these features.

A. Experimental Setup

The femtocell is an Alcatel-Lucent 9361 Home Cell V2-V. It

has a 3G radio interface and connects to a customer’s network

using standard Ethernet. It was connected to a residential

router running FreeBSD, and traffic to/from the femtocell was

collected using the tcpdump tool. This femtocell uses IPsec-

over-UDP to communicate with the mobile operator’s network.

It also generates a small amount of non-encrypted traffic,

including NTP time-synchronisation packets and traffic similar

to a traceroute. The analysis herein focuses on encrypted

traffic. When the femtocell is idle, there are 1–3 packets per

second (PPS) of encrypted traffic. Using the femtocell’s ACL,

we restrict its use to a single device, a Nokia X6 smartphone.

Test Procedure: To demonstrate the attack, we generate five

different types of traffic using a phone connected to the

femtocell. Four types of traffic are generated by using the

phone for SMS messages, MMS messages, phone calls and

web browsing. The last type is generated by taking actions

that relate to the network (e.g. moving the device outside the

coverage range of the femtocell, turning the phone on/off, . . . ).

We recorded timestamps for the start and end of the activities.

These timestamps represent ground-truth for the events up to

some small gap between, say, pressing “off” and the phone

powering down. We describe our analysis of the packet traces,

in comparison to the logged events.

B. Traffic Features

We consider three sources of information for the traffic

analysis. The first is traffic timing information, as we record

accurate timestamps for the arrival of each packet. We expect

that, for example, during a voice call we will see frequent

packet transmissions. The second source of information we

consider is packet size. We expect to see small packets for

a voice call or an SMS message, while web-browsing or

multimedia messages (MMS) tend to generate large packets.

The final source of information that we consider is the IP Type

Of Service (TOS) field (or Differentiated Services Code Point).

This field indicates if the packet wants special treatment from

the network (e.g. Expedited Forwarding), and so cannot be

encrypted. We expect that voice packets may request higher

priority handling than, say, an SMS message.

Figure 2(a) shows the number of packets per second re-

ceived/sent by the femtocell over a traffic trace. The number

is calculated using bins covering a duration of 5s. The recorded

timestamps for various events, such as the start/end of calls,

start/end of web browsing, sending of messages, etc. are

shown using stem plots below the axis. The plots show a

good correspondence between the activities and the number

of packets sent. As we expect, events such as web browsing

or calls correspond to high PPS rates, and other events cause

small but noticeable increases above the baseline. Note that not

all the network management events, such as joining/leaving

the cell, cause a change in the number of packets per second.

In some cases a delay is observed: powering on a phone

may result in network activity several seconds later. This may

be because the phone does not immediately connect to the

femtocell after booting.

Figure 2(b) shows the size of packets sent over time.

A clear data signature is present here, showing that during

web browsing a significant number of large packets are sent

and received. Similarly, as we expect, there is a pattern of

large packets being sent but not received when an MMS is

transmitted. There is also a clear pattern in the packet sizes

being sent at the start of each call, during each call and when

an SMS is sent. This is highlighted in Fig. 3.

Fig. 3. Close-up of packet sizes that are produced during a phone call.

Moving to Figure 2(c), which shows the frequency of

particular TOS values over 10s intervals. Visual inspection of

these feature shows strong correlation between the different

data classes and TOS activity. For example, the TOS SRC 72

feature shows strong activity for the start and end of phone

calls, TOS SRC 184 shows strong activity during calls and

TOS DST 0 shows strong activity for phone calls and web

browsing. Other values don’t show an obvious correlation with

the events, e.g. TOS SRC 192 has a periodic nature, possibly

indicating that this is used for network monitoring or reporting.

C. Automatic Classification

Based on our findings, we devised a threshold-based classi-

fication algorithm operating on 10s intervals, without keeping
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(a) Packets per second vs. time for traffic to the femtocell (above) and from the femtocell (below), calculated with 5s bins.

(b) Packet size vs. time for packet to the femtocell (above) and from the femtocell (below).

(c) TOS field labels frequency vs. time for packet to/from the femtocell. 10s bins.

Fig. 2. Features identified for Traffic Analysis. Bin sizes are selected to provide clear features.

state between intervals. Threshold values were inferred from

empirical observations of real data traces. Pseudocode for this

algorithm is shown in Figure 4. The algorithm begins by

discarding certain background traffic, based on packet size and

TOS. It then looks for signatures for each activity based on

numbers of packets with particular size and TOS.

Comparison of the output of the algorithm and the logged

list of events indicates that even this simple algorithm can
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for each (10s interval) {

Remove background traffic (size, TOS, direction)

Count number_of packets for each (TOS, direction)

Store largest packet size for each (TOS, direction)

if (number_of (TOS 184,SRC) packets > 1)

event "Call in progress";

if (number_of (TOS 0,SRC) packets > 0) {

if (largest (TOS 0, SRC|DST) > 800)

event "Web session in progress";

else if (largest (TOS 0, DST) > 800)

event "Recv MMS in progress";

else if (largest (TOS 0, SRC) > 800)

event "Send MMS in progress";

else

event "Small Data/MMS in progress";

}

if (number_of (TOS 74) > 0 &&

number_of (TOS 0|72|184, SRC) == 0)

event "Signaling or SMS";

}

Fig. 4. Stateless algorithm for classification of activity.

identify when events occur and can identify events with good

accuracy, despite some ambiguity between Signaling/SMS,

Web/MMS and pre-call signaling/SMS. The ambiguity around

Web/MMS and signaling around a call can be resolved eas-

ily by looking at a series of 10s intervals. Resolving the

signaling/SMS ambiguity may be more challenging, as SMS

messages are a specialised form of signaling in some networks.

A small number of events are not identified, however these

events appear to generate little or no traffic (e.g. leaving the

femtocell’s coverage area). With these provisos, over 15000s

of trace we can correctly identify over 35 events with only

one false positive.

We have established that using features such as PPS, Packet

Size and TOS values collectively, it is possible to classify

the majority of events. While specific details of these might

change in a different femtocell implementation, our analysis

suggests that the attack will remain feasible. It is not difficult to

postulate a supervised or unsupervised classification algorithm

to automatically classify the cellular activities.

III. TWO FEMTOCELL TRAFFIC ANALYSIS

In this section, we consider traffic analysis, where the

attacker has access to two femtocells and monitors both, to

observe temporal correlations of traffic. Though more chal-

lenging for an attacker, this could be used to to identify when

pairs of target users are in communication.

Our experimental setup is similar to that in Section II,

except that we now monitor two femtocells, which we label

Femto 1 and Femto 2, for a period of approximately one

hour. Monitoring takes place at two distinct routers, whose

clocks are synchronised by NTP. In this experiment, the

phones in use at both ends are Apple iPhone 3Gs. A series

of SMS/Calls/MMSes are made between a user at Femtocell

1 to either a user at Femtocell 2, or users external to these

femtocells. A list of events is recorded at Femto 1, with

approximate timestamps shown in Table I.

When we remove the background traffic, the time history of

packet sizes sent from Femto 2 or packets sent to Femto 1 is

shown in Figure 5. We plot the packets at Femto 1 above the

Time Event

0 SMS with internal and External
160 SMS with between Femto 1 & 2
200 Web browsing at Femto 1
270 Call from Femto 1 to External
390 Call from Femto 1 to Femto 2
540 SMS from Femto 1 to External
700 SMS to Femto 1 from External

1060 SMS from Femto 1 to External
1100 Send MMS and SMS from Femto 1 to Femto 2
1280 SMS from Femto 2 to Femto 1
2690 Call from Femto 1 to Femto 2
2820 SMS to Femto 1 from External
3280 Call from Femto 1 to External

TABLE I
EVENTS RECORDED AT FEMTO 1, WITH APPROXIMATE TIMESTAMPS.
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Fig. 5. Time history of packet sizes and TOS from Femto 2 and to Femto
1. The sizes of packets observed at Femto 1 are shown above the axis and
Femto 2 are shown below the axis.

axis, and those at Femto 2 below the axis, so a comparison

can be drawn without the points being overlaid. Though not

shown here, time histories for packets from Femto 1 and to

Femto 2 show similar features.

If we look at the events listed in Table I, we see that for

events just involving Femto 1, there is only traffic above the

axis. For events involving both Femto 1 and 2, there is similar

traffic observed at both Femtocells. For example, at around

270s we see a number of large packets at Femto 1, but no

traffic at Femto 2. This corresponds to a call at Femto 1 to an

external number. Similarly, just before 500s, we see a period

with a long stream of QoS-marked packets at both Femto 1 and

Femto 2. This corresponds to a call through both femtocells.

We use the classifier from Figure 4 to identify the activity in

both Femtocells and then align the classified intervals. We find

that the classifier identifies all events recorded at Femto 1, plus

a small number of additional events at Femto 2 (for example, a

short data session at about 2380s). The events which involve

both Femto 1 and Femto 2 are identified at both ends, and

show strong temporal correlation.

While this demonstrates that it is easy to identify calls and

other events that are common to both femtocells, over a long

period, it is easy to imagine that there will be some false

positives. However, using finer details of each event, it may
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Fig. 6. Time history of packet sizes and TOS from Femto 2 and to Femto
1 during a call. The sizes of packets observed at Femto 1 are shown above
the axis and Femto 2 are shown below the axis.

be possible to eliminate these false positives. For example,

Figure 6 shows the time history of the call which ends just

before 500s. We can see that once the call is fully established

around 405s, there is a strong correlation between the packet

sizes sent from Femto 2 and received at Femto 1. This pattern

is unlikely to be present if we had matched two unrelated

calls which happened to be contemporaneous. This allows us

to identify calls between pairs of users with high confidence.

IV. OTHER SIDE CHANNELS

Beyond traffic analysis, other side channels can be used to

make inferences about the femtocell, which do not require any

modifications. While traffic analysis provides rich information

about activity on the femtocell, other side channels could be

used in the absence of traffic information, or to complement

traffic analysis. The two sources of side information we

consider here are power usage and the status LED.

A. Power consumption

In this section we consider a single femtocell, as described

in Section II. We now monitor power usage at the DC input

on the femtocell using an Energino [9]. The Energino is an

Arduino-based device developed by CREATE-NET which pro-

vides fine-grained high-resolution energy usage measurements.

It powers a device over a standard DC jack and requires no

modification of the monitored device.

Figure 7 shows time histories of power usage of the fem-

tocell when (1) the femtocell is booting; (2) the femto cell is

idle; (3) one call is active; (4) two calls are active and (5) a

data transfer is in progress. Note, gaps are shown between each

time history as the five time histories were not contiguous.

While power usage in situation 3 (one call) and 4 (two calls)

are similar, otherwise there is a significant difference in mean

power usage of at least 0.1W (at 95% confidence). As the

variance of the power usage is small after boot time, it would

be possible to use hypothesis testing to classify the activity on

the device. A more complete model of femtocell power usage

is built in [10]. We conclude that the presence and absence of

calls could be determined using power measurements alone.
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Fig. 7. Power usage of the femtocell under different conditions.

Fig. 8. Status LEDs. Above, LEDs show power and connection to the MNO
are available. Below, device is using the femtocell for call or data session.

B. Status LEDs

A number of status LEDs are present on the femtocell,

including two Ethernet LEDs, a power LED, a system LED

and a phone LED. Figure 8 shows the latter three LEDs. The

documentation indicates that the system LED is lit when a

connection has been established to the MNO. This seems to

indicate that the IPsec session has been established and higher-

layer communication is in progress.

Again, the documentation indicates that the phone LED is lit

when a phone is in use. In practice, it seems to be lit whenever

a device using the femtocell has an active voice/data session

with the femtocell. When used in combination with the fem-

tocell’s ACL, this LED allows us to determine with certainty

if a device on the access list is in range. Though limited,

this information could be combined with traffic analysis to

eliminate false identification of events.

V. DISCUSSION

While we have focused here on identifying types of activity,

we note that there have been recent advances in attacks on

encrypted voice over IP. For example, in certain circumstances

the size of packets from a codec that compresses voice can

be used to identify spoken phrases [11]. Such an attack could

be applied in a femtocell setup. Another extension is to go
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beyond a passive traffic analysis attack by actively generating

traffic, say by calling the monitored device, to determine if it

is in range of the femtocell. The monitoring described here

could also be a prelude to an active attack.

We have seen that monitoring the temporal correlation of

traffic at multiple femtocells could also be used to identify

pairs of target users that are in communication. Such relatively

minor extensions of our basic attack highlight its potential se-

riousness with respect to users’ privacy. For example, consider

two celebrities, whose phone numbers may be known by the

press. By setting up femtocells near each celebrity’s residence,

an attacker can determine when calls and SMS exchanges take

place between them, resulting in a significant loss of privacy.

These problems arise because although the femtocell’s

owner has authorised a device to use the femtocell, the device’s

owner has not authorised the device to connect via the femto-

cell. In WiFi networks, this problem is known as the rogue

access point problem [12]. When we informally surveyed

a number of femtocell offerings, we found no evidence of

systems that require authorisation from devices’ users. Note

that the ACL feature actually exacerbates the problem, because

it allows targeting of devices. By restricting access to the

femtocell to targetted devices, the attacker can eliminate traffic

from other, uninteresting, cellular devices in the vicinity. This

means that we only have to consider one device per-femtocell,

which simplifies the use of traffic analysis or side channels.

Given the seriousness of this attack, it seems important to

provide protection against such traffic analysis. Since seamless

integration is important for femtocell deployment, any solution

must be either transparent to the users or simple to use, as

zero touch installation is target feature of femtocells [4]. We

propose three approaches to mitigate such attacks.

Mitigation Option “Dummy Traffic”: One option is for the

femtocell to continuously generate traffic. However, generating

dummy traffic that does not leak any information about a user’s

activity could be challenging.

Mitigation Option “IMEI/IMSI Verification”: An alternative

is to make it harder to add a device to the femtocell’s ACL

without having legitimate access to the device. A basic ACL

just requires knowledge of the devices cell phone number.

Requiring additional details, such as the International Mobile

Equipment Identity (IMEI) or International Mobile Subscriber

Identity (IMSI) number, increases the barrier to maliciously

adding a device. The IMEI number, which identifies the

device, is easily accessible on most devices and MNOs, and

users are familiar with the idea of using it for blacklisting

stolen phones, for example. However, if access to the femtocell

is tied both to the phone number and the IMEI, the user will

have to update the femto’s ACL whenever they change their

device. The IMSI, which identifies the device’s user via the

SIM card, seems like a better match. However, in practice the

IMSI number is not as broadly accessible on devices and is

not commonly used by end users.

Mitigation Option “User Verification”: This option explicitly

checks that the device’s user wants to use the femtocell. When

a user is added to a femtocell’s ACL, an SMS message could

be sent to the user saying “You have been added to Mallory’s

femtocell. If you trust Mallory and want to use the femtocell,

reply to this text.” In general, users are already familiar with

such explicit opt-in texts. Subsequent management of the list

of opt-in femtocells could be provided via a web interface.

These mitigation techniques provide protection against our

passive attacks, though they are not effective against an

attacker who modifies the femtocell’s hardware or software

[2], [5], [13]. The Dummy Traffic option is unlikely to be

a practical solution to the passive attacks, as it is waste-

ful of backhaul resources and would be less likely to be

accepted by consumers who are paying for data backhaul.

Using IMEI/IMSI Verification or explicit User Verification

both require the user to interact with their phone, and might

be subject to to social engineering attacks or circumvented

if the attacker has temporary access to the device. Overall,

we believe User Verification would offer a good trade-off

between usability and security for most users and addresses the

fundamental issue of the user consenting to use the femtocell.

VI. CONCLUSION

We have shown that femtocells can pose a significant

privacy risk through monitoring of targetted third party cellular

devices. This shortcoming has been overlooked in the litera-

ture. Using empirical data analysis of real femtocell traffic,

we show how to classify between different user activities. We

also consider power usage and status LEDs as an additional

source of information. Lastly, we have proposed solutions to

mitigate against this security problem.
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