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Abstract

We explore a model of stress prediction
in Russian using a combination of lo-
cal contextual features and linguistically-
motivated features associated with the
word’s stem and suffix. We frame this
as a ranking problem, where the objec-
tive is to rank the pronunciation with the
correct stress above those with incorrect
stress. We train our models using a simple
Maximum Entropy ranking framework al-
lowing for efficient prediction. An empiri-
cal evaluation shows that a model combin-
ing the local contextual features and the
linguistically-motivated non-local features
performs best in identifying both primary
and secondary stress.

1 Introduction

In many languages, one component of accurate
word pronunciation prediction is predicting the
placement of lexical stress. While in some lan-
guages (e.g. Spanish) the lexical stress sys-
tem is relatively simple, in others (e.g. En-
glish, Russian) stress prediction is quite com-
plicated. Much as with other work on pro-
nunciation prediction, previous work on stress
assignment has fallen into two camps, namely
systems based on linguistically motivated rules
(Church, 1985, for example) and more recently
data-driven techniques where the models are de-
rived directly from labeled training data (Dou et
al., 2009). In this work, we present a machine-
learned system for predicting Russian stress

which incorporates both data-driven contextual
features as well as linguistically-motivated word
features.

2 Previous Work on Stress
Prediction

Pronunciation prediction, of which stress pre-
diction is a part, is important for many speech
applications including automatic speech recog-
nition, text-to-speech synthesis, and translit-
eration for, say, machine translation. While
there is by now a sizable literature on pronun-
ciation prediction from spelling (often termed
“grapheme-to-phoneme” conversion), work that
specifically focuses on stress prediction is more
limited. One of the best-known early pieces of
work is (Church, 1985), which uses morphologi-
cal rules and stress pattern templates to predict
stress in novel words. Another early piece of
work is (Williams, 1987).

The work we present here is closer in spirit to
data-driven approaches such as (Webster, 2004;
Pearson et al., 2000) and particularly (Dou et
al., 2009), whose features we use in the work
described below.

3 Russian Stress Patterns

Russian stress preserves many features of Indo-
European accenting patterns (Halle, 1997). In
order to know the stress of a morphologically
complex word consisting of a stem plus a suffix,
one needs to know if the stem has an accent,
and if so on what syllable; and similarly for the
suffix. For words where the stem is accented,



acc unacc postacc
Dat Sg гор'оху г'ороду корол'ю

gor’oxu g’orodu korolj’u
Dat Pl гор'охам город'ам корол'ям

gor’oxam gorod’am korolj’am
’pea’ ’town’ ’king’

Table 1: Examples of accented, unaccented and
postaccented nouns in Russian, for dative singular
and plural forms.

this accent overrides any accent that may oc-
cur on the suffix. With unaccented stems, if the
suffix has an accent, then stress for the whole
word will be on the suffix; if there is also no
stress on the suffix, then a default rule places
stress on the first syllable of the word. In ad-
dition to these patterns, there are also postac-
cented words, where accent is placed uniformly
on the first syllable of the suffix — an innova-
tion of East and South Slavic languages (Halle,
1997). These latter cases can be handled by as-
signing an accent to the stem, indicating that it
is associated with the syllable after the stem.
Some examples of each of these classes, from
(Halle, 1997, example 11), are given in Ta-
ble 1. According to Halle (1997), considering
just nouns, 91.6% are accented (on the stem),
6.6% are postaccented and 0.8% are unaccented,
with about 1.0% falling into other patterns.

Stress placement in Russian is important for
speech applications since over and above the
phonetic effects of stress itself (prominence, du-
ration, etc.), the position of stress strongly influ-
ences vowel quality. To take an example of the
lexically unaccented noun город gorod ‘city’,
the genitive singular г'орода g’oroda /g"Or@d@/
contrasts with the nominative plural город'а
gorod’a /g@r2d"a/. All non-stressed /a/ are re-
duced to schwa — or by most accounts if before
the stressed syllable to /2/; see (Wade, 1992).

The stress patterns of Russian suggest that
useful features for predicting stress might in-
clude (string) prefix and suffix features of the
word in order to capture properties of the stem,
since some stems are (un)accented, or of the suf-
fix, since some suffixes are accented.

4 Maximum Entropy Rankers

Similarly to Dou et al. (2009), we frame the
stress prediction problem as a ranking problem.
For each word, we identify stressable vowels and
generate a set of alternatives, each represent-
ing a different primary stress placement. Some
words also have secondary stress which, if it oc-
curs, always occurs before the primary stressed
syllable. For each primary stress alternative,
we generate all possible secondary stressed al-
ternatives, including an alternative that has no
secondary stress. (In the experiments reported
below we actually consider two conditions: one
where we ignore secondary stress in training and
evaluation; and one where we include it.)

Formally, we model the problem using a Maxi-
mum Entropy ranking framework similar to that
presented in Collins and Koo (2005). For each
example, xi, we generate the set of possible
stress patterns Yi. Our goal is to rank the items
in Yi such that all of the valid stress patterns
Y∗
i are above all of the invalid stress patterns.

Our objective function is the likelihood, L of this
conditional distribution:

L =
∏
i

p(Y∗
i |Yi, xi) (1)

logL =
∑
i

log p(Y∗
i |Yi, xi) (2)

=
∑
i

log

∑
y′∈Y∗

i
e
∑

k θkfk(y
′,x)

Z
(3)

Z is defined as the sum of the conditional likeli-
hood over all hypothesized stress predictions for
example xi:

Z =
∑

y′′∈Yi

e
∑

k θkfk(y
′′,x) (4)

The objective function in Equation 3 can be op-
timized using a gradient-based optimization. In
our case, we use a variety of stochastic gradi-
ent descent (SGD) which can be parallelized for
efficient training.

During training, we provide all plausibly cor-
rect primary stress patterns as the positive set
Y∗
i . At prediction-time, we evaluate all possi-

ble stress predictions and pick the one with the



highest score under the trained model Θ:

argmax
y′∈Yi

p(y′|Yi) = argmax
y′∈Yi

∑
k

θkfk(y
′, x) (5)

The primary motivation for using Maximum
Entropy rather the ranking-SVM is for efficient
training and inference. Under the above Max-
imum Entropy model, we apply a linear model
to each hypothesis (i.e., we compute the dot-
product) and sort according to this score. This
makes inference (prediction) fast in comparison
to the ranking SVM-based approach proposed
in Dou et al. (2009).

All experiments presented in this paper used
the Iterative Parameter Mixtures distributed
SGD training optimizer (Hall et al., 2010). Un-
der this training approach, per-iteration aver-
aging has a regularization-like effect for sparse
feature spaces. We also experimented with L1-
regularization, but it offered no additional im-
provements.

5 Features

The features used in (Dou et al., 2009) are based
on trigrams consisting of a vowel letter, the pre-
ceding consonant letter (if any) and the follow-
ing consonant letter (if any). Attached to each
trigram is the stress level of the trigram’s vowel
— 1, 2 or 0 (for no stress). For the English word
overdo with the stress pattern 2-0-1, the basic
features would be ov:2, ver:0, and do:1. Notat-
ing these pairs as si : tik, where si is the triple,
ti is the stress pattern and i is the position in
the word, the complete feature set is given in
Table 2, where the stress pattern for the whole
word is given in the last row as t1t2...tN . Dou
and colleagues use an SVM-based ranking ap-
proach, so they generated features for all pos-
sible stress assignments for each word, assign-
ing the highest rank to the correct assignment.
The ranker was then trained to associate feature
combinations to the correct ranking of alterna-
tive stress possibilities.

Given the discussion in Section 3, plausible
additional features are all prefixes and suffixes
of the word, which might be expected to better
capture some of the properties of Russian stress

Substring si, ti
si, i, ti

Context si1, ti
si1si, ti
si+1, ti
sisi+1, ti
si1sisi+1, ti

Stress Pattern t1t2...tN

Table 2: Features used in (Dou et al., 2009, Table 2).

vowel а,е,и,о,у,э,ю,я,ы
stop б,д,г,п,т,к
nasal м,н
fricative ф,с,ш,щ,х,з,ж
hard/soft ъ,ь
yo ё
semivowel й,в
liquid р,л
affricate ц,ч

Table 3: Abstract phonetic classes used for con-
structing “abstract” versions of a word. Note that
etymologically, and in some ways phonologically, в v
behaves like a semivowel in Russian.

patterns discussed above, than the much more
local features from (Dou et al., 2009). In this
case for all stress variants of the word we collect
prefixes of length 1 through the length of the
word, and similarly for suffixes, except that for
the stress symbol we treat that together with
the vowel it marks as a single symbol. Thus for
the word gorod’a, all prefixes of the word would
be g, go, gor, goro, gorod, gorod’a.

In addition, we include prefixes and suffixes
of an “abstract” version of the word where most
consonants and vowels have been replaced by
a phonetic class. The mappings for these are
shown in Table 3.

Note that in Russian the vowel ё /jO/ is always
stressed, but is rarely written in text: it is usu-
ally spelled as е, whose stressed pronuncation is
/(j)E/. Since written е is in general ambiguous
between е and ё, when we compute stress vari-
ants of a word for the purpose of ranking, we
include both variants that have е and ё.



6 Data

Our data were 2,004,044 fully inflected words
with assigned stress expanded from Zaliznyak’s
Grammatical Dictionary of the Russian Lan-
guage (Zaliznyak, 1977). These were split ran-
domly into 1,904,044 training examples and
100,000 test examples. The 100,000 test ex-
amples obviously contain no forms that were
found in the training data, but most of them
are word forms that derive from lemmata from
which some training data forms are also derived.
Given the fact that Russian stress is lexically
determined as outlined in Section 3, this is per-
fectly reasonable: in order to know how to stress
a form, it is often necessary to have seen other
words that share the same lemma. Nonetheless,
it is also of interest to know how well the system
works on words that do not share any lemmata
with words in the training data. To that end, we
collected a set of 248 forms that shared no lem-
mata with the training data. The two sets will
be referred to in the next section as the “shared
lemmata” and “no shared lemmata” sets.

7 Results

Table 4 gives word accuracy results for the dif-
ferent feature combinations, as follows: Dou et
al’s features (Dou et al., 2009); our affix fea-
tures; our affix features plus affix features based
on the abstract phonetic class versions of words;
Dou et al’s features plus our affix features; Dou
et al’s features plus our affix features plus the
abstract affix features.

When we consider only primary stress (col-
umn 2 in Table 4, for the shared-lemmata test
data, Dou et al’s features performed the worst
at 97.2% accuracy, with all feature combina-
tions that include the affix features performing
at the same level, 98.7%. For the no-shared-
lemmata test data, using Dou et al’s features
alone achieved an accuracy of 80.6%. The affix
features alone performed worse, at 79.8%, pre-
sumably because it is harder for them to gener-
alize to unseen cases, but using the abstract af-
fix features increased the performance to 81.0%,
better than that of using Dou et al’s features
alone. As can be seen combining Dou et al’s

Features 1 stress 1+2 stress
shared lemmata

Dou et al 0.972 0.965
Aff 0.987 0.985
Aff+Abstr Aff 0.987 0.985
Dou et al+Aff 0.987 0.986
Dou et al+Aff+Abstr Aff 0.987 0.986

no shared lemmata
Dou et al 0.806 0.798
Aff 0.798 0.782
Aff+Abstr 0.810 0.790
Dou et al+Aff 0.823 0.810
Dou et al+Aff+Abstr Aff 0.839 0.815

Table 4: Word accuracies for various feature combi-
nations for both shared lemmata and no-shared lem-
mata conditions. The second column reports results
where we consider only primary stress, the third col-
umn results where we also predict secondary stress.

features with various combinations of the affix
features improved the performance further.

For primary and secondary stress prediction
(column 3 in the table), the results are over-
all degraded for most conditions but otherwise
very similar in terms of ranking of the features
to what we find with primary stress alone. Note
though that for the shared-lemmata condition
the results with affix features are almost as good
as for the primary-stress-only case, whereas
there is a significant drop in performance for the
Dou et al. features. For the no-shared-lemmata
condition, Dou et al.’s features fare rather bet-
ter compared to the affix features. On the other
hand there is a substantial benefit to combining
the features, as the results for “Dou et al+Aff”
and “Dou et al+Aff+Abstr Aff” show. Note
that in the no-shared-lemmata condition, there
is only one word that is marked with a secondary
stress, and that stress is actually correctly pre-
dicted by all methods. Much of the difference
between the Dou et al. features and the affix
condition can be accounted for by three cases
involving the same root, which the affix condi-
tion misassigns secondary stress to.

For the shared-lemmata task however there
were a substantial number of differences, as one
might expect given the nature of the features.
Comparing just the Dou et al. features and the



all-features condition, systematic benefit for the
all-features condition was found for secondary
stress assignment for productive prefixes where
secondary stress is typically found. For example,
the prefix аэро (‘aero-’) as in а`эродина'мика
(‘aerodynamics’) typically has secondary stress.
This is usually missed by the Dou et al. features,
but is uniformly correct for the all-features con-
dition.

Since the no-shared-lemmata data set is small,
we tested significance using two permutation
tests. The first computed a distribution of scores
for the test data where successive single test ex-
amples were removed. The second randomly
permuted the test data 248 times, after each ran-
dom permutation, removing the first ten exam-
ples, and computing the score. Pairwise t-tests
between all conditions for the primary-stress-
only and for the primary plus secondary stress
predictions, were highly significant in all cases.

We also experimented with a postaccent fea-
ture to model the postaccented class of nouns
described in Section 3. For each prefix of the
word, we record whether the following vowel is
stressed or unstressed. This feature yielded only
very slight improvements, and we do not report
these results here.

8 Discussion

In this paper we have presented a Maximum En-
tropy ranking-based approach to Russian stress
prediction. The approach is similar in spirit to
the SVM-based ranking approach presented in
(Dou et al., 2009), but incorporates additional
affix-based features, which are motivated by lin-
guistic analyses of the problem. We have shown
that these additional features generalize better
than the Dou et al. features in cases where we
have seen a related form of the test word, and
that combing the additional features with the
Dou et al. features always yields an improve-
ment.
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