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Abstract

A major challenge in supervised sentence

compression is making use of rich feature rep-

resentations because of very scarce parallel

data. We address this problem and present

a method to automatically build a compres-

sion corpus with hundreds of thousands of

instances on which deletion-based algorithms

can be trained. In our corpus, the syntactic

trees of the compressions are subtrees of their

uncompressed counterparts, and hence super-

vised systems which require a structural align-

ment between the input and output can be suc-

cessfully trained. We also extend an exist-

ing unsupervised compression method with a

learning module. The new system uses struc-

tured prediction to learn from lexical, syntac-

tic and other features. An evaluation with hu-

man raters shows that the presented data har-

vesting method indeed produces a parallel cor-

pus of high quality. Also, the supervised sys-

tem trained on this corpus gets high scores

both from human raters and in an automatic

evaluation setting, significantly outperforming

a strong baseline.

1 Introduction and related work

Sentence compression is a paraphrasing task where

the goal is to generate sentences shorter than given

while preserving the essential content. A robust

compression system would be useful for mobile de-

vices as well as a module in an extractive sum-

marization system (Mani, 2001). Although a com-

pression may differ lexically and structurally from

the source sentence, to date most systems are ex-

tractive and proceed by deleting words from the

input (Knight & Marcu, 2000; Dorr et al., 2003;

Turner & Charniak, 2005; Clarke & Lapata, 2008;

Berg-Kirkpatrick et al., 2011, inter alia). To de-

cide which words, dependencies or phrases can be

dropped, (i) rule-based approaches (Grefenstette,

1998; Jing & McKeown, 2000; Dorr et al., 2003;

Zajic et al., 2007), (ii) supervised models trained

on parallel data (Knight & Marcu, 2000; Turner &

Charniak, 2005; McDonald, 2006; Gillick & Favre,

2009; Galanis & Androutsopoulos, 2010, inter alia)

and (iii) unsupervised methods which make use of

statistics collected from non-parallel data (Hori &

Furui, 2004; Zajic et al., 2007; Clarke & Lapata,

2008; Filippova & Strube, 2008) have been investi-

gated. Since it is infeasible to manually devise a set

of accurate deletion rules with high coverage, recent

research has been devoted to developing statistical

methods and possibly augmenting them with a few

linguistic rules to improve output readability (Clarke

& Lapata, 2008; Nomoto, 2009).

Supervised models. A major problem for super-

vised deletion-based systems is very limited amount

of parallel data. Many approaches make use of a

small portion of the Ziff-Davis corpus which has

about 1K sentence-compression pairs1. Other main

sources of training data are the two manually crafted

compression corpora from the University of Edin-

burgh (“written” and “spoken”, each approx. 1.4K

pairs). Galanis & Androutsopoulos (2011) attempt

at getting more parallel data by applying a deletion-

based compressor together with an automatic para-

1The method of Galley & McKeown (2007) could benefit

from a larger number of sentences.



phraser and generating multiple alternative com-

pressions. To our knowledge, this extended data set

has not yet been used for successful training of com-

pression systems.

Scarce parallel data makes it hard to go beyond a

small set of features and explore lexicalization. For

example, Knight & Marcu (2000) only induce non-

lexicalized CFG rules, many of which occurred only

once in the training data. The features of McDon-

ald (2006) are formulated exclusively in terms of

syntactic categories. Berg-Kirkpatrick et al. (2011)

have as few as 13 features to decide whether a con-

stituent can be dropped. Galanis & Androutsopou-

los (2010) use many features when deciding which

branches of the input dependency tree can be pruned

but require a reranker to select most fluent com-

pressions from a pool of candidates generated in the

pruning phase, many of which are ungrammatical.

Even further data limitations exist for the algo-

rithms which operate on syntactic trees and refor-

mulate the compression task as a tree pruning one

(Nomoto, 2008; Filippova & Strube, 2008; Cohn &

Lapata, 2009; Galanis & Androutsopoulos, 2010, in-

ter alia). These methods are sensitive to alignment

errors, their performance degrades if the syntactic

structure of the compression is very different from

that of the input. For example, see Nomoto’s 2009

analysis of the poor performance of the T3 system of

Cohn & Lapata (2009) when retrained on a corpus of

loosely similar RSS feeds and news.

Unsupervised models. Few approaches require

no training data at all. The model of Hori & Fu-

rui (2004) combines scores estimated from mono-

lingual corpora to generate compressions of tran-

scribed speech. Adopting an integer linear program-

ming (ILP) framework, Clarke & Lapata (2008) use

hand-crafted syntactic constraints and an ngram lan-

guage model, trained on uncompressed sentences, to

find best compressions. The model of Filippova &

Strube (2008) also uses ILP but the problem is for-

mulated over dependencies and not ngrams. Condi-

tional probabilities and word counts collected from

a large treebank are combined in an ad hoc man-

ner to assess grammatical importance and informa-

tiveness of dependencies. Similarly, Woodsend &

Lapata (2010) formulate an ILP problem to gener-

ate news story highlights using precomputed scores.

Again, an ad hoc combination of the scores learned

independently of the task is used in the objective

function.

Contributions of this paper. Our work is moti-

vated by the obvious need for a large parallel corpus

of sentences and compressions on which extractive

systems can be trained. Furthermore, we want the

compressions in the corpus to be structurally very

close to the input. Ideally, in every pair, the com-

pression should correspond to a subtree of the input.

To this end, our contributions are three-fold:

• We describe an automatic procedure of con-

structing a parallel corpus of 250,000 sentence-

compression pairs such that the dependency

tree of the compression is a subtree of the

source tree. An evaluation with human raters

demonstrates high quality of the parallel data

in terms of readability and informativeness.

• We successfully apply the acquired data to train

a novel supervised compression system which

produces readable and informative compres-

sions without employing a separate reranker.

In particular, we start with the unsupervised

method of Filippova & Strube (2008) and re-

place the ad hoc edge weighting with a lin-

ear function over a rich feature representation.

The parameter vector is learned from our cor-

pus specifically for the compression task us-

ing structured prediction (Collins, 2002). The

new system significantly outperforms the base-

line and hence provides further evidence for the

utility of the parallel data.

• We demonstrate that sparse lexical features are

very useful for sentence compression, and that

a large parallel corpus is a requirement for ap-

plying them successfully.

The compression framework we adopt and the un-

supervised baseline are introduced in Section 2, the

training algorithm for learning edge weights from

parallel data is described in Section 3. In Section

4 we explain how to obtain the data and present an

evaluation of its quality. In Section 5 we compare

the baseline with our system and report the results

of an experiment with humans as well as the results

of an automatic evaluation.



2 Framework and baseline

We adopt the unsupervised compression framework

of Filippova & Strube (2008) as our baseline and ex-

tend it to a supervised structured prediction problem.

In the experiments reported by Filippova & Strube

(2008), the system was evaluated on the Edinburgh

corpora. It achieved an F-score (Riezler et al., 2003)

higher than reported by other systems on the same

data under an aggressive compression rate and thus

presents a competitive baseline.

Tree pruning as optimization. In this framework,

compressions are obtained by deleting edges of the

source dependency structure so that (1) the retained

edges form a valid syntactic tree, and (2) their to-

tal edge weight is maximized. The objective func-

tion is defined over set X = {xe, e ∈ E} of bi-

nary variables, corresponding to the set E of the

source edges, subject to the structural and length

constraints,

F (X) =
∑

e∈E

xe × w(e) (1)

Here, w(e) denotes the weight of edge e. This con-

strained optimization problem is solved under the

tree structure and length constraints using ILP. If xe
is resolved to 1, the respective edge is retained, oth-

erwise it is deleted. The tree structure constraints en-

force at most one parent for every node and structure

connectivity (i.e., no disconnected subtrees). Given

that length(node(e)) denotes the length of the node

to which edge e points and α is the maximum per-

mitted length for the compression, the length con-

straint is simply

∑

e∈E

xe × length(node(e)) ≤ α (2)

Word limit is used in the original paper, whereas we

use character length which is more appropriate for

system comparisons (Napoles et al., 2011). If uni-

form weights are used in Eq. (1), the optimal so-

lution would correspond to a subtree covering as

many edges as possible while keeping the compres-

sion length under given limit.

The solution to the surface realization problem

(Belz et al., 2011) is standard: the words in the com-

pression subtree are put in the same order they are

found in the source.

Due to space limitations, we refer the reader to

(Filippova & Strube, 2008) for a detailed descrip-

tion on the method. Essential for the present discus-

sion is that source dependency trees are transformed

to dependency graphs in that (1) auxiliary, deter-

miner, preposition, negation and possessive nodes

are collapsed with their heads; (2) prepositions re-

place labels on the edges to their arguments; (3) the

dummy root node is connected with every inflected

verb. Figures 1(a)-1(b) illustrate most of the trans-

formations. The transformations are deterministic

and reversible, they can be implemented in a single

top-down tree traversal2.

The set E of edges in Eq. (1) is thus the set of

edges of the transformed dependency graph, like in

Fig. 1(b). A benefit of the transformations is that

function words and negation appear in the compres-

sion if and only if their head words are present.

Hence no separate constraints are required to en-

sure that negation or a determiner is preserved. The

dummy root node makes constraint formulation eas-

ier and also allows for the generation of compres-

sions from any finite clause of the source.

The described pruning optimization framework

is used both for the unsupervised baseline and for

our supervised system. The difference between the

baseline and our system is in how edge weights,

w(e)’s in Eq. (1), are instantiated.

Baseline edge weights. The precomputed edge

weights reflect syntactic importance as well as infor-

mativeness of the nodes they point to. Given edge

e from head node h to node n, the edge weight is

the product of the syntactic and the informativeness

weights,

w(e) = wsynt(e)× winfo(e) (3)

The syntactic weight is defined as

wsynt(e) = P (label(e)|lemma(h)) (4)

For example, verb kill may have multiple argu-

ments realized with dependency labels subj, dobj, in,

etc. However, these argument labels are not equally

likely, e.g., P (subj|kill) > P (in|kill). When forced

to prune an edge, the system would prefer to keep

2Some of the transformations are comparable to what is im-

plemented in the Stanford parser (de Marneffe et al., 2006).



Britain ’s Ministry of Defense says a British soldier was killed in a roadside blast in southern Afghanistan
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(d) Tree of extracted headline with transformations undone

Figure 1: Source, transformed and extracted trees given headline British soldier killed in Afghanistan

the subject edge over the preposition-in edge since it

contributes more weight to the objective function.

The informativeness score is inspired by Wood-

send & Lapata (2012) and is defined as

winfo(e) =
Pheadline(lemma(n))

Particle(lemma(n))
(5)

This weight tells us how likely it is that a word

from an article appears in the headline. For exam-

ple, given two edges one of which points to verb say

and another one to verb kill, the latter would be pre-

ferred over the former because kill is more “head-

liny” than say. When collecting counts for the syn-

tactic and informativeness scores, we used 9M news

articles crawled from the Internet, much more than

Filippova & Strube (2008). As a result our estimates

are probably more accurate than theirs.

Although both wsynt and winfo have a meaning-

ful interpretation, there is no guarantee that product

is the best way to combine the two when assign-

ing edge weights. Also, it is unclear how to inte-

grate other signals, such as distance to the root, node

length or information about the siblings, which pre-

sumably all play a role in determining the overall

edge importance.

3 Learning edge weights

Our supervised system differs from the unsupervised

baseline in that instead of relying on precomputed

scores, we define edge weight w(e) in Eq. (1) with a

linear function over a feature representation,

w(e) = w · f(e) (6)

Here f(e) is a vector of binary variables for every

feature from the set of all possible but very infre-

quent features in the training set. f(e) has 1 for every

feature extracted for edge e and zero otherwise.

Table 1 gives an overview of the feature types

we use (edge e points from head h to node n).

Note that syntactic, structural and semantic features

are closed-class. For all the structural features but

char length, seven is used as maximum possible

value; all possible character lengths are bucketed

into six classes. All the features are local – for a

given edge, contextual information is included about



syntactic label(e); for e* to h, label(e*); pos(h); pos(n)

structural depth(n); #children(n); #children(h); char length(n); #words in(n)

semantic NE tag(h); NE tag(n); is negated(n)

lexical lemma(n); lemma(h)-label(e); for e* to n’s siblings, lemma(h)-label(e*)

Table 1: Types of features extracted for edge e from h to n

the head and the target nodes, and the siblings as

well as the children of the latter. The negation fea-

ture is only applicable to verb nodes which contain

a negative particle, like not, after the tree transfor-

mations. Lexical features which combine lemmas

and syntactic labels are inspired by the unsupervised

baseline and are very sparse.

In what follows, our assumption is that we have a

compression corpus at our disposal where for every

input sentence there is a correct “oracle” compres-

sion such that its transformed parse tree matches a

subtree of the transformed input graph. Given such

a corpus, we can apply structured prediction meth-

ods to learn the parameter vector w. In our study

we employ an averaged variant of online structured

perceptron (Collins, 2002). In the context of sen-

tence fusion, a similar dependency structure prun-

ing framework and a similar learning approach was

adopted by Elsner & Santhanam (2011).

At every iteration, for every input graph, we find

the optimal solution with ILP under the current pa-

rameter vector w. The maximum permitted com-

pression length is set to be the same as the length

of the oracle compression. Since the oracle com-

pression is a subtree of the input graph, it represents

a feasible solution for ILP. The parameter vector is

updated if there is a mismatch between the predicted

and the oracle sets of edges for all the features with

a non-zero net count. More formally, given an input

graph with the set of edges E, oracle compression

C ⊂ E and compression Ct ⊆ E predicted at itera-

tion t , the parameter update vector at t+ 1 is given

by

wt+1 = wt +
∑

e∈C\Ct

f(e)−
∑

e∈Ct\C

f(e) (7)

w is averaged over all the wt’s so that features

whose weight fluctuated a lot during training are pe-

nalized (Freund & Shapire, 1999).

Of course, training a model with a large number

of features, such as a lexicalized model, is only pos-

sible if there is a large compression corpus where

the dependency tree of the compression is a subtree

of the source sentence. In the next section we in-

troduce our method of getting a sufficient amount of

such data.

4 Acquiring parallel data automatically

In this section we explain how we obtained a parallel

corpus of sentences and compressions. The underly-

ing idea is to harvest news articles from the Internet

where the headline appears to be similar to the first

sentence and use it to find an extractive compression

of the sentence.

Collecting headline-sentence pairs. Using a

news crawler, we collected a corpus of news arti-

cles in English from the Internet. Similarly to previ-

ous work (Dolan et al., 2004; Wubben et al., 2009;

Bejan & Harabagiu, 2010, inter alia), the Google

News service3 was used to identify news. From ev-

ery article, the headline and the first sentence, which

are known to be semantically similar (Dorr et al.,

2003), were extracted. Predictably, very few head-

lines are extractive compressions of the first sen-

tence, therefore simply looking for pairs where the

headline is a subsequence of the words from the first

sentence would not solve the problem of getting a

large amount of parallel data. Importantly, headlines

are syntactically quite different from “normal” sen-

tences. For example, they may have no main verb,

omit determiners and appear incomplete, making it

hard for a supervised deletion-based system to learn

useful rules. Moreover, we observed poor parsing

accuracy for headlines which would make syntactic

annotations for headlines hardly useful.

Thus, instead of taking the headline as it is, we use

it to find a proper extractive compression of the sen-

3http://news.google.com, Jan-Dec 2012.



tence by matching lemmas of content words (nouns,

verbs, adjectives, adverbs) and coreference IDs of

entities from the headline with those of the sentence.

The exact procedure is as follows (H, S and T stand

for headline, sentence and transformed graph of the

sentence):

PREPROCESSING H and S are preprocessed in a

standard way: tokenized, lemmatized, PoS and NE

tagged. Additionally, S is parsed with a dependency

parser (Nivre, 2006) and transformed as described in

Section 2 to obtain T. Finally, pronominal anaphora

is resolved in S. Recall that S is the first sentence,

so the antecedent must be located in a preceding,

higher-level clause.

FILTERING To restrict the corpus to grammatical

and informative headlines, we implemented a cas-

cade of filters. Pair (H, S) is discarded if any of the

questions in Table 2 is answered positively.

Is H a question?

Is H or S too short? (less than four word tokens)

Is H about as long as S? (min ratio: 1.5)

Does H lack a verb?

Does H begin with a verb?

Is there a noun, verb, adj, adv lemma from H

not found in S?

Are the noun, verb, adj, adv lemmas from H

found in S in a different order?

Table 2: Filters applied to candidate pair (H, S)

MATCHING Given the content words of H, a sub-

set of nodes in T is selected based on lemma or

coreference identity of the main (head) word in the

nodes. For example, the main word of a collapsed

node in T, which covers two words was killed, is

killed; was is its child attached with label aux in the

untransformed parse tree. This node is marked if H

contains word killed or killing because of the lemma

identity. In some cases there are multiple possible

matches. For example, given S Barack Obama said

he will attend G20 and H mentioning Obama, both

Barack Obama and he nodes are marked in T. Once

all the nodes in T which match content words and

entities from H are identified, a minimum subtree

covering these nodes is found such that every word

or entity from H occurs as many times in T as in

H. So if H mentions Obama only once, then either

Barack Obama or he must be covered by the subtree

but not both. This minimum subtree corresponds to

an extractive headline, H*, which we generate by

ordering the surface forms of all the words in the

subtree nodes by their offsets in S. Finally, the char-

acter length of H* is compared with the length of

H. If H* is much longer than H, the pair (H, S) is

discarded (max ratio 1.5).

As an illustration to the procedure, consider the

example from Figure 1 with the extracted headline

and its tree presented in Figure 1(c). Given the

headline British soldier killed in Afghanistan, the

extracted headline would be A British soldier was

killed in a blast in Afghanistan. The lemmas british,

soldier, kill, afghanistan from the headline match the

nodes British, a soldier, was killed, in Afghanistan

in the transformed graph. The node in a blast is

added because it is on the path from was killed to in

Afghanistan. Of course, it is possible to determinis-

tically undo the transformations in order to obtain a

standard dependency tree. In this case the extracted

headline would still correspond to a subtree of the

input (compare Fig. 1(d) with Fig. 1(a)). Also note

that a similar procedure can be implemented for con-

stituency parses.

The resulting corpus consists of 250K tuples (S,

T, H, H*), Appendix provides more examples of

source sentences, original headlines and extracted

headlines. We did not attempt to tune the values for

minimum/maximum length and ratio – lower thresh-

olds may have produced comparable results.

Evaluating data quality. The described proce-

dure produces a comparatively large compression

corpus but how good are automatically constructed

compressions? To answer this question, we ran-

domly selected 50 tuples from the corpus and set up

an experiment with human raters to validate and as-

sess data quality in terms of readability4 and infor-

mativeness5 which are standard measures of com-

pression quality (Clarke & Lapata, 2006). Raters

were asked to read a sentence and a compression

(original H or extracted H* headline) and then rate

the compression on two five-point scales. Three rat-

ings were collected for every item. Table 3 gives

4Also called grammaticality and fluency.
5Also called importance and representativeness.



average ratings with standard deviation.

AVG read AVG info

ORIG. HEADLINE 4.36 (0.75) 3.86 (0.79)

EXTR. HEADLINE 4.26 (1.01) 3.70 (1.04)

Table 3: Results for two kinds of headlines

In terms of readability and informativeness the

extracted headlines are comparable with human-

written ones: at 95% confidence there is no statis-

tically significant difference between the two.

Encouraged by the results of the validation exper-

iment we proceeded to our next question: Can a su-

pervised compression system be successfully trained

on this corpus?

5 System evaluation and discussion

From the corpus of 250K tuples we used 100K to

get pairs of extracted headlines and sentences for

training (on the development set we did not observe

much improvement from using more training data),

250 for development and the rest for testing. We

ran the learning algorithm for 20 iterations, checking

the performance on the development set. Features

which applied to less than 20 edges were pruned,

the size of the feature set is about 28K.

5.1 Evaluation with humans

50 pairs of original headlines and sentences (differ-

ent from the data validation set in Sec. 4) were ran-

domly selected for an evaluation with humans from

the test data. As in the data quality validation ex-

periment, we asked raters to assess the readability

and informativeness of proposed compressions for

the unsupervised system, our system and human-

written headlines. The latter provide us with upper

bounds on the evaluation criteria. Three ratings per

item per parameter were collected. To get compara-

ble results, the unsupervised and our systems used

the same compression rate: for both, the requested

maximum length was set to the length of the head-

line. Table 4 summarizes the results.

The results indicate that the trained model signifi-

cantly outperforms the unsupervised system, getting

particularly good marks for readability. The differ-

ence in readability between our system and original

headlines is not statistically significant. Note that

AVG read AVG info

ORIG. HEADLINE 4.66† 4.10†‡

OUR SYSTEM 4.30† 3.52†

UNSUP. SYSTEM 3.70 2.70

Table 4: Results for the systems and original headline: †

and ‡ stand for significantly better than Unsupervised and

Our system at 95% confidence, respectively

the unsupervised baseline is also capable of generat-

ing readable compressions but does a much poorer

job in selecting most important information. Our

trained model successfully learned to optimize both

scores. We refer the reader to Appendix for input

and compression examples. Note that the ratings for

the human-written headlines in this experiment are

slightly different from the ratings in the data valida-

tion experiment because a different data sample was

used.

5.2 Automatic evaluation

Our automatic evaluation had the goal of explic-

itly addressing two relevant questions related to our

claims about (1) the benefits of having a large paral-

lel corpus and (2) employing a supervised approach

with a rich feature representation.

1. Our primary motivation for collecting parallel

data has been that having access to sparse lex-

ical features, which considerably increase the

feature space, would benefit compression sys-

tems. But is it really the case for sentence com-

pression? Can a comparable performance be

achieved with a closed, moderately sized set of

dense, non-lexical features? If yes, then a large

compression corpus is probably not needed.

Furthermore, to demonstrate that a large corpus

is not only sufficient but also necessary to learn

weights for thousands of features, we need to

compare the performance of the system when

trained on the full data set and a small portion

of it.

2. The syntactic and informativeness scores in Eq.

(3) were calculated over millions of news arti-

cles and do provide us with meaninful statis-

tics (see Sec. 2). Is there any benefit in re-

placing those scores with weights learned for



their feature counterparts? Recall that one of

our feature types in Table 1 is the concate-

nation of lemma(h) (parent lemma) and la-

bel(e) which relies on the same information

as wsynt = P (label(e)|lemma(h)). The fea-

ture counterpart of winfo defined in Eq. (5) is

lemma(n)–the lemma of the node to which edge

points. How would the supervised system per-

form against the unsupervised one, if it only ex-

tracted features of these two types?

To answer these questions, we sampled 1,000 tu-

ples from the unused test data and measured F1

score (Riezler et al., 2003) by comparing the trees

of the generated compression and the “correct”, ex-

tracted headline. The systems we compared are the

unsupervised baseline (UNSUP. SYSTEM) and the

supervised model trained on three kinds of feature

sets: (1) SYNT-INFO FEATURES, corresponding to

the supervised training of the unsupervised base-

line model (i.e., lemma(h)-label(e) and lemma(n));

(2) NON-LEX FEATURES, corresponding to a dense,

non-lexical feature representation (i.e., all the fea-

ture types from Table 1 excluding the three involv-

ing lemmas); (3) ALL FEATURES (same as OUR

SYSTEM). Additionally, we trained the system on

10% of the data–10K as opposed to 100K tuples,

ALL FEATURES (10K)–for 20 iterations ignoring

features which applied to less than three edges6. As

before, the same compression rate was used for all

the systems. The results are summarized in Table 5.

F1 score #features

UNSUP. SYSTEM 52.3 N.A.

SYNT-INFO FEATURES 75.0 12,490

NON-LEX FEATURES 79.6 330

ALL FEATURES 84.3 27,813

ALL FEATURES (10K) 81.4 22,529

Table 5: Results for the unsupervised baseline and the

supervised system trained on three kinds of feature sets

Clearly, having more features, lexicalized and un-

lexicalized, is important: there is a significant im-

6Recall from the beginning of the section that for the full

(100K) training set the threshold was set to 20 with no tuning.

For the 10K training set, we tried values of two, three, five and

varied the number of iterations. The result we report is the high-

est we could get for 10K.

provement in going beyond the closed set of 330

non-lexical features to all, from 79.6 to 84.3 points.

Moreover, successful training requires a large cor-

pus since the performance of the system degrades if

only 10K training instances are used. Note that this

number already exceeds all the existing compression

corpora taken together. Hence, sparse lexical fea-

tures are useful for compression and a large paral-

lel corpus is a requirement for successful supervised

training.

Concerning our second question, learning feature

weights from the data produces significantly better

results than the hand-crafted way of making use of

the same information, even if a much larger data

set is used to collect statistics. We observed a dra-

matic increase from 52.3 to 75.0 points. Thus, we

may conclude that training with dense and sparse

features directly from data definitely improves the

performance of the dependency pruning system.

5.3 Discussion

It is important to note that the data we used is chal-

lenging: first sentences in news articles tend to be

long, in fact longer than other news sentences, which

implies less reliable syntactic analysis and noisier

input to the syntax-based systems. In the test set

we used for the evaluation with humans, the mean

sentence length is 165 characters. The average com-

pression rate in characters is 0.46 ± 0.16 which is

quite aggressive7. Recall that we used the very same

framework for the unsupervised baseline and our

system as well as the same compression rate. All the

preprocessing errors affect both systems equally and

the comparison of the two is fair. Predictably, wrong

syntactic parses significantly increase chances of an

ungrammatical compression, and parser errors seem

to be a major source of readability deficiencies.

A property of the described compression frame-

work is that a desired compression length is ex-

pected to be provided by the user. This can be seen

both as a strength and as a weakness, depending on

the application. In a scenario where mobile devices

with a limited screen size are used, or in a summa-

rization scenario where a total summary length is

provided (see the DUC/TAC guidelines8), being able

7We follow the standard terminology where smaller values

imply shorter compressions.
8http://www.nist.gov/tac/



to specify a length is definitely an advantage. How-

ever, one can also think of other applications where

the user does not have a strict length constraint but

wants the text to be somewhat shorter. In this case,

a reranker which compares compressions generated

for a range of possible lengths can be employed to

find a single compression (e.g., mean edge weight in

the solution or a language model-based score).

6 Conclusions

We have addressed a major problem for supervised

extractive compression models – the lack of a large

parallel corpus. To this end, we presented a method

to automatically build such a corpus from web doc-

uments available on the Internet. An evaluation

with humans demonstrates that the quality of the

corpus is high – the compressions are grammati-

cal and informative. We also significantly improved

a competitive unsupervised method achieving high

readability and informativeness scores by incorpo-

rating thousands of features and learning the feature

weights from our corpus. This result further con-

firms the practical utility of the automatically ob-

tained data. We have shown that employing lexi-

cal features is important for sentence compression,

and that our supervised module can successfully

learn their weights from the corpus. To our knowl-

edge, we are the first to empirically demonstrate that

sparse features are useful for compression and that a

large parallel corpus is a requirement for a success-

ful learning of their weights. We believe that other

supervised deletion-based systems can benefit from

our work.
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Appendix

The appendix presents examples of source sentences

(S), original headlines (H), extracted headlines (H*),

unsupervised baseline (U) and our system (O) com-

pressions.
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S Country star Sara Evans has married former University of Alabama quarterback Jay Barker.

H Country star Sara Evans marries

H* Country star Sara Evans has married

U Sara Evans has married Jay Barker

O Sara Evans has married Jay Barker

S Intel would be building car batteries, expanding its business beyond its core strength, the company said in a statement

H Intel to build car batteries

H* Intel would be building car batteries

U would be building the company said

O Intel would be building car batteries

S A New Orleans Saints team spokesman says tight end Jeremy Shockey was taken to a hospital but is doing fine.

H Spokesman: Shockey taken to hospital, doing fine

H* spokesman says Jeremy Shockey was taken to a hospital but is doing fine

U A New Orleans Saints team spokesman says Jeremy Shockey was taken

O tight end Jeremy Shockey was taken to a hospital but is doing fine

S President Obama declared a major disaster exists in the State of Florida and ordered Federal aid to supplement

State and local recovery efforts in the area struck by severe storms, flooding, tornadoes, and straight-line winds

beginning on May 17, 2009, and continuing.

H President Obama declares major disaster exists in the State of Florida

H* President Obama declared a major disaster exists in the State of Florida

U President Obama declared a major disaster exists and ordered Federal aid

O President Obama declared a major disaster exists in the State of Florida

S Regulators Friday shut down a small Florida bank, bringing to 119 the number of US bank failures this year amid

mounting loan defaults.

H Regulators shut down small Florida bank

H* Regulators shut down a small Florida bank

U shut down bringing the number of failures

O Regulators shut down a small Florida bank

S Three men were arrested Wednesday night and Dayton police said their arrests are in connection to a west Dayton

bank robbery.

H 3 men arrested in connection with Bank robbery

H* Three men were arrested are in connection to a bank robbery

U were arrested and Dayton police said their arrests are

O Three men were arrested and police said their arrests are

S The government and the social partners will resume the talks on the introduction of the so-called crisis tax,

which will be levied on all salaries, pensions and incomes over HRK 3,000.

H Government, social partners to resume talks on introduction of “crisis” tax.

H* The government and the social partners will resume the talks on the introduction of the crisis tax

U The government will resume the talks on the introduction of the crisis tax which will be levied

O The government and the social partners will resume the talks on the introduction of the crisis tax

S England star David Beckham may have the chance to return to AC Milan after the Italian club’s coach said

he was open to his move on Sunday.

H Beckham has chance of returning to Milan

H* David Beckham may have the chance to return to AC Milan

U David Beckham may have the chance to return said star was

O David Beckham may have the chance to return to AC Milan

S Eastern Health and its insurance company have accepted liability for some patients involved in the breast cancer

testing scandal, according to a statement released Friday afternoon.

H Eastern Health accepts liability for some patients

H* Eastern Health have accepted liability for some patients

U Health have accepted liability according to a statement

O Eastern Health have accepted liability for some patients

S Frontier Communications Corp., a provider of phone, TV and Internet services, said Thursday

it has started a cash tender offer to purchase up to $700 million of its notes.

H Frontier Communications starts tender offer for up to $700 million of notes

H* Frontier Communications has started a tender offer to purchase $700 million of its notes

U Frontier Communications said Thursday a provider has started a tender offer

O Frontier Communications has started a tender offer to purchase $700 million of its notes
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