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Abstract—Online video presents a great opportunity for up-
and-coming singers and artists to be visible to a worldwide
audience. However, the sheer quantity of video makes it
difficult to discover promising musicians. We present a novel
algorithm to automatically identify talented musicians using
machine learning and acoustic analysis on a large set of “home
singing” videos. We describe how candidate musician videos
are identified and ranked by singing quality. To this end, we
present new audio features specifically designed to directly
capture singing quality. We evaluate these vis-a-vis a large set
of generic audio features and demonstrate that the proposed
features have good predictive performance. We also show that
this algorithm performs well when videos are normalized for
production quality.
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I. INTRODUCTION AND PRIOR WORK

Video sharing sites such as YouTube provide people ev-
erywhere a platform to showcase their talents. Occasionally,
this leads to incredible successes. Perhaps the best known
example is Justin Bieber, who is believed to have been dis-
covered on YouTube and whose videos have since received
over 2 billion views. However, many talented performers are
never discovered. Part of the problem is the sheer volume
of videos: sixty hours of video are uploaded to YouTube
every minute (nearly ten years of content every day) [23].
This builds a “rich get richer” bias where only those with
a large established viewer base continue to get most of the
new visitors. Moreover, even “singing at home” videos have
a large variation not only in choice of song but also in
sophistication of audio capture equipment and the extent
of postproduction. An algorithm that can analyze all of
YouTube’s daily uploads to automatically identify talented
amateur singers and musicians will go a long way towards
removing these biases. We present in this paper a system that
uses acoustic analysis and machine learning to (a) detect
“singing at home” videos, and (b) quantify the quality of
musical performances therein.

To the best of our knowledge, no prior work exists for this
specific problem, especially given an unconstrained dataset
such as videos on YouTube. While performace quality will

Figure 1. “Singing at home” videos.

always have a large subjective component, one relatively
objective measure of quality is intonation—that is, how in-
tune is a music performance? In the case of unaccompanied
audio, the method in [14] uses features derived both from
intonation and vibrato analysis to automatically evaluate
singing quality from audio. These sorts of features have
also been investigated by music educators attempting to
quantify intonation quality given certain constraints. The
InTune system [1], for example, processes an instrumen-
talist’s recording to generate a graph of deviations from
desired pitches, based on alignment with a known score
followed by analysis of the strongest FFT bin near each
expected pitch. Other systems for intonation visualization
are reviewed in [1]; these differ in whether or not the score is
required and in the types of instruments recognized. Practical
value of such systems on large scale data such as YouTube
is limited because (a) the original recording and/or score
may not be known, and (b) most published approaches for
intonation estimation assume a fixed reference pitch such as
A=440 Hz. Previous work in estimating the reference pitch
has generally been based on FFT or filterbank analysis [8],
[9], [10]. To ensure scalability to a corpus of millions of
videos, we propose a computationally efficient means for



estimating both the reference pitch and overall intonation.
We then use it to construct an intonation-based feature for
musical performance quality.

Another related subproblem relevant to performance qual-
ity is the analysis of melody in audio. There are many
approaches to automatically extracting the melody line from
a polyphonic audio signal (see the review in [15]), ranging
from simple autocorrelation methods [3], [5] to FFT analysis
and more complex systems [16], [18], [22]. Melody extrac-
tion has been a featured task in the MIREX competition in
recent years; the best result so far for singing is the 78%
accuracy obtained by [16] on a standard test set with syn-
thetic (as opposed to natural) accompaniment. This system
combined FFT analysis with heuristics which favor extracted
melodies with typically-musical contours. We present a new
melody-based feature for musical performance quality.

In addition to these new features, the proposed approach
uses a large set of previously published acoustic features
including MFCC, SAI[12], intervalgram[21], volume, and
spectrogram. When identifying candidate videos we also use
video features including HOG [17], CONGAS[19] and Hue-
Saturation color histograms [11].

II. APPROACH

A. Identifying Candidate Videos

We first identify “singing at home” videos. These videos
are correlated with features such as ambient indoor lighting,
head-and-shoulders view of a person singing in front of a
fixed camera, few instruments, and a single dominant voice.
A full description of this stage is beyond this paper’s scope.
We use the approach in [2] to train a classifier to identify
these videos. In brief, we collected a large set of videos that
were organically included in YouTube playlists related to
amateur performances. We then used this as weakly labeled
ground-truth against a large set of randomly picked negative
samples to train a “singing at home” classifier. We use a
combination of audio and visual features including HOG,
CONGAS[19], MFCC, SAI[12], intervalgram[21], volume,
and spectrograms. Our subsequent analyses for feature ex-
traction and singing quality estimation are based on the high
precision range of this classifier. Figure 1 shows a sample
of videos identified by this approach.

B. Feature Extraction

We developed two sets of features, each comprised of 10
floating point numbers. These include an intonation feature
set, intonation, and a melody line feature set, melody.

1) Intonation-based Features:
Intonation Histogram: Considering that for an arbitrary

YouTube video we know neither the tuning reference nor
the desired pitches, we implemented a two step algorithm
to estimate the in-tuneness of an audio recording.

The first step computes a tuning reference (see Figure
2). To this end, we first detect STFT amplitude peaks

Figure 2. Pitch histogram for an in-tune recording.

in the audio (monophonic 22.05 kHz, frame size 4096
samples=186 ms, 5.38 Hz bin size). From these peaks
we construct an amplitude-weighted histogram, and set the
tuning reference to the maximum bin. The second step
makes a histogram of distances from nearest chromatic
pitches using the previously-computed histogram. Note that
this computation is very simple and efficient, compared with
filterbank approaches as in [14], and as it allows for multiple
peaks, it works with polyphonic audio recordings. In this
process we first use the tuning reference to induce a grid
of “correct” pitch frequencies based on an equal-tempered
chromatic scale. Subsequently, we make an amplitude-
weighted histogram of differences from correct frequencies.
Histogram heights are normalized to sum to 1. We used
7 bins to cover each 100 cent range (1 semitone), which
worked out nicely because the middle bin collected pitches
within ±7.1 cents of the correct pitch. The range ±7 cents
was found to sound “in-tune” in experiments [7].

When possible we match audio to known reference tracks
using the method in [21] and use this matching to identify
and remove frames that are primarily non-pitch, such as
talking or rapping, when computing the tuning reference.

Feature Representation: Now we can generate a sum-
mary vector consisting of the 7 heights of the histogram
itself followed by three low-order weighted moments-about-
zero. These statistics (standard deviation, skew, and kurtosis)
describe the data’s deviation from the reference tuning grid.
See Table I.

This set of 10 values, which we refer to collectively as
intonation, gives a summary of the intonation of a recording,
by describing how consistent the peaks of each frame are
with the tuning reference derived from the set of all these
peaks. Figure 3(b) shows the histogram for an out-of-tune
recording. For the high-quality recording in Figure 2(a), the



(a) In-tune (good) audio (b) Out-of-tune (bad) audio
Figure 3. Distance to tuning reference.

bar1 bar2 bar3 bar4 bar5 bar6 bar7 stddev skew kurtosis
In-tune .00 .05 .14 .70 .08 .03 .00 .006 .15 2.34

Out-of-tune .14 .20 .13 .30 .10 .07 .06 .015 -.42 -.87

Table I
INTONATION FEATURE VECTORS FOR FIGURES 3(A) AND 3(B).

central bar of the histogram is relatively high, indicating that
most peaks were for in-tune frequencies. The histogram is
also relatively symmetrical and has lower values for more
out-of-tune frequencies. The high kurtosis and low skew and
standard deviation of the data reflect this. The low-quality
recording, on the other hand, does have a central peak, but
it is much shorter relative to the other bars, and in general
its distribution’s moments do not correspond well with a
normal distribution.

Note that while we expect that asymmetrical, peaked
distribution in this histogram is an indicator of “good
singing”, we do not build in this expectation to our pre-
diction system explicitly; rather, these histogram features
will be provided as input to a machine learning algorithm.
Good performances across different genres of music might
result in differing shapes of the histogram; the system should
learn which shapes to expect based on the training data.
For example, consider the case of music where extensive
pitch-correction has been applied by a system such as Auto-
Tune. We processed several such tracks using this system,
resulting in histograms with a very tall central bar and very
short other bars; almost all notes fell within 7 cents of the
computed reference grid. If listeners rated these recordings
highly, this shape might lead to predictions of high quality
by our system; if listeners disliked this sound, it might have
the inverse effect.

Similarly, consider vocal vibrato. If the extent of vibrato
(the amplitude of modulation of the frequency) is much more

than 50 cents in each direction from the mean frequency of a
note, then this approach will result in a more flat histogram
which might obscure the intonation quality we are trying to
capture. Operatic singing often has vibrato with an extent
of a whole semitone, giving a very flat distribution; early
music performance, on the other hand, is characterized by
very little vibrato. Popular music comprises the bulk of
the music studied here. Although we did not analyze the
average vibrato extent in this collection, an informal look
at histograms produced with this approach suggests that
performances that sound in-tune in our data tend to have
histograms with a central peak. For musical styles with large
vibrato extent, such as opera, we would need to refine our
technique to explicitly model the vibrato in order to recover
the mean fundamental frequency of each note, as in [14]. For
styles with a moderate amount of vibrato, frequency energy
is placed symmetrically about the central histogram bar, and
in-tune singing yields the expected peaked distribution (for
example, if a perfeclty sinusoidal vibrato ranges from 50
cents above to 50 cents below the mean frequency, then
approximately 65% of each note’s duration will be spent
within the middle three bars of the histogram; reducing
the vibrato extent to 20 cents above and below causes all
frequencies of an in-tune note fall within the middle three
bars.)

2) Melody-based Features:
Melody Line: As we are interested in the quality of the

vocal line in particular, a primary goal in analyzing the



singing quality is to isolate the vocal signal. One method for
doing so is to extract the melody line, and to assume that
most of the time, the primary melody will be the singing
part we are interested in. This is a reasonable assumption
for many of the videos we encounter where people have
recorded themselves singing, especially when someone is
singing over a background karaoke track.

Our problem would be made easier if we had access to
a symbolic score (e.g., the sheet music) for the piece being
sung, as in [1]. However, we have no information available
other than the recording itself. Thus we use two ideas to
extract a good candidate for a melody line: the Stabilized
Auditory Image (SAI) [20] and the Viterbi algorithm.

Algorithm: We compute the SAI for each frame of audio,
where we have set the frame rate to 50 frames per second. At
22,050 Hz, this results in a frame size of 441 samples. The
SAI is a matrix with lag times on one axis and frequency
on the other; we convert the lag dimension into a pitch-class
representation for each frame using the method employed in
[21] but without wrapping pitch to chroma. This is a vector
giving strengths in each frequency bin. Our frequency bins
span 8 octaves, and we tried various numbers of bins per
octave such as 12, 24, or 36. In our experiments, 12 bins
per octave gave the best results.

This 96-element vector of bin strengths for each frame
looks much like a spectrogram, although unlike a spectro-
gram, we cannot recover the original audio signal with an
inverse transform. However, the bins with high strengths
should correspond to perceptually salient frequencies, and
we assume that for most frames the singer’s voice will be
one of the most salient frequencies.

We next extract a melody using a best-path approach. We
represent the successive SAI summary vectors as layers in
a trellis graph, where nodes correspond to frequency bins
for each frame and each adjacent pair of layers is fully
connected. We then use the Viterbi algorithm to find the
best path using the following transition score function:

St[i, j] = SAIt[j]− α
(
pm + pl +

|i− j|
T

)
(1)

where

pm =

{
1 if i 6= j
0 otherwise

pl =

{
1 if transition is ≥ 1 octave
0 otherwise

and T is the frame length in seconds. We used α = 0.15 in
our experiments.

Figure 4(a) shows the SAI summary frames and the best
path computed for a professional singer. Figure 4(b) shows
the best path for the recording of an badly-rated amateur
singer. We observed that the paths look qualitatively different
in the two cases, although the difference is hard to describe
precisely. In the professional singer case, the path looks

more smooth and is characterized by longer horizontal bars
(corresponding to single sustained notes) and less vertical
jumps of large distance. Note that this is just an example
suggestive of some potentially useful features to be extracted
below; the training set and learning algorithm will make
use of these features only if they turn out to be useful in
prediction.

Feature Representation: Remembering that our aim was
to study not the quality of the underlying melody of the song,
but instead the quality of the performance, we realized we
could use the shape of the extracted melody as an indicator
of the strength and quality of singing. This idea may
seem counterintuitive, but we are studying characteristics
of the extracted melody—rather than correlation between
the performance and a desired melody—simply because we
do not have access to the sheet music and “correct” notes
of the melody. Obviously, this depends a great deal on the
quality of the melody-extraction algorithm, but because we
are training a classifier based on extraction results, we expect
that even with an imperfect extraction algorithm, useful
trends should emerge that can help distinguish between
low- and high-quality performances. Differences between
songs also obviousy affects global melody contour, but we
maintain that for any given song a better singer should
produce a melody line that is more easily extracted and
which locally conforms better to expected shapes. To study
the shape and quality of the extracted melody, first we define
a “note” to be a contiguous horizontal segment of the note
path, so that each note has a single frequency bin. Then we
compute 10 different statistics at the note level to form the
melody feature vector:

1) Mean and standard deviation of note length (µlen,
σlen)

2) Difference between the standard deviation and mean
3) Mean and standard deviation of note frequency bin

number (µbin, σbin)
4) Mean and standard deviation of note strength (sum of

bin strengths divided by note length) (µstr, σstr)
5) Mean and standard deviation of vertical leap distance

between adjacent notes (in bins) (µleap, σleap)
6) Total Viterbi best path score divided by total number

of frames

The intuition behind this choice of statistics follows. In
comparing Figures 4(a) and 4(b), we see that the path is
more fragmented for the lower-quality performance: there
are more, shorter notes than there should be. Thus, note
length is an obvious statistic to compute. If we assume that
note length is governed by a Poisson process, we would
expect an exponential distribution on note lengths, and the
mean and standard deviation would be about the same.
However, we conjecture that a Poisson process is not the
best model for lengths of notes in musical compositions. If
the best-path chosen by the Viterbi algorithm is more in-line



(a) A better quality recording (b) A lower quality recording
Figure 4. Best-path melody extraction. The best path is shown as a blue line superimposed on the plot. Higher-amplitude frequency bins are shown in
red. Upper and lower frequency bins were cropped for clarity.

µlen σlen σlen − µlen µbin σbin µstr σstr µleap σleap path score
good 71.77 83.71 11.93 37.12 4.00 0.094 0.028 3.44 2.52 32.14

medium 43.64 41.61 -2.02 38.71 2.87 0.105 0.012 3.46 2.18 30.49
bad 45.46 46.08 0.62 38.16 3.84 0.101 0.032 3.84 2.60 32.64

Table II
MELODY FEATURE VECTORS FOR FIGURES 4(A) AND 4(B).

with the correct melody, we would expect a non-exponential
distribution. Thus, the difference between standard deviation
and mean of note length is computed as a useful signal about
the distribution type.

Note strength is also computed because we suspect that
notes with larger amplitude values are more likely to corre-
spond to instances of strong, clear singing. Note frequency
bins are analyzed because vocal performances usually lie
in a certain frequency range; deviations from the range
would be a signal that something went wrong in the melody
detection process and hence that the performance might not
be so good. Leap distance between adjacent notes is a useful
statistic because musical melody paths will follow certain
patterns, whereas problems in the path could show up if the
distribution of leaps is not distributed as expected. Finally,
the average path score per frame from the Viterbi algorithm
is recorded, although it may prove to be a a useless statistic
because it is notoriously hard to interpret path scores from
different data files—more analysis is necessary to determine
which of these features are most useful. Table II gives
examples of these statistics for the paths in Figures 4(a)
and 4(b) as well as for one other medium-quality melody.

C. Performance Quality Estimation

Given a pool of candidate videos our next step is to
estimate the performance quality of each video. For sets
on the order of a hundred videos human ratings could be
used directly for ranking. However, to consider thousands
or more videos we require an automated solution. We train
kernelized passive-aggressive (PA) [6] rankers to estimate

the quality of each candidate video set. We tried several
kernels including linear, intersection, and polynomial and
found that the intersection kernel worked the best overall
Unless noted otherwise we used this kernel in all our
experiments. The training data for these rankers is given
as pairs of video feature sets where one video has been
observed to be higher quality than the other. Given a new
video the ranker generates a single quality score estimate.

III. EXPERIMENTAL RESULTS

A. ”Singing At Home” Video Dataset

We have described two features for describing properties
of a melody, where each feature is a vector of 10 floating
point numbers. To test their utility, the features are used to
predict human ratings on a set of pairs of music videos. This
corpus is composed of over 5,000 pairs of videos, where for
each pair, human judges have selected which video of the
pair is better. Carterette et al. [4] showed that preference
judgements of this type can be more effective than absolute
judgements. Each pair is evaluated by at least 3 different
judges. In this experiment, we only consider the subset of
video pairs where the winner was selected unanimously. Our
training dataset is made of this subset, which comprises
1,573 unique videos.

B. Singing Quality Ranker Training

For each video, we computed intonation and melody
feature vectors described above, as well as a large feature
vector which is composed of other audio analysis features
including MFCC, SAI[12], intervalgram[21], volume, and



Feature Accuracy (%) # dimensions Accuracy gain / # dimensions Rank
intonation 51.9 10 0.1900 2

melody 61.2 10 1.1200 1
large 67.5 14,352 0.0012 9

all 67.8 14,372 0.0012 8
large-MFCC 61.4 2,000 0.0057 5

large-SAI-boxes 66.7 7,168 0.0023 6
large-SAI-intervalgram 58.6 4,096 0.0021 7

large-spectrum 62.7 1,024 0.0124 4
large-volume 59.9 64 0.1547 3

Table III
PREDICTION ACCURACY BY FEATURE SET.

spectrograms. These features are used to train a ranker which
outputs a floating-point score for each input example. In
order to test the ranker, we simply generate the ranking score
for each example in each pair, and choose the higher-scoring
example as the winner. To test the ranker, we compare this
winner to that chosen by unanimous human consent. Thus,
although we use a floating-point ranker as an intermediate
step, the final ranker output is a simple binary choice and
baseline performance is 50%.

C. Prediction Results

Training consisted of 10-fold cross-validation. The per-
centages given below are the mean accuracies over the 10
cross-validation folds, where accuracy is computed as the
number of correct predictions of the winner in a pair divided
by the total number of pairs. Overall, large yields the best
accuracy, 67.5%, melody follows with 61.2%, and intonation
achieves just 51.9% accuracy. The results for our two new
feature vectors, as well as for large, are given in Table III.
Because large has so many dimensions, it is unsurprising
that it performs better than our 10-dimensional features. To
better understand the utility of each feature, we broke large
down into subsets also listed in Table III, calculated the
% gain above baseline for each feature subset, computed
the average % gain per feature dimension, and ranked the
features accordingly. The intonation and melody features
offer the most accuracy per dimension. Our metric of %
gain per dimension is important because we are concerned
with computational resources in analyzing large collections
of videos. For the subsets of the large vector which required
thousands of dimensions, it was interesting to see how useful
each subset was compared with the amount of computation
being done (assuming that the number of dimensions is a
rough correlate to computation time). For example, it seems
clear that melody is more useful than large-SAI-intervalgram
as it has better accuracy with less dimensions, but also
melody is probably more useful when computational time is
limited than is large-MFCC, as they have similar accuracy
but a much different accuracy gain per dimension.

D. Effect of Production Quality

We did one further experiment to determine if the above
rankers were simply learning to distinguish videos with
better production quality. To test this possibility we trained
another ranker on pairs of videos with similar production
quality. This dataset contained 999 pairs with ground truth
established through the majority voting of 5 human oper-
ators. As before we trained and tested rankers using 10-
fold cross validation. The average accuracy of the resulting
rankers, using the large feature set, was 61.8%. This suggests
that the rankers are indeed capturing more than simple
production quality.

IV. DISCUSSION

The results in Table III show that the melody feature
set performed quite well, with the best accuracy gain per
dimension and also a good raw accuracy. The intonation
feature set achieved second place according to the accuracy
gain metric, but raw accuracy was not much better than base-
line. However, kernel choice may have had a large impact:
the large feature set performs better with the intersection
kernel, while intonation alone does better (54.1%) with a
polynomial kernel. Integrating the different types of features
using multi-kernel methods might help. Note that while we
developed these features for vocal analysis, they could be
applied to other music sources—the feature sets analyze the
strongest or perceptually salient frequency components of
a signal, which might be any instrument in a recording. In
our case where we have “singing at home” videos, these
analyzed components are often the sung melody that we are
interested in, but even if not, the intonation and melody-
shape of other components of the recording are still likely
indicators of overall video quality.

The output of our system is a set of high quality video per-
formances, but this system is not (yet) capable of identifying
the very small set of performers with extraordinary talent
and potential. This is not surprising given that pitch and
consistently strong singing are only two of many factors that
determine a musician’s popularity. Our system has two prop-
erties that make it well-suited for use as a filtering step for
a competition driven by human ratings. First, it can evaluate



very large sets of candidate videos which would overwhelm
a crowd-based ranking system with limited users. Second,
it can eliminate obviously low quality videos which would
otherwise reduce the entertainment in such competition.

V. FUTURE WORK

Our ongoing work includes several improvements to these
features. For instance, we have used the simple bin index in
the FFT to estimate frequencies. Although it would increase
computation time, we could use the instantaneous phase
(with derivative approximated by a one-frame difference)
to more precisely estimate the frequency of a component
present in a particular bin [13]. With this modification, step
1 of our algorithm would no longer use a histogram; instead,
the tuning reference minimizing the total error in step 2
would be computed instead. Our present implementation
avoided this fine-tuning by using a quite-large frame size (at
the expense of time-resolution) so that our maximum error
(half the bin size) is 2.7 Hz, or approximately 10 cents for
a pitch near 440 Hz.

The proposed intonation feature extraction algorithm can
be easily modified to run on small segments (e.g., 10
seconds) of audio at once instead of over the whole song.
This has the advantage of allowing the algorithm to throw
out extremely out-of-tune frames which are probably due
to speech or other non-pitched events. Finally, we also are
working on substantially improving the process of vocal line
extraction from a polyphonic signal. Once this is achieved,
there are many details which could augment our current
feature sets to provide a deeper analysis of singing quality;
such features may include vibrato analysis of the melody
line, strength of vocal signal, dynamics (expression), and
duration/strength of long notes.
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