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Abstract
This paper presents a data selection approach where spoken ut-
terances are selected in a sequential fashion from a large out-
of-domain data set to match the utterance distribution of an in-
domain data set. We propose to represent each utterance by
its iVector [1], a low dimensional vector indicating the coordi-
nate of that utterance in a subspace acoustic model. We show
that the distribution of iVectors can characterize a data set and
enables distinguishing subsets of utterances from different do-
mains. Last, we present experimental speech recognition results
based on a system trained on a data set constructed by the pro-
posed algorithm and a comparison with random data selection.
Index Terms: speech recognition, data selection, acoustic mod-
eling

1. Introduction
The continuous growth of speech applications deployed on a
large variety of devices and languages requires a significant ef-
fort to collect the transcribed speech corpora needed to build
such systems. This has traditionally been an expensive and
time consuming procedure, which led to the development of
DataHound [2], a data collection application running on An-
droid mobile devices to record spoken utterances. With such a
tool, we have been able to collect speech corpora in over 50 lan-
guages, which were then used to train the acoustic models for
Google Voice Search [3].

While DataHound is a very effective tool to bootstrap a sys-
tem, the data it collects is not fully representative of the tar-
get application real usage because of the use of pre-specified
prompts and a limited coverage in terms of speakers and en-
vironmental conditions. Therefore, it is typically beneficial to
re-train the acoustic models from the anonymized spoken utter-
ances extracted from the application logs.

However, given the large number of languages and applica-
tions that are supported at Google, manual transcription of those
audio logs scales poorly. For those reasons, we rely heavily on
unsupervised training techniques where the hypothesized tran-
scripts are used as reference labels to train the systems [4, 5].
Simple heuristics such as discarding very short utterances and
utterances with low confidence are used to filter out sentences
presumed to have errorful transcripts. This bears some simi-
larity with the data selection procedures used in active learn-
ing [6, 7] which rely on confidence measures [8].

It was shown however that when the confidence annotator is
constructed from side information provided by the recognition
model, the data selection procedure could improperly sample
the joint acoustic and label space [9]. In the case of an applica-
tion like Voice Search, high prior queries have good coverage in
the original training corpus and are more likely to be recognized
with high confidence. This could lead to a biased sampling

which would then reduce the acoustic contextual diversity of
the selected data set. Over time, this could reduce performance
as each new training set would slowly drift towards focusing on
high prior queries. In addition, modern acoustic model training
techniques such as Deep Neural Network systems [10] are com-
putationally expensive. Hence, crafting a training set to get the
best possible performance with the smallest amount of training
data is especially attractive.

For those reasons, we propose in this paper a data selection
approach which enforces that the distribution of the selected
data matches the distribution of the target domain data. In the
next section, we describe the basic principle of the data selec-
tion procedure. Next, we describe a specific implementation
of that procedure which uses the distribution of iVectors [1],
a vector of fixed dimensionality characterizing an utterance, to
represent a corpus of utterances. Last, we present and discuss
experimental results.

2. Entropy-based data selection

2.1. Principle

When a new speech-enabled application is deployed, the audio
data extracted from its logs is the best data to use to re-train
the system since it matches exactly the application domain. Let
us call P (A,W ) the joint probability of an utterance from the
application logs, represented by its sequence of acoustic feature
vectors A and its word sequence W .

A data selection procedure based on keeping high-
confidence utterances will typically lead to constructing a data
set having an utterance distribution Q(A,W ) which will differ
from P (A,W ). Such a data set is no longer an optimal training
set for the application. This paper proposes a data selection ap-
proach that enforces that the distribution Q will match P based
on a relative entropy criterion.

This algorithm is described in Algorithm 1 and operates
as follows. Let DKL(P‖Q) be the Kullback-Leibler diver-
gence [11], also known as relative entropy, between the distribu-
tion P and Q. Let S be a data set consisting of already selected
utterances and let us denote its distribution by QS(A,W ). We
propose an iterative data selection algorithm where an utterance
u will be added to the selected set S, if and only if it adding it
to S does not increase the KL divergence DKL(P‖Q). Note
that by design, the divergence will monotonically decrease as
the size of the selected set increases. As the distributions P and
Q get closer and closer, fewer and fewer utterances get selected,
as will be illustrated in Section 4.3.2.

Ideally, such an approach should be applied to the joint dis-
tribution P (A,W ) of the acoustic and word sequences. How-
ever, practical consideration make this a difficult task: the
distributions have to be updated on a per-utterance basis and



the derivation of the KL divergence should be computationally
tractable and efficient.

In [12], this approach was applied to text data selection us-
ing only P (W ). Given a small target-domain data set and a
large out-of-domain data set, the authors were able to select sub-
sets of sentences matching the n-gram distribution of the target-
domain data.

In this paper we propose to apply this data selection pro-
cedure using P (A | W ). Namely, given a reference transcript
(in our case provided by an ASR system), we would like to
characterize the sequence of feature vectors corresponding to
an utterance and derive its corresponding distribution in a com-
putationally efficient manner. For that purpose, we suggest to
characterize each utterance by its identity vector, or iVector, as
proposed in [1].

Algorithm 1: Relative-entropy data selection algorithm
Input: A reference distribution P ; an initial set of

already selected utterances S; a set of

out-of-domain utterances U

Output: The selected data set S

1 Estimate the distribution QS

2 D ← DKL(P‖QS)

3 for each utterance u do

4 Estimate QS∪u

5 D′ ← DKL(P‖QS∪u)

6 if D′ < D then

7 S ← S ∪ u

8 D ← D′

9 return S

3. iVector Model

3.1. Principle

Modeling a speech signal for speech or speaker recognition typ-
ically involves large models such as Hidden Markov Models
(HMM) or Gaussian mixture models (GMM) to represent the
distribution of feature vectors derived from some form of short
term spectral analysis. In some applications such as speaker
adaptation or speaker identification, it is desirable to re-estimate
those models from a small amount of data such as a few sen-
tences. This often requires using modeling techniques which
decompose at training time the acoustic space into a small num-
ber of subspaces. Once the subspace bases have been estimated,
it is then possible to reliably estimate the coordinates of a short
utterance along those subspaces. This is the driving princi-
ple behind fast adaptation techniques such as Cluster Adap-
tive Training (CAT) [13] or Eigenvoices [14]. In the speaker
recognition community, utterances from a given speaker can be
pooled together to estimate the coordinate of that speaker in the
subspaces. It was shown that those coordinates can be used to
characterize the speaker [1] and were then dubbed identity vec-

tor, or iVector for short.
Recently, iVectors were successfully used for fast speaker

adaptation [15]. Similar to Eigenvoices, the means of a speaker-
independent (SI) HMM-based system are stacked together to
form a supervector M0 of dimension Nd, where N refers to the
number of Gaussian densities in the model and d is the feature
vector dimension. Given an utterance i, the adapted mean su-
pervector M(i) is obtained according to the following equation:

M(i) = M0 + V y(i) (1)

where V is the so called total variability matrix of size Nd×R
estimated at training time from a large set of utterances follow-
ing the algorithm detailed in [1], and y(i) is the iVector of di-
mension R (the number of bases) corresponding to utterance i,
i.e. the coordinates of utterance i in the subspace spanned by
the columns of V . Since R � Nd, the iVector y(i) can be re-
liably estimated from a single utterance, leading to an adapted
recognition model.

3.2. iVector distribution as a data set characterization

In this paper, we propose to characterize each utterance by its
iVector. Given an existing iVector factor model, i.e. the su-
pervector M0 and variability matrix V , it is possible to esti-
mate the iVector of each utterance given its transcript, similar
to what was done in the iVector-based speaker adaptation ap-
proach in [15]. Regardless of its duration, any utterance can
then be represented by a vector of fixed dimension R.

Note that the iVector of an utterance is an indication of the
match of that utterance to the reference SI model. From Eq. 1, a
null iVector indicates that the adapted model means corresponds
to the SI model means M0, while an iVector with a large magni-
tude would indicate an acoustic mismatch between the utterance
and the SI model.

An entire data set can then be described by the distribu-
tion of its iVectors, which we use as a proxy for P (A | W ).
Note that iVectors are representative of the acoustic variabili-
ties related to speakers, dialects and channels, rather than what
is being said. As demonstrated in [1], the iVector model follows
a Bayesian framework and operates under the assumption that
the iVector prior distribution is Normal. For that reason, we
represent in this work the iVector distribution using a Normal
distribution with full covariance matrix. This greatly simplifies
the derivation of the KL divergence between two iVector distri-
butions since it then admits a closed form solution. In addition,
since a Normal distribution admits sufficient statistics of fixed
size, the distribution QS∈u used in Algorithm 1 can be effi-
ciently re-estimated for each candidate utterance u by storing
the statistics

∑
u y(u) and

∑
u y(u)y(u)′ derived from each

utterance iVector y(u).

4. Experiments and Results

4.1. Databases

All our experiments were conducted using a database of utter-
ances extracted from the logs of the Voice Search application
and the Voice-based Input Method running on Android phones
and tablets for the Russian language. In accordance with our
data retention policies, the provenance of all those recordings
were anonymized.

In this paper we treat Voice Search (VS) as our target do-
main while the Voice Input Method (IME), which is typically



used to fill out text fields in applications like SMS dictation, is
our out-of-domain data source from which we seek to collect a
subset of utterances matching the target domain. Depending on
the experiments, we used various data sets, including a VS and
an IME test sets, each of them consisting of about 20 hours of
speech, as well as an IME data set used for data selection and
consisting of about 600 hours of high-confidence utterances se-
lected from the logs. A last data set consisting of about 150
hours of data, a mix of VS and IME recordings, was used to
train the iVector factor model, which was used to estimate the
iVector of each utterance on all the other data sets.

4.2. Clustering using iVectors

In a first set of experiments, we investigated whether iVec-
tors could characterize our VS and IME test sets and pro-
vide sufficient information to distinguish the 2 data sets apart.
We first estimated an iVector factor model (the V matrix in
Eq. 1) from the 150 hours IME+VS data set. To train that
model, we started from a small initial speaker-independent
and context-independent HMM-based system of 1680 Gaus-
sian mixture components and estimated a factor model consist-
ing of 32 bases, i.e. the iVector dimension are 32. We con-
structed a total of 8 random subsets of data, the first 4, denoted
VS1, . . .VS4, consisting exclusively of VS utterances and the
last 4, IME1, . . . IME4, of IME utterances. We enforced all
those data sets to be disjoint.

We then computed the iVector of all utterances in those sub-
sets and estimated for each subset its corresponding iVector dis-
tribution. From those distributions, we constructed an 8 × 8
matrix holding the KL divergence between all subset pairs. The
objective of that experiment was to validate whether the KL di-
vergence between iVector distributions would enable clustering
all VS subsets together, and all IME subsets together. This re-
sult is reported in Table 1 using subsets holding 1 hour of data
each. The first 4 dimensions of the KL divergence matrix refer
to the 4 IME subsets, the next 4 dimensions to the VS sub-
sets. This matrix confirms that the within-domain distances are
always smaller than the cross-domain distances, resulting in a
perfect clustering of the subsets along their respective domain.

Table 1: Matrix of KL divergences between iVector distributions

estimated on 8 different subsets of 1 hour of data each. The first

4 dimensions refer to IME subsets, the next 4 to VS subsets.

0.00 0.57 0.61 0.61 1.45 1.34 1.45 1.40

0.57 0.00 0.59 0.60 1.42 1.36 1.46 1.38

0.63 0.62 0.00 0.64 1.42 1.28 1.44 1.35

0.62 0.63 0.65 0.00 1.39 1.32 1.39 1.38

1.52 1.55 1.40 1.36 0.00 0.79 0.77 0.70

1.49 1.53 1.33 1.34 0.84 0.00 0.79 0.78

1.48 1.49 1.37 1.29 0.79 0.77 0.00 0.74

1.47 1.49 1.33 1.35 0.70 0.76 0.76 0.00

We then investigated the minimum amount of data required
before no longer being able to cluster the subsets into their cor-
responding domains. Table 2 shows the same KL divergence

matrix as before, this time constructed from subsets holding
only 10 min of data each. One can observe that the clustering is
no longer perfect: some of the within-domain KL divergences
are larger that the cross-domain ones. This illustrates that in or-
der to bootstrap the data selection, we will need to initialize the
selected data set using at least 10 min of data.

Table 2: Matrix of KL divergences between iVector distribu-

tions, similar to Table 1 but using 10 min long subsets

0.00 3.62 4.34 4.42 5.71 5.60 5.99 5.75

4.16 0.00 3.91 4.54 6.63 6.17 6.45 6.55

5.11 4.09 0.00 4.78 7.30 6.29 7.05 7.61

4.90 4.63 4.61 0.00 6.61 5.77 6.24 6.96

5.32 5.74 5.58 5.53 0.00 5.04 5.92 5.62

6.03 5.83 6.25 5.87 5.97 0.00 5.60 6.38

5.23 5.35 5.54 5.02 6.10 5.03 0.00 6.24

5.86 5.92 5.86 6.04 5.58 5.45 6.10 0.00

4.3. Data selection using iVectors

4.3.1. Evaluation on artificial mini-batches

In the next set of experiments, we evaluated the proposed al-
gorithm by running the data selection on mini-batches of utter-
ances. That is, instead of adding a single candidate utterance to
the set of already selected utterances, we consider a mini-batch
of M utterances at a time. If this does not result in increasing
the KL divergence, those utterances are added to the selected
set. We evaluated this approach on an artificially constructed
data set consisting of alternated batches of M = 150 utterances
of VS and IME data (about 10 min of data per mini-batch). By
design, the input data is then made of half IME and half VS
data. The target domain is defined by the VS test. As a result,
we expect that the data selection should favor selecting VS data
over IME. Indeed, the experiment showed that the selected data
set ended-up with 71% of VS data, illustrating the effectiveness
of the selection approach.

4.3.2. Data selection rate

Next we evaluated the data selection rate, or how fast the se-
lected data set grows as a function of the amount of input data.
For this experiment, the selection operates on one utterance at a
time and the target domain is set to VS. The “already selected”
data set is initialized by randomly sampling 10 min of data from
the VS test set. The input data consists of a sequence of 100k
utterances from a random mix of IME and VS utterances. Fig-
ure 1 represents the number of selected utterances as a function
of the number of input utterances. It shows that the data selec-
tion procedure saturates after processing about 40K utterances.
This implies that in its current form, the data selection algo-
rithm cannot construct a very large selected data set because
ultimately the distributions P and Q of the target and the se-
lected iVectors get very close to each other and no utterance get
selected any more. For that reason, we adopted an approach
where the input set of utterances is split into multiple subsets of



Figure 1: Number of selected utterances as a function of the

number of input utterances.

40k utterances each and the data selection is run independently
on each subset. This led to a selection procedure that retained
about 1/5th of the input data.

4.3.3. Recognition experiments

In the next set of experiments, we trained an iVector factor
model with 128 bases and ran the data selection procedure se-
lecting one utterance at a time using VS as a target domain. The
selection data set consisted of 600 hours of IME data and the al-
gorithm ended-up selecting a total of 150 hours of data. From
that selected data set we extracted the first 25 hours, 50 hours,
75 hours, 100 hours and 125 hours of data to construct multiple
training sets. We also constructed random subsets of equivalent
size from the original 600 hours set. For each amount of data,
we then ended-up with 2 training sets: the first one, randomly
selected from the 600 hours data set, the second one, selected
using the proposed data selection approach.

We then built a speaker independent HMM-system based
on a scaled-down version of our Voice Search training proce-
dure [16] using LDA-based feature vectors and boosted-MMI
training [17]. Results are available in Figure 2 and are given
in terms of word error rates (WER). The system trained on the
data set selected by the proposed algorithm outperforms random
data selection for all training set sizes. When using a 25-hours
training set, the word error rate reduction is 1% absolute; it is
0.6% on the 75-hours training set, and 0.3% on the 125-hours
set.

5. Conclusions
We proposed a sequential data selection approach designed to
construct a training set matching a desired in-domain utterance
distribution from an out-of-domain data set. The selection al-
gorithm is based on a relative entropy criterion and the distribu-
tions are defined as the distributions of the iVector associated to
each utterance. We have shown that when using Normal distri-
butions with full covariance matrices, it is possible to character-
ize a data set and cluster data subsets based on their respective
domains. Recognition experiments have shown that the pro-
posed approach outperforms random selection of a training set.

Figure 2: WER comparing Random data selection with the Pro-

posed approach for various amount of training data.
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