
ReFr: An Open-Source Reranker Framework

Daniel M. Bikel, Keith B. Hall

Google Research, New York, NY
{dbikel,kbhall}@google.com

Abstract
ReFr (http://refr.googlecode.com) is a software

architecture for specifying, training and using reranking mod-
els, which take the n-best output of some existing system and
produce new scores for each of the n hypotheses that potentially
induce a different ranking, ideally yielding better results than
the original system. The Reranker Framework has some special
support for building discriminative language models, but can be
applied to any reranking problem. The framework is designed
with parallelism and scalability in mind, being able to run on
any Hadoop cluster out of the box. While extremely efficient,
ReFr is also quite flexible, allowing researchers to explore a
wide variety of features and learning methods. ReFr has been
used for building state-of-the-art discriminative LM’s for both
speech recognition and machine translation systems.
Index Terms: language modeling, discriminative language
modeling, reranking, structured prediction

1. Introduction
Creating effective software tools for research is a tricky busi-
ness. The classic tension between flexibility and efficiency
arises with greater urgency. We want researchers to be able to
try out many different ideas easily, but we also want them to be
able to have a quick code-test-evaluate cycle.

ReFr grew out of the 2011 Johns Hopkins Summer Work-
shop, from the team using automatically generated confusions
to synthesize training data for discriminative language models
for speech and machine translation, led by Prof. Brian Roark
of OHSU. That approach required tools that would scale up to
training data sizes orders of magnitude larger than had previ-
ously been used to build discriminative language models, so
we not only needed our training and inference to be inherently
fast, but we needed to design tools with distributed computing
in mind from the outset.

This paper describes the tools we have developed to solve
not only the immediate research problem of exploring confu-
sions for discriminative language modeling, but also the more
general problem of reranking approaches to speech and lan-
guage processing, including structured prediction. We designed
ReFr to have the following properites:
• “library quality” code
• industrial strength
• academic flexibility
• easy exploration of different types of features, different

update methods (e.g., MIRA-style, direct loss minimiza-
tion, loss-sensitive) and different learning methods (e.g.,
perceptron-style, log-linear, kernel methods)

• modern, object-oriented design, complete with dynamic
factories and dynamic composition for flexibility

• parallelizable, especially for distributed-computing envi-
ronments

2. Data Format for I/O
There are two main choices when building discriminative
reranking models for speech or machine translation: (a) rescore
a lattice or hypergraph or (b) simply use a strict reranking ap-
proach applied to n-best lists. For ReFr, early on we decided
to use (b) reranking n-best lists. The primary reasons were the
flexibility this would allow us in designing features and tools.
N-best lists readily allow for sentence-level features in a way
that, say, lattices do not. Additionally, it is far easier to de-
fine generic schemes of passing around n-best lists than it is for
designing schemes to take speech lattices as well as machine
translation hypergraphs or other, problem-specific data types.

ReFr is meant to be flexible enough to allow for a variety of
data sources. In order to avoid the need for overly complex data
formats, we have chosen to adopt a formalism which allows
one to augment the input format, allowing for flexible feature
extraction and data manipulation/analysis. We opted to use a
data format which mirrors the data-structures that are used in-
ternally for training. The Google protocol buffers[1] provide a
programming-language independent specification framework to
define data formats. The protocol buffers specification language
is used by the protocol buffer tools to generate source-code for
serializing and deserializing the data stored in the format. Code
is generated to allow for native programming-language encap-
sulation of the data. For example, in C++ each item of data is
stored in an object based on a object oriented data specification
(a C++ class) allowing for access to the data.1

3. Core learning framework
Consider Algorithm 1, which describes the training procedure
for a generic online-learning algorithm. Each training example
ei comprises a set of candidate hypotheses, each of which is
projected via some function Φ into a feature space, RF . We
typically think of Φ as being a suite of feature functions, one
per dimension. The model itself is defined as a weight vector
in this space, w. Decoding, or inference, is carried out sim-
ply by taking the dot product of the model and a test instance.
More generally, any kernel function K may be used. The train-
ing procedure iterates over the training data T—each iteration
is called an epoch—until the NEEDTOKEEPTRAINING() pred-
icate returns false. Often, such a predicate is based on the
average loss of the current model on some held-out develop-
ment data D, which is the purpose of the EVALUATE(D) line
in the TRAIN(T ) procedure.

1For the 2011 Johns Hopkins Workshop, we were targeting multiple
tasks (ASR and MT), and so our toolkit provides a means to convert
from two types of text-based n-best formats, one the output of an ASR
system, the other the output of an MT system. These conversion tools
are not only useful in their own right, but serve as example implemen-
tations for any developer converting from their own, proprietary format
to the Google Protocol Buffer format used by ReFr.

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013: Show & Tell Contribution

756



Algorithm 1 Training algorithm for online-learning reranking
models.
Let ei = {c1, . . . , ck} be a training example, where each cj is a candidate
hypothesis.
Similarly, let di = {c1, . . . , ck} be a held-out development data example, also
consisting of k candidate hypotheses.
Finally, letK be a kernel function.

procedure TRAIN(T = {e1, . . . , en}, D = {d1, . . . , dm})
while NEEDTOKEEPTRAINING() do

TRAINONEEPOCH(T )
EVALUATE(D)

end while
end procedure

procedure TRAINONEEPOCH(T )
foreach training example ei do

SCORECANDIDATES(ei)
if NEEDTOUPDATE() then

UPDATE()
end if

end for
end procedure

procedure SCORECANDIDATES(ei)
foreach candidate hypothesis cj ∈ ei do

cj .score← K(wt, cj)
end for

end procedure

Model

Candidate Scorer

Update Predicate

Updater

…

Figure 1: A pictorial view of how a Model wraps instances of
other interfaces that specify the predicates and functions needed
to carry out model training.

For the basic perceptron, the model starts out at time step 0
as the zero vector; that is, wo = ~0. The update is

wt+1 = wt + Rt [Φ (yoracle (ei))− Φ (ŷ (ei))] , (1)

where yoracle is a function that picks out the hypothesis towards
which we want to bias our model, ŷ is a function that picks out
the candidate hypothesis we want to bias our model against and
Rt is a learning rate or step size. Most often, yoracle is defined
to pick the hypothesis with the lowest loss relative to some gold-
standard truth, and ŷ is defined to pick the candidate hypothesis
that scores highest under the current model wt.

Most of the variations of this basic learning method involve
finding different ways of defining Rt, Φ, yoracle and ŷ, along
with the various procedures and predicates shown in Algorithm
1. Therefore, we would like our Reranker Framework to make
it easy for the researcher to define these various functions, as
well as to specify which ones to use at run-time.

ReFr defines a Model interface with virtual methods for all
of the functions shown in Algorithm 1. To avoid the exponential
blow-up of overriding different combinations of these methods,
ReFr also employs dynamic composition. That is, we keep the
idea of a Model interface, but additionally have each Model
instance wrap a set of predicate/manipulator objects, each of
which itself conforms to an interface. Figure 1 shows a pictorial
representation of this scheme.

As we discussed above, we employ dynamic composition
to avoid defining a new subclass of Model every time we wish

model file = "my model file"; // model output file
model =
PerceptronModel(
name("my model"),
score comparator(DirectLossScoreComparator()));

exec feature extractor =
ExecutiveFeatureExtractorImpl(
feature extractors({NgramFeatureExtractor(n(2)),

RankFeatureExtractor()});
training efe = exec feature extractor;
dev efe = exec feature extractor;
training files = {"training1.gz", "training2.gz"};
devtest files = {"dev1.gz", "dev2.gz"};

Figure 2: An example ReFr configuration file, read by its
Interpreter class.

to explore a new combination of learning method functions. To
do this, ReFr includes a very lightweight and yet powerful inter-
preter for a language that allows for assignment statements for
primitives, vectors of primitives, Factory-constructible objects
and vectors of Factory-constructible objects. Figure 2 shows
an example ReFr configuration file. The syntax is intentionally
very similar to that of C++. This lightweight language provides
a flexible mechanism by which to specify how feature extrac-
tion, training and inference shall occur.

4. Cluster-based distributed training
As Algorithm 1 shows, the basic perceptron algorithm involves
“online” updating, and thus it is possible to read in each train-
ing example from file each time it is needed, only keeping
the model’s parameters persistently in memory. The Reranker
Framework allows both the memory-intensive way of training
as well as this “streaming mode” version of training, essential
for distributed learning.

The structured perceptron [2] and it’s variants have proven
to be effective in supervised, discriminative language model-
ing work [3]. We have centered the development of our open-
source discriminative learning toolkit around perceptron-style
algorithms, which are, by definition, online learning algorithms.
Identifying the optimal solution for a distributed online opti-
mization algorithm is still an open research question. We bor-
row from our previous work on distributed perceptron training
in [4, 5] and use the Iterative Parameter Mixtures algorithm
for distributed computation. The Reranker Framework makes
it easy to switch between single processor and distributed train-
ing, which uses the Hadoop implementation of MapReduce [6].

5. Demo Plan
Our demo will consist of a walk-through of all ReFr’s features,
followed by a hands-on demonstration of how easy it is to im-
plement a new class of features for the reranker based on the
rank of each candidate hypothesis. We will also show how easy
it is to integrate that new class of features into training and in-
ference. We will then demonstrate the ease with which one can
use the API and the interpreted configuration language to alter
the training algorithm. Finally, we will demonstrate the sim-
ple way that a user can switch from single processor training to
large-scale distributed training.

6. Acknowledgements
The authors would like to thank Prof. Brian Roark of Oregon Health and Science
University for leading a fantastic team at the 2011 Johns Hopkins Workshop, and
we would also like to thank all of our teammates, especially Prof. Izhak Shafran
of OHSU and Ph.D. candidate Maider Lehr, who are actively working with and
helping us improve ReFr.

757



7. References
[1] Google, “Protocol buffers,”

http://code.google.com/apis/protocolbuffers/.

[2] M. Collins, “Discriminative training methods for hidden Markov
models: Theory and experiments with perceptron algorithms,” in
Proc. EMNLP, 2002, pp. 1–8.

[3] B. Roark, M. Saraçlar, and M. Collins, “Discriminative n-gram
language modeling,” Computer Speech and Language, vol. 21,
no. 2, pp. 373 – 392, 2007. [Online]. Available:
http:
//www.sciencedirect.com/science/article/pii/S0885230806000271

[4] R. McDonald, K. Hall, and G. Mann, “Distributed training strate-
gies for the structured perceptron,” in HLT-NAACL, 2010.

[5] K. Hall, S. Gilpin, and G. Mann, “Mapreduce/bigtable for dis-
tributed optimization,” in NIPS Workshop on Leaning on Cores,
Clusters, and Clouds, 2010.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” CACM, vol. 51:1, 2008.

758


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	No Other Manuscripts by the Authors
	----------

