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Abstract
An attractive approach to leveraging the ability of cloud-
computing platforms to provide resources on demand
is to build elastic applications, which can dynamically
scale up or down based on resource requirements. To
ease the development of elastic applications, it is use-
ful for programmers to write applications with simple
sequential semantics, without considering elasticity, and
rely on runtime support to provide that elasticity. While
this approach has been useful in restricted domains, such
as MapReduce, existing programming models for gen-
eral distributed applications do not expose enough in-
formation about their inherent organization of state and
computation to provide such transparent elasticity.

We introduce EVENTWAVE, an event-driven pro-
gramming model that allows developers to design elas-
tic programs with inelastic semantics while naturally
exposing isolated state and computation with program-
matic parallelism. In addition, we describe the runtime
mechanism which takes the exposed parallelism to pro-
vide elasticity. Finally, we evaluate our implementation
through microbenchmarks and case studies to demon-
strate that EVENTWAVE can provide efficient, scalable,
transparent elasticity for applications run in the cloud.

1 Introduction
One of the major promises of cloud computing is the
ability to use resources-on-demand. Rather than build
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Figure 1: A multiplayer game composed of buildings,
rooms, hallways and players

out a large-scale infrastructure to support a networked
service with fluctuating needs, companies can build elas-
tic components that start running on a small-scale infras-
tructure (perhaps only a handful of hosts), then scale up
as the usage or popularity of the service grows. Elasticity
can also allow changing infrastructure size on a smaller
time-scale: weekly, daily or even hourly variations in
load could trigger the infrastructure size to change with
the needs of the service. Further, elasticity could allow
variable infrastructure size as a result of the availability
of discount resources, or the sudden unexpected needs
of the service in response to, e.g., flash crowds.

However, elastic infrastructure alone does not suffice
to provide these benefits, because programmers must de-
sign the applications with elasticity in mind. Consider
a simple multi-player game server shown in Figure 1.
In this game, players wander in the virtual world. If
a building is crowded with more players than the ma-
chine can handle, a logical solution to scale up the sys-
tem is to split the world into buildings, and delegate the
requests of different buildings to different nodes. This
game can further scale up by splitting the buildings into
rooms and hallways, and delegate the requests to more
machines. Any such program must explicitly account for
elasticity, which means that it must support the arrival
or departure of nodes from the system: safely “split-
ting” and “merging” the world state as the system ex-
pands and contracts without losing program state, trans-
parently migrating state, handling partial failures of the
now-distributed system, etc. And all of this without af-
fecting gameplay semantics. While all of these tasks can



be programmed manually, implementing the necessary
run-time mechanisms and reasoning about the resulting
application is an exceptional burden for developers.

To accelerate the development of elastic applications
for the cloud, what we need is a programming model
where programmers need not be aware of the actual scale
of the application, or the run time support that dynam-
ically reconfigures the system to distribute application
state across computing resources. To support complex,
tightly coupled applications, such as the game server we
described, such an elastic programming model should
provide several key features: (i) stateful computation, (ii)
transparent elasticity, and (iii) simple semantics. Unfor-
tunately, existing programming models for writing elas-
tic applications do not satisfy all of these criteria.

In recent years, there have been many systems that
provide elasticity for various distributed applications.
Scalable databases can adaptively distribute database
state to scale up a database’s capabilities [1, 4, 12]. How-
ever, these systems only target part of a program’s func-
tionality and do not, for example, provide elasticity for a
program’s computation.

Functional programming models, such as MapRe-
duce [13], Dryad [19], and “bag of tasks” batch sched-
ulers [24, 30], are based on models of computation
where computations do not depend on prior system state,
and individual tasks are independent of one another. As
a result, the runtime system can freely distribute tasks
among varying numbers of nodes without involving the
programmer. However, in a game server, the game world
consists of state, and the “tasks” consist of actions taken
by players in interacting with this world and with each
other, precluding a functional approach.

Actor-based programming models support simple,
event-driven, stateful computation [17]: state is parti-
tioned among isolated actors, each of which can be run
on a separate node. The actors receive incoming events
that manipulate their state, and actors interact with each
other by passing messages that trigger additional events.
Unfortunately, traditional actor-based models do not
support elasticity, as an actor is conceived of as a mono-
lithic unit that handles incoming events atomically. The
scale of an actor-based system is determined by the num-
ber of actors.

A recent system, Orleans, supports elasticity in the
actor model, by replicating the state of actors, allow-
ing multiple events to be processed simultaneously [8].
However, this state replication leads to complicated se-
mantics for merging changes to actor state, and as a re-
sult, Orleans does not provide simple, sequential seman-
tics. While this is acceptable in many applications, it
may not be appropriate in certain cases. For example,
in a game server, it seems desirable that events triggered
by multiple players be resolved in some sequential order,

and that every player observe that same order.
We propose EVENTWAVE, a new programming

model for tightly-coupled, stateful, distributed applica-
tions that provides transparent elasticity while preserv-
ing sequential semantics. In EVENTWAVE, an applica-
tion consists of a set of logical nodes. A logical node
consists of some system state, and that state is ma-
nipulated by events that execute at the node. Logical
nodes interact with each other by message passing. As
in the actor model (and many other event-driven sys-
tems), EVENTWAVE logical nodes provide atomic event
semantics: events the node receives appear to execute se-
quentially, and in order.

Our model: EVENTWAVE

EVENTWAVE applications provide elasticity by allow-
ing logical nodes to execute multiple events in parallel,
and by allowing a single logical node to be distributed
over multiple physical nodes (e.g., multiple machines
in a cluster, or multiple virtual hosts). The fundamen-
tal guarantee of the EVENTWAVE model is that a logical
node distributed over multiple physical nodes will main-
tain atomic event semantics. In other words, a program-
mer can reason about the behavior of her program with-
out considering elasticity: if a program is correct when
running on a set of logical nodes, its semantics will be
preserved even as the program scales up or down by run-
ning on various physical nodes. Programmers focus on
the logic, not the scale.

Our model is based on the insight that many appli-
cations decompose into a hierarchy of different con-
texts, namely that modular and component design and
object-oriented programming have led to program de-
signs where large sections of code are inherently bound
to a subset of application state, and that the application
state is often further bound to the parameters of the func-
tion calls. For example, a context-based design of a game
server can be composed of contexts for each room and
building in the game world, and contexts for each player.
Events that manipulate just a portion of the state will ex-
ecute in the context that state resides in. For example,
when assessing which direction a player may move, the
program needs to consider information only about the
current room, and players in it, not the global state.

To exploit the elasticity exposed by EVENTWAVE
programs, we design a distributed run-time system. The
system distributes the contexts of a single logical node
across multiple physical nodes (for example, distributing
different building contexts to different physical nodes).
The group of physical nodes appears to the rest of the
system as a single logical node, preserving the seman-
tics of an inelastic application running on a fixed set
of resources while providing the performance of an ap-
plication running on a larger set of resources. The run-
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Figure 2: A game server logical node connected by sev-
eral client nodes. Regardless of scale, clients see only one
game server logical node. The actual composition of a log-
ical node at runtime is transparent to the programmers. The
programmers can only see at the level of logical nodes.

void k i d I n i t ( i n t nKid ) {
Kid [ nKid ] . l o c a t i o n = LOCATION IN WORLD ;
Kid [ nKid ] . k i d D i r e c t i o n = DIRECTION STATIONARY ;

}

Figure 3: The code in Mace syntax

time executes the tasks of a single logical node across
multiple physical nodes, dispatching events in a particu-
lar context to the physical node where that context re-
sides, and can transparently and dynamically migrate
contexts to change the number of physical nodes con-
stituting a logical node, scaling up application resources
in response to demands.

Figure 2 illustrates a game server in EVENTWAVE.
When running at small scales, all of the state resides on a
single physical node. As the number of clients (players)
increases, the game state can be dynamically distributed
among more physical nodes, increasing the execution re-
sources available to the system. As seen in the figure, the
clients still interact with this newly-distributed server as
though it were executing on a single node.

We build EVENTWAVE on top of Mace, a toolkit for
writing event-driven distributed systems [22], providing
context information through annotations. As a result,
many applications can support elasticity with straight-
forward modification, similar to converting from C to
C++. As an example, a short code snippet in Mace syn-
tax is listed in Figure 3, and the corresponding code in
EVENTWAVE syntax is listed in Figure 4.

After reviewing the key points of event-driven pro-
gramming, we present the EventWave model, followed
by successive levels of detail about our runtime system.
We evaluate our runtime system using microbenchmarks
and example applications before detailing related work
and concluding.

[ Kid<nKid>] void k i d I n i t ( i n t nKid ) {
l o c a t i o n = LOCATION IN WORLD ;
k i d D i r e c t i o n = DIRECTION STATIONARY ;

}

Figure 4: The code with context annotation

2 Event-driven programming
A popular approach to writing distributed applications is
the event-driven programming model. Conceptually, an
application runs on one or more logical nodes, which
traditionally represent separate physical machines. A
logical node’s execution consists of processing events,
which are self-contained units of computation, consist-
ing of a set of method invocations. An event can be trig-
gered by external events such as receipt of messages, or
internally by other events.

We adopt the event-driven programming model for
EVENTWAVE programs for two reasons. First, event-
driven programming is a natural model for writing
many distributed programs. Many applications (e.g., the
multi-player game server) are designed and described
in terms of reacting and responding to messages. The
event-driven model is also a good fit for asynchronous
distributed applications, such as the multiplayer game,
where events are triggered by different external agents
but must be handled in a coordinated manner. We also
note that traditional task-graph style programs (e.g.,
Cilk programs) can be reformulated as event-driven pro-
grams, with each task represented as a separate event,
and “spawns” of new tasks represented as starting a
new event. Second, there is already substantial tool sup-
port for event-driven programming, including program-
ming languages that make expressing event-based appli-
cations easy [22] and development tools such as model
checkers to verify event-handling protocols [21]. Build-
ing on top of these existing tools, which have been used
to implement numerous distributed applications, broad-
ens EVENTWAVE’s applicability.

While many event-based programming models use
threads for low-level services such as timer scheduling
and network I/O, most adhere to an atomic event model.
In this model, the entire sequence of computational steps
necessary to process an event must appear as though it
executed atomically and in isolation from other events;
the event processing is transactional. Thus, even if an
event is triggered while another event is being processed,
an application behaves in a sequentially consistent man-
ner: the behavior of the application is as if the events
were processed one-at-a-time, in the order they were re-
ceived. This execution model is attractive because it al-
lows programmers to easily reason about the behavior
of their applications, even if many events are initiated
simultaneously, or events actually run in parallel.

Typical atomic event systems preclude parallelism.



a u t o t y p e s{
B u i l d i n g{

map< i n t , Room > rooms ;
Hal lway h a l l w a y ;

}
Room {

s e t<i n t> kidsInRoom ;
}
Hallway {

a r r a y<a r r a y<i n t> > hallwayMap ;
s e t<i n t> k i d s I n H a l l w a y ;

}
Kid{

i n t c u r r e n t B u i l d i n g ;
i n t cur ren tRoom ;
c o o r d i n a t e coord ;
i n t k i d D i r e c t i o n ;

}
}
s t a t e v a r i a b l e s {

s e t<i n t> k i d s I n W o r l d ;
map< i n t , B u i l d i n g > b u i l d i n g s ;
map< i n t , Kid > k i d s ;
B u i l d i n g b u i l d i n g s ;
Kid k i d s ;

}

Figure 5: State definitions of the example game in Figure 1

Instead, EVENTWAVE dispatches and executes events in
parallel provided they are accessing disjoint state (this
model is similar to, but richer than, that proposed by
Yoo et al. based on read/write locking of application
state [33]). The challenge, then, is to either detect or
discover completely independent events. EVENTWAVE
accomplishes this by extending the programming model
to capture state isolation, and enhancing the runtime
model to enforce event isolation, rather than either pre-
dicting (through static analysis) or detecting (through
run-time checks) whether the developer correctly iso-
lated events in their application. Section 3.3 discusses
EVENTWAVE’s approach to parallelism in detail.

3 EVENTWAVE

This section introduces EVENTWAVE, an event-driven,
elastic programming model. We introduce the notion
of contexts, which provide a hierarchical, dynamic par-
titioning of a node’s state and associated operations
on those partitioned states. We then describe an event
model, which constrains how events can interact with
contexts. This event model enables a parallel execu-
tion model, that allows multiple events to run in parallel
while preserving atomic event semantics. In Section 4,
we describe how this event and execution model can sup-
port distributed execution—running the events of a sin-
gle logical node across multiple physical nodes—a key
step in enabling elastic execution.

3.1 Contexts
One key feature of event-driven distributed systems (un-
like, e.g., dataflow models) is that logical nodes in the
system contain mutable state. For instance, Figure 5
shows the application state definition for the simple

game in Figure 1. The state consists of self-contained
state variables: players (“kids”) running around a game
world as well as buildings, rooms and hallways. Some
state variables are part of player objects and capture,
e.g., the player’s information in the game world, such as
the player’s identifier. Other variables define the world:
rooms and hallways reside in a building and several
buildings populate the world.

This state can be inspected and modified while re-
sponding to an event. Crucially, however, not every event
requires accessing all the state in a node; instead, dif-
ferent events may actually access disjoint portions of a
node’s state. To capture this behavior, state in a EVENT-
WAVE logical node is organized into contexts. A context,
as the name suggests, provides the environment in which
an event can execute.

As an event executes, it exists in one or more con-
texts, and the context(s) in which an event executes con-
trol which portions of a program’s state the event can ac-
cess. Intuitively, two events that are executing in differ-
ent contexts are accessing disjoint state, and hence can
be executed in parallel (as we elaborate in Section 3.3).

A context in EVENTWAVE consists of a portion of
an application’s state. For example, in a game server, a
“building” in the world might be one context, while a
player of the game would have a separate context. Con-
text definitions are analogous to structure definitions:
there can be multiple instances of a particular context
type (for example, multiple players in a game, or mul-
tiple buildings in a game world). To express this, each
context has an associated identifier (e.g., a player’s user
name), which serves to distinguish different instances of
the same context type.

Importantly, contexts are dynamic. A context is not
explicitly instantiated by a programmer, but is instead
instantiated when first referenced (by its identifier). For
example, as new players enter a game, events are trig-
gered with new player user names, creating the contexts
in which those events execute. Intuitively, one can think
of a map, for each context type, between context ids and
contexts; when a particular context id is referenced, if
the context exists in the map, it is used, otherwise a new
context is created and added to the map. This approach
to instantiation naturally fits the expected behavior of
many event-driven programs (e.g., in a distributed hash
table, creating new contexts as files are added or as new
peers join). Figure 6 shows the state definition in Fig-
ure 5 translated into contexts. Each object in the original
state is naturally translated into a context. For instance,
the Room object becomes the Room context.

A hierarchy of contexts To this point, we have as-
sumed that contexts in EVENTWAVE programs are
“flat”: there is no relationship between different con-
texts, and all contexts are independent. In reality pieces



s e t<i n t> k i d s I n W o r l d ;
c o n t e x t B u i l d i n g <i n t b u i l d i n g I D> {

c o n t e x t Room <i n t roomID> {
s e t<i n t> kidsInRoom ;

}
c o n t e x t Hallway {

a r r a y<a r r a y<i n t> > hallwayMap ;
s e t<i n t> k i d s I n H a l l w a y ;

}
}
c o n t e x t Kid <i n t kidID> {

i n t c u r r e n t B u i l d i n g ;
i n t cur ren tRoom ;
c o o r d i n a t e coord ;
i n t k i d D i r e c t i o n ;

}

Figure 6: Context definition of the game in figure1

Logical Node global

Building<0> Building<1> Kid<0> Kid<1> Kid<2>

Room<0> Hallway Room<0> Hallway

Figure 7: Sample context hierarchy

of state in an application have hierarchical relationships:
one context can contain other, sub-contexts. All explic-
itly declared contexts have a parent context. By default
the parent context is global, but if the context is explic-
itly declared inside another context, the former’s parent
is the latter. For example, in Figure 6, the room and hall-
way contexts have a building context as their parent.

Figure 7 shows the context hierarchy for the exam-
ple in Figure 6, with two buildings, rooms, hallways and
multiple players. To name a specific context in the hi-
erarchy, we use double colon as the connector. For ex-
ample, the first room in the first building is labeled as
Building〈0〉::Room〈0〉.

EVENTWAVE currently supports applications with
one-to-many relation between contexts. Our future work
will support applications with more complex interac-
tions between contexts. For example, contexts may form
a lattice, which can be used to represent many-to-many
relationships: a building has many departments, and a
department may be housed in many buildings.

3.2 Event model
As discussed in Section 2, event-driven programs can
be thought of as a series of atomic events executing in
response to various stimuli. EVENTWAVE supports mul-
tiple events executing simultaneously while preserving
sequential, atomic event semantics (see Section 3.3). To
accomplish this, the EVENTWAVE event model uses con-
text information to restrict what events can do.

3.2.1 Context methods

An event in EVENTWAVE executes a series of methods.
Each method m is associated with a context, c. We will
write such methods as m[c]. A method m[c] can read and

write state associated with c, but cannot access state as-
sociated with any other context.

Recall that contexts are identified by a context type
and by a unique identifier. Methods are not associ-
ated with context types, but specific contexts. The bind-
ing of methods to specific contexts occurs at run time:
the context annotation takes the form c〈x〉, where x
refers to a method argument. When the method is in-
voked, the value of this argument is used to bind the
method to a particular context. Hence, the signature for a
reportLocation method for a particular player p id
invoked in the Kid〈p id〉 context would be:

[Kid<p id>]reportLocation(int p id)

3.2.2 Event execution

When an event starts, it invokes a single context method,
m[c]—all other methods must be invoked from m[c].
This first context method is called a transition which is
also known as the event handler.

To read and write state in context c, the event must
“acquire” c. This acquisition occurs implicitly by invok-
ing methods in context c. An event may acquire multi-
ple contexts by executing multiple methods, called rou-
tines. Acquiring multiple contexts within a single event
ensures that a consistent state is seen across the con-
texts. Figure 8 shows an example code in EVENTWAVE
language. A message delivery transition triggers a new
event at a Building context which calls routines syn-
chronously to relocate a player from a room to the hall-
way. If the routines in the figure were implemented as
independent events, consistency would not be guaran-
teed (e.g., the player could be in both the room and the
hallway simultaneously).

Crucially, events cannot acquire contexts at will. If
two events e1 and e2, with e1 logically earlier than e2,
access c in the opposite order, e2’s execution violates
sequential semantics. Furthermore, if an event accesses
multiple contexts, its operations across those contexts
must appear atomic. While these problems could be ad-
dressed by requiring that only one event access the con-
text hierarchy at a time, such a restriction precludes par-
allelism. Instead, we place several restrictions on events’
behaviors that enable a parallel execution model that
preserves sequential semantics (see Section 3.3).

If an event accesses multiple contexts, it must acquire
them in a particular order. In particular, to access a con-
text c, an event must either start by accessing c, or must
have acquired a context higher than c in the context hi-
erarchy. Because the context hierarchy creates a partial
order of events, this access rule means that an event starts
at a particular point in the hierarchy, and the set of con-
texts it can write to “grows” down in the hierarchy.

If an event no longer requires write access to a con-
text, it can call a special downgrade method to release



t r a n s i t i o n s {
[ B u i l d i n g<r . n B u i l d i n g >]

d e l i v e r ( from , to , R e l o c a t e R e q u e s t r ){
downgrade ( ) ;
moveOut ( r . kidID , r . nRoom , r . n B u i l d i n g ) ;
moveToHallWay ( r . kidID , r . n B u i l d i n g ) ;

}
}
r o u t i n e s {

[ B u i l d i n g<n B u i l d i n g > : :Room<nRoom>]
bool moveOut ( i n t kidID , i n t nRoom , i n t n B u i l d i n g ) { . . . }

[ B u i l d i n g<n B u i l d i n g > : : Hal lway ]
bool moveToHallway ( i n t kidID , i n t n B u i l d i n g ) { . . . }

}

Figure 8: A code snippet written in EVENTWAVE syntax
for handling client requests

global

B<0> B<1>

H R<0>
global

B<0> B<1>

H R<0>

global

B<0> B<1>

H R<0>

event e starts at context B<1>(1) (2)

(5)

(3)

global

B<0> B<1>

H R<0>

leading wave
trailing wave

global

B<0> B<1>

H R<0>

(4)

Figure 9: Event waves and execution transitions of an event
e. Contexts B〈0〉/B〈1〉 are abbreviation for Building〈0〉
and Building〈1〉,respectively. The context H is short
for Building〈1〉::Hallway. The context R〈0〉 is short for
Building〈1〉::Room〈0〉

access to the context. However, once an event releases
write access to a context, it cannot reacquire access to
that context (though it may still read its state). A con-
text c cannot be downgraded unless the event has already
released access to all of c’s ancestors in the hierarchy.
Absent downgrades, an event only releases access to its
contexts when it completes.

We note the similarity of the context access restric-
tions to two-phase locking approaches for isolation. In
the absence of downgrades, acquiring contexts is anal-
ogous to strict two-phase locking [5], while the addi-
tion of downgrades produces a protocol analogous to
tree locking [2]. As in two-phase locking, the ordering
imposed on the acquisition of contexts by the context hi-
erarchy helps prevent deadlock (as we shall see in the
next section). Downgrades complicate the model some-
what, but the ordering on contexts still suffices to enable
safe, parallel execution.

Intuitively, the execution of an event can be reasoned
about in terms of two event waves: the leading wave and
trailing wave. The region occupied by the leading wave
corresponds to the contexts that the event has write ac-
cess to; the region occupied by the trailing wave corre-
sponds to the contexts that the event has downgraded,
but can still read. The trailing wave can not pass by the
leading wave, as that would violate the model.

Figure 9 plots an event executing the methods in

Figure 8, and shows how context acquires and down-
grades affect the event waves. When an event starts in
the deliver method (as shown in step 1©), it only has
write access to context Building〈1〉. By downgrading
the context, the trailing wave moves down in step 2©. It
then calls moveOut() method synchronously to acquire
the context Building〈1〉::Room〈0〉, moving the leading
wave down (shown in step 3©). Subsequently, it calls
moveToHallway() synchronously to acquire the context
Building〈1〉::Hallway (step 4©) Finally, the event re-
leases all contexts in step 5© when it finishes.

Events can create new events by calling methods
asynchronously. An asynchronous method invocation,
conceptually, is identical to starting a new event and im-
mediately calling the target of the asynchronous invo-
cation. The new event is a separate unit of computation
from its parent event, and only owns the context(s) asso-
ciated with the initiating method. Asynchronous meth-
ods are roughly analogous to asynchronous calls such
as “spawns” in Cilk [6] or “async” in X10 [9]; unlike
in those languages, however, events triggered by asyn-
chronous methods in EVENTWAVE are fully decoupled
from their parent event after the parent event commits.

3.3 Parallel execution model
The EVENTWAVE context and event model is coupled
with a parallel execution model that constrains the col-
lective behavior of multiple events executing simultane-
ously. When an event is initiated (e.g., the message trig-
gering it is received, or the asynchronous method initi-
ating it is called), it is given a logical, monotonically-
increasing timestamp that orders it with respect to all
other events in the system (in the case of a distributed
program, with respect to all other events on a partic-
ular node). EVENTWAVE events can execute in paral-
lel as long as their behavior corresponds to the atomic
event model: the behavior of each event should be con-
sistent with an execution where the events executed se-
quentially according to their timestamp order. In other
words, events appear to execute atomically, in isolation,
and in timestamp order.

Because contexts are self-contained collections of
state and code, an event executing in one context can-
not affect the behavior of a different event executing in
another context. Hence, EVENTWAVE allows events to
execute in parallel as long as any context is held by at
most one event at a time.

In terms of the waves of events, consider events e and
e′, where e′ has a later timestamp than e. For basic cor-
rectness and limited parallelism, the leading wave for e′

must always be above the trailing wave for e, as event e
can read the contexts in the trailing wave, and must not
read any modifications made by e′.

To improve parallelism, we note that once an event



view of event e view of the later event e'
global

B<0> B<1>

H R<0>

global

B<0> B<1>

H R<0>

leading wave
trailing wave

Figure 10: Simultaneous view of two events e and e’ in an
execution that adheres to EVENTWAVE.

e downgrades from a context, moving down its trail-
ing wave front, it only needs read access to the context.
Hence, the EVENTWAVE runtime can take a snapshot
of the current state of the downgraded context before
moving down the wave front. This is similar to snapshot
isolation in databses [3]. The difference is that snapshot
isolation reads the committed data when the transaction
starts, but in EVENTWAVE, a snapshot of a context is
taken when the event releases the lock. The event model
ensures that once the trailing wave front moves down,
the event will never modify the context. Hence it is safe
for a later event, e′, to move its own leading wave front
below the context—i.e., to begin accessing the context.
Future reads of the context by e will read from the snap-
shot, preserving isolation. Effectively, this relaxes the re-
strictions on events so that now an event’s leading wave
must only remain above earlier events’ leading wave,
rather than above the trailing wave. Figure 10 illustrates
two concurrent events which obey the model.

Finally, to preserve timestamp order, an event that has
completed execution cannot commit until all events with
earlier timestamps have committed. In particular, any
new events triggered by an event’s execution (e.g., sent
messages, asynchronous calls) are delayed until after the
event commits. Note that this property means that an
event triggered by an asynchronous call logically starts
and completes after its parent event finishes.

A simple strategy to ensure sequential semantics is to
force all events to start at the global context, and make
their way down through the context hierarchy to perform
their operations. Because of the restrictions on events’
wave fronts, later events will remain “above” earlier
events in the hierarchy, and events will appear to execute
in sequential order. Because EVENTWAVE allows events
to be initiated at deeper contexts in the hierarchy, when
an event starts at context c, a “dummy” event begins at
the global context and implicitly attempts to acquire the
global context, then acquire lower-level contexts and im-
mediately downgrade them until c is reached. It is clear
that this strategy introduces some scalability issues (ev-
ery event must essentially access every context). Sec-
tion 4.3 presents a mechanism to mitigate this issue.

The next section discusses how the execution model
outlined above can be satisfied in a runtime to distribute
a logical node over multiple physical nodes and/or
parallel-executing threads while still preserving the il-
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Figure 11: Events processed by logical node distributed
over multiple physical nodes

lusion that a logical node is running on a single physical
node with one thread. Section 5 discusses how the same
mechanism can be used to support migration of contexts
during elastic execution.

4 Distributed execution model and
run-time

This section presents the EVENTWAVE distributed run-
time system, which implements the execution model de-
scribed in Section 3.3.

When running a EVENTWAVE application, the
straightforward approach is to request one physical node
per logical node. Execution can proceed as in the stan-
dard, inelastic event-driven model. If the physical node
has multiple threads, the EVENTWAVE runtime can take
advantage of events in disjoint contexts to provide ad-
ditional throughput. If, however, the load on the sys-
tem increases beyond the capability of a single physi-
cal node to process them, the EVENTWAVE distributed
runtime system supports distributing the execution of a
single logical node across multiple physical nodes. In
other words, an application written to run on n logical
nodes can be run on m physical nodes, where m > n,
providing additional throughput. When combined with
dynamic migration (Section 5), which supports chang-
ing m over the course of execution, the runtime enables
elastic execution of distributed applications.

For the remainder of this section, we will assume that
the EVENTWAVE application is written for a single log-
ical node; the mechanisms easily generalize to applica-
tions with multiple logical nodes.

4.1 Overview
A high level overview of the EVENTWAVE distributed
runtime system, and how it processes events, is shown
in Figure 11. The execution of a single logical node is
distributed across multiple physical nodes. A single head
node serves as the representative of the logical node: all
communication with the outside world is intermediated
by the head node (e.g., all messages sent to this logical
node are routed to the head node, and all messages sent
by this logical node are sent from the head node).



All events processed by the logical node are initiated
by the head node. Upon receiving an event ( 1©), the head
node assigns the event a timestamp and signals a worker
node to process the event ( 2©). Note that deciding which
worker node gets an event is discussed in the next sec-
tion. As the event executes, the worker may “pass” the
event to a different worker to continue execution ( 3©).
If the event makes an asynchronous call, this event is
enqueued at the head node ( 4©). Once the event’s execu-
tion is complete, the worker currently handling the event
signals the head node that the event is ready to com-
mit ( 5©). The head, having a global view of the logical
node’s execution, can ensure that all events will com-
mit in timestamp order. As in the basic parallel execu-
tion model, once an event commits, any new events it
may have triggered are initiated. In particular, any asyn-
chronous methods called by the event will now begin,
starting from the head node as with other events ( 6©).

Requiring a single physical node to mediate all the op-
erations of the logical node introduces a bottleneck: the
throughput of the logical node is constrained by how ef-
ficiently the head node can manage execution. We note
that most of the work performed by the head node is
bookkeeping, while most computation will be performed
by other physical nodes, somewhat mitigating this draw-
back. A runtime system that allows the head node’s ex-
ecution to be distributed across multiple physical nodes
is an important topic for future work.

4.2 Context-based distribution
When a head node begins processing an event, how
does it determine which worker node to send the event
to? There are many issues to consider: locality (events
should be assigned to workers containing the state
they must access), communication (events should be
distributed to minimize their transfer between worker
nodes), and load balance (worker nodes should perform
similar amounts of computation).

To address these issues, EVENTWAVE uses context-
based distribution. The global context is mapped to the
head node, but other contexts are mapped to worker
nodes. When an event needs to execute in a particular
context, it is sent to the worker node to which that con-
text is mapped. If an event accesses multiple contexts
during its execution, its execution will be split among
multiple worker nodes, being passed back and forth ac-
cording to the context it is currently in.

Because contexts capture both a portion of the pro-
gram’s data and the computations that act on them,
this mapping strategy naturally accomplishes several of
the goals laid out above. Locality is achieved by the
data-centric nature of the mapping. Rather than a task-
based mapping, where an event is assigned to a worker
node, and the data may need to be accessed remotely,
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Context hierarchy

e1
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global

Room<0>

e2

e1

e2

block

e1 holds the lock

e2 holds the lock

Figure 12: Left: e1 acquires the context synchronously
after e2, and violates the model. Right: e2 waits for e1. e2
acquires the lock successfully after e1 downgrades.

in EVENTWAVE, events are sent to the data. Hence an
event always accesses only local data.

Context mapping The mapping of contexts to nodes
affects communication and load balance. A simple
heuristic for reducing communication cost is by consid-
ering the hierarchical nature of contexts: an event in a
context c is more likely to also interact with a context
c′ that is a descendant of c. Hence, c and c′ should be
mapped to the same physical node.

If the distribution of events visiting each context is
known a priori, then contexts can also be mapped to
nodes to achieve load balance. However, specific heuris-
tics for mapping are beyond the scope of this paper.

4.3 Parallel execution of distributed events
Once the mapping of contexts to physical nodes is ac-
complished, the final step is to ensure that the atomic
event model is preserved by distributed execution. While
the head node dispatches multiple events to worker
nodes simultaneously, sequential commit order is guar-
anteed by the mediation of the head node in every event’s
execution. Because events return to the head node before
committing, the head node can delay an event’s comple-
tion until all earlier timestamped events complete. The
trick, then, is to ensure that the parallel execution of (or-
dered) events preserves the atomic event model. In par-
ticular, we must ensure that (a) only one event is in a
context at a time; and (b) events access contexts in an
order consistent with their timestamp order.

Accomplishing the first goal is straightforward. Every
context has a lock associated with it. When an event en-
ters a context by calling a method associated with that
context, it must first acquire the lock on that context.
That lock is held until the event either completes or ex-
plicitly downgrades from that context.

More challenging is ensuring that events acquire con-
texts according to their timestamp order. In particular,
given events e1 and e2, with e1 logically earlier than e2,
for any context c that both e1 and e2 want to access, e1
must acquire a lock on c before e2; e2 cannot access c
until e1 releases c. While it may seem that the hierarchi-
cal nature of contexts enforces this ordering (there seems
to be no way for e2 to get to c before e1 does without



“passing” e1 in the context hierarchy), we note that an
event can start lower in the hierarchy as mentioned in
Section 3.3. Considering the context hierarchy from Fig-
ure 7, e1 could be executing in the global context, while
a second event e2 begins in context Room 〈 0 〉. If e1
then wants to descend to Room 〈 0 〉, it would arrive at
the context after e2 and violate the atomic event model,
as illustrated in Figure 12.

As described in Section 3.3, this problem can be
solved using dummy events, but which clearly intro-
duces scalability issues, as every event must touch ev-
ery context. To avoid this, dummy events are not eagerly
propagated through the context hierarchy, but are instead
“batched” and propagated through the tree in a group.

To implement this strategy, each context has a ticket
booth that contains an integer counter that indicates
which events (identified by timestamp) have accessed
the context already. Hence, the current value of the ticket
booth represents the next event the context “expects” to
see. When an event e starts in context c, a dummy event
with the same timestamp is issued to the global context.
If the global context does not yet expect the dummy
event, it is enqueued at the global context. When an
event that the global context expects begins, it not only
moves through the context tree itself, but carries with it
all dummy events whose timestamps immediately fol-
low it, and increments the ticket booth at the global con-
text appropriately. For example, suppose the global con-
text expects an event e with timestamp 7, while dummy
events with timestamps 8, 9 and 11 are enqueued. When
e executes, it propagates the events with timestamps 8
and 9, but not the one with timestamp 11. The ticket
booth at the global context now expects timestamp 10.

The same procedure is used at all contexts. If a group
of dummy events, with timestamps x + 1 . . .x + k . . .
batched with an event e (with timestamp x) reach a con-
text c where an actual event e′ with timestamp x + k
is waiting, the group is split, with dummy events x +
1 . . .x+ k− 1 continuing through the context hierarchy
with e, while dummy event x+ k terminates, and events
x + k + 1 . . . are now batched with the actual event e′,
which can begin executing once e releases access to c.

5 Dynamic migration
With the distributed run time system described in the
previous section, EVENTWAVE programs written for n
logical nodes can run on m physical nodes. However,
the ability to run a distributed program across additional
nodes is only one part of the elasticity story. Because
the goal of elastic programs is to increase their through-
put in response to demand, and throughput is increased
by running a program on additional logical nodes, we
must have a mechanism for dynamically changing the
number of physical nodes that a logical node is run-
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Figure 13: An example of dynamic migration

ning on, migrating computation and state to new physi-
cal nodes. Furthermore, this migration should be trans-
parent. The application must be able to change its physi-
cal footprint without affecting any users; throughput and
responsiveness might vary during migration, but users
should not observe any difference beyond increased la-
tency. Finally, the developer’s programming model and
mental model of the application should not have to ex-
plicitly account for migration. By supporting dynamic,
transparent migration in the existing EVENTWAVE pro-
gramming model, the runtime provides the infrastructure
necessary to develop elastic applications.

The basic approach that EVENTWAVE takes to elas-
ticity is to support dynamic migration of contexts.
Namely, during execution, a context’s physical location
can move. Because we want this migration to occur
transparently, there are a couple of problems that must
be addressed. First, because events execute within con-
texts, the distributed runtime must account for migration
correctly to ensure that events are forwarded to the ap-
propriate location. Second, because a migration might
occur while an event has access to a context, the run-
time must make sure that events can safely deal with a
context that might move during their execution.

Migration algorithm
To achieve dynamic, transparent migration of a context
to a new physical node, the runtime must do two things:
(i) replicate the state of the context to the new node; and
(ii) update the context-node mapping to reflect the new
context location. The first task is a prerequisite to migra-
tion: because the goal is to move computation to another
physical node, the data associated with that computation
must be moved as well. The second task is necessary
to ensure that future events that access the context are
routed to the correct physical node.

Figure 13 shows the execution of dynamic migration.
A migration creates a special “migration event,” When a
migration request is issued, the head node creates a spe-
cial “migration event.” It is inserted into the same event
queue as normal application-generated events. Concep-
tually, all events before the migration event will use the
old context mapping, while all events after the migration
event will see the new context mapping.

The migration event changes the mapping of contexts



to physical nodes, but instead of updating the context
mapping immediately, the runtime system keeps several
versions of the mapping at the same time, so that ev-
ery event before the migration event will use the old
mapping, and the ones after the migration will use the
new version. By keeping multiple version of mapping,
it avoids the pitfall mentioned above: events that already
have access to the context will not observe the mapping,
and hence migration will be transparent. After the new
context map is created, it is sent to every physical node.
Just as any other event, the migration event accesses the
context to be migrated, acquiring a lock on it. Once it
gains access to the context (ensuring that earlier events
are done modifying the context), it replicates the state of
the context and transfers it to the new physical node.

After transferring state, the migration event removes
the old context. Note that this is safe: the runtime will en-
sure that events later than the migration event will read
from the new maps, and hence those events will access
the replicated version of the context on the new physical
node. Earlier events have already released the migrated
context and taken a snapshot. Thus, even though the con-
text is now at a new physical node, those earlier events
will simply read from their snapshots and continue with-
out interruption. Finally, when the migration event com-
mits, it removes the old mapping. At this point, all events
that may have needed the old mapping will have com-
mitted, so it is no longer necessary.

With the mechanism sketched above, a critical chal-
lenge is to develop the policy for migration. We discuss
application-specific policies in Section 7, but a general
policy is beyond the scope of this paper.

6 Fault Tolerance
One pressing problem that arises in elastic programs is
fault tolerance. If a program initially run on n physical
nodes is expanded to run on 2n physical nodes, the like-
lihood of a node failure increases commensurately. If
the failure of a single node were able to bring down the
entire program, elasticity would result in more failure-
prone applications. A valuable property for an elastic
system to have is that the failure probability of an appli-
cation remains fixed, regardless of how many physical
nodes an application’s logical nodes are distributed over.

Our current implementation of the EVENTWAVE
model does not provide this guarantee. However, in
earlier work, we described how existing EVENTWAVE
mechanisms can be readily repurposed to guard against
physical node failures and integrated with existing sys-
tems to recover from logical node failures [10]. We
briefly summarize this approach here for completeness.

Recall that our runtime system implements three
features to support distributed, parallel execution of
events: (i) events execute transactionally and in se-

quential order to preserve atomic-event semantics; (ii)
events take snapshots of contexts as they execute; and
(iii) all externally-visible communication is handled by
the “head” node, with incoming messages triggering
events, and outgoing messages deferred until event com-
mits. These features directly enable adding physical-
node fault tolerance with little change to the runtime, by
implementing a basic checkpoint-and-rollback system:
When an event commits at the head node, the context
snapshots associated with the event are used to create
checkpoints. If a physical node fails, the contexts on the
failed node are rolled back using the commited snapshot.

The head node must also be fault-tolerant, since it
provides necessary coordination; if it fails, the logical
node will fail. Since the head node looks like the entire
logical node to the rest of the system, any application-
or logical-node-level fault tolerance approaches, can be
used to mask the head node failure. MaceKen [32] is a
Mace extension integrating the Ken reliability protocol
which can potentially mask head node failure. It records
committed events to its local persistent storage. When a
head node fails, it is simply restarted and its state is re-
stored using the local persistent storage. The state of the
entire logical node is thus rolled back to the last commit-
ted event. The Ken protocol guarantees that external ob-
servers cannot distinguish a restarted logical node from
a slowly-responding logical node: an external message is
explicitly acknowledged, and any unacknowledged mes-
sages are retransmitted until being acknowledged.

7 Evaluation
We implemented EVENTWAVE as an extension of the
Mace runtime [22] by adding 15,000 lines of code writ-
ten in C++. We also modified the Mace compiler to parse
the context definitions and annotations, and then trans-
late them into runtime API calls. The modification added
5,000 lines of Perl code.

We note that the EVENTWAVE language eases devel-
opment effort. As one example, the elastic key-value
store application described below was written in less
than 20 lines of code, while an equivalent C++ imple-
mentation is about 6,000 LOC; the EVENTWAVE pro-
gramming model allows programmers to concentrate on
application semantics, leaving the complexity of distri-
bution, migration and elasticity to the runtime.

As a new programming model for elastic applications,
there are no standard benchmarks against which to eval-
uate EVENTWAVE. Instead, we evaluate EVENTWAVE
in two phases. First, we use a synthetic microbench-
mark that allows us to vary the number and size of in-
dependent contexts, to evaluate the performance of the
EVENTWAVE system under various scenarios. We then
use two application case studies, a key-value store and a
game server, to study EVENTWAVE’s ability to use elas-
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Figure 14: Microbenchmark throughput

ticity to maintain performance under dynamic load. The
result of microbenchmark and the key-value store exper-
iments was obtained using our lab cluster. Each node has
eight 2.33 Ghz cores Intel Xeon and 8GB RAM con-
nected to 1Gbps ethernet.

7.1 Microbenchmark
We evaluate three different aspects of EVENTWAVE with
a microbenchmark. The microbenchmark consists of a
generator that produces a series of events that each
choose one of 160 independent contexts in a round-robin
fashion and perform a specified amount of work.

Throughput Figure 14a plots the throughput of the
microbenchmark (events processed per second) with dif-
ferent amounts of work (P) and on different numbers of
physical nodes (N). P = 0, implies no real work in the
event, and the throughput effectively measures the maxi-
mum throughput the EVENTWAVE runtime supports. As
the number of physical nodes increases, throughput does
not drop; in fact, it increases as even with no work to
be performed, processing an event still has some paral-
lelizable components. When P is increased, each event
does more work, so the overall throughput of the sys-
tem drops, as seen when N = 1. Increasing the number
of physical nodes increases the computational resources
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Figure 15: Throughput change before/after migration at
time 160.

available to the application and hence recovers the lost
performance, until the application is once again running
at maximum performance. As the amount of work in-
creases, it takes more physical nodes to recover max-
imum performance, but the overall trend is stable. We
also show microbenchmark result for larger scale up to
128 nodes using larger workload in Figure 14b.

We can draw two conclusions: (i) the maximum
throughput of EVENTWAVE applications does not drop
as a logical node is spread over more physical nodes;
and (ii) EVENTWAVE is able to effectively harness the
computational resources of multiple physical nodes to
maintain performance under higher levels of load.

Migration Overhead Figure 15 plots the overhead of
migrating a single context from one physical node to
another at time 160. When the context is small (Fig-
ure 15a), migration has no impact on average through-
put. When it is large (Figure 15b), the migration event
must serialize the context, send it to the destination phys-
ical node and deserialize it. Even though other events
accessing different contexts continue to execute in par-
allel with the migration event, they cannot commit un-
til the migration event does. Hence, events back up be-
hind the migration event, leading to a transient drop in
throughput during migration. Once the migration event
commits, throughput temporarily exceeds the long-run
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Figure 16: Migration latency of different context size

average throughput as all of the events that backed up
can be quickly committed. In both cases, migration does
not have a long-term impact on throughput.

Migration Latency Figure 16 plots the latency of mi-
gration events corresponding to different context sizes.
Migration latency is proportional to the serialized size of
context, and is largely determined by network through-
put and the speed of serialization/deserialization. Since
migration does not require global synchronization, it is
fast. For contexts of size less than 1MB, the latency
is negligible. We note that virtual machine live migra-
tion protocols such as VNSnap [20] may also be ap-
plied to reduce service disruption. Interestingly, context-
based application state distribution may help live mi-
gration protocols because a context represents a fine-
grained chunk of application state that can be migrated
independently of other contexts.

7.2 Elastic Key-Value Store
We implemented an elastic key-value store implemen-
tation shown in Figure 18 using EVENTWAVE to eval-
uate its performance as an application-level benchmark.
Note that we claim no novelty of the key-value store.
Instead, with the programming model and runtime sup-
port described, we show that it is easy to write an elastic
key-value store using less than 20 lines of code, whereas
an equivalent C++ implementation is about 6,000 LOC.
This evaluation demonstrates how elasticity can greatly
help a memory-constrained system. The application con-
sists of two logical nodes. One is the client (1 node) and
the other is the server. On the server side, one physical
node is used as the head node while one or more physical
nodes hold the key-value pairs within their memory. The
keys are grouped into buckets using a hash function, and
each bucket gets its own context; in this way, operations
on independent buckets proceed in parallel.

The experiment examines the behavior of performing
a series of puts/gets on the key-value store. As the exper-
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Figure 17: Key-value store

c o n t e x t Bucket<i n t> {map<s t r i n g , s t r i n g> kvmap ;}
messages {

Get { s t r i n g k ; }
GetReply { s t r i n g k ; s t r i n g v ; }
Put { s t r i n g k ; s t r i n g v ; }

}
t r a n s i t i o n s {

[ Bucket<hash ( msg . k)>] d e l i v e r ( s r c , d e s t , Get& msg ) {
r o u t e ( s r c , GetReply ( msg . k , kvmap [ msg . k ] ) ) ;

}
[ Bucket<hash ( msg . k)>] d e l i v e r ( s r c , d e s t , Pu t& msg ) {

kvmap [ msg . k ] = msg . v ;
}

}

Figure 18: An elastic key-value store implementation

iment runs and more puts are performed, the size of the
key-value store increases. As a result, the nodes main-
taining the store eventually exceed their physical mem-
ory capacity, and swapping occurs. Figures 17a and 17b
plot the latency of put and get requests (measured by the
client) over time and physical memory usage. In Fig-
ure 17a, an inelastic configuration is used: the key-value
store is kept on a single physical node, and once swap-
ping begins, the latency of operations unsurprisingly be-
comes more variable, and on average much higher.

Figure 17b demonstrates the power of EVENTWAVE’s
elasticity. Because different buckets in the key-value
store are different contexts, the EVENTWAVE runtime
can easily migrate some buckets to other physical nodes,
dynamically expanding the total amount of physical
memory available to the application. We implement a
simple migration policy: when the system’s physical
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Figure 19: Performance of game server with and without
elasticity.

memory usage exceeds 80%, the number of physical
nodes is doubled and each existing node migrates half
its contexts to a new node. The figure demonstrates three
such migration events, at which point the application is
using eight physical nodes. We note several points: (i)
the sequential commit policy of EVENTWAVE means
that some events that get “trapped” behind a migration
event exhibit much longer latency, as they must wait
for the migration to complete before committing; (ii) af-
ter migration, physical memory usage drops commen-
surately; (iii) even as the key-value store is spread over
more physical nodes, the latency of operations does not
increase; and (iv) the elastic application is able to avoid
paging, and hence sustain low latencies for much longer
than the inelastic version.

7.3 Multiplayer game server
Our second case study concerns the ability to elastically
adapt to changing loads of the EVENTWAVE multiplayer
game example of Section 3. The game is implemented
as a single logical node representing the game server,
and multiple logical nodes representing the clients. The
game state is organized into contexts as in Figure 6.
We deploy 128 clients over 16 EC2 Small Instances to
generate workload. To balance the cost and latency, the
server head node resides on an Extra Large instance, but
physical nodes are Small Instances.

We generate an artificial “load” for the game server in
the form of players that are randomly distributed among

the buildings, hallways and rooms, and move randomly
around the world. We simulate real-world gamer behav-
ior by using a Gaussian distribution to have clients ran-
domly join and leave the game server. Figure 19a shows
the number of connected clients at a given time; the
number of connected players varies from 0 to around 90,
in a periodic pattern. We evaluate four full periods of this
behavior, measuring the average latency experienced by
clients as they attempt to move around the game world.

Figure 19b shows the number of physical nodes used
by the server. For the first, second and the fourth period,
the elasticity mechanism is not activated, and the server
uses but a single physical node. As Figure 19a demon-
strates, the average latency experienced by the clients
increases and decreases with the load. At high loads, the
server is unable to process client requests fast enough,
and average latency increases dramatically.

For the third period, we use a simple elasticity pol-
icy. If the number of clients exceeds some threshold,
the server doubles the number of physical nodes used,
migrating half its contexts to the new physical nodes.
This process continues up to a maximum of 64 physi-
cal nodes. If the number of clients drops below a cer-
tain level, elasticity is exploited in the opposite direction,
and the number of physical nodes is decreased. As Fig-
ure 19b demonstrates, the number of servers used there-
fore varies proportional to the load of the system. As
expected, this dynamic migration provides more compu-
tational resources to the server rapidly, and as a conse-
quence, the average latency experienced by clients in the
third period is much reduced. Similarily, when the con-
nected clients leaves, the application scales down and re-
leases extra nodes. With this elasticity support, we could
guarantee low request latency as well as minimizing the
resource usage under dynamic workload.

8 Related Work
Parallel event execution Recent research on auto-
mated sequential execution has been moving towards the
systems where programmers specify parallelism to allow
the compiler take advantage of it. One notable example
is Bamboo [34]. This approach enables parallelism on
shared memory multicore systems by utilizing object pa-
rameter guards and then compile the language into locks.
It is similar to our EVENTWAVE programming model
and runtime implementation in that both provides paral-
lelism annotations that direct the compiler to generate an
appropriate locking scheme to support parallel execution
of events. However, unlike EVENTWAVE, Bamboo does
not support distributed or elastic execution.

Computation offloading One line of research with
similar goals to EVENTWAVE is computation offload-
ing, where an application is partitioned between a client



and server (or multiple servers) to improve perfor-
mance [16, 23, 26, 29, 31]. These approaches are similar
to EVENTWAVE’s distribution of a single logical node’s
computation across multiple physical nodes. However,
there are key differences. Some of these approaches use
static partitioning—the program is analyzed at compile
time and a fixed partition across client and server is
computed—and hence cannot provide dynamic elastic-
ity. Others perform dynamic partitioning, allowing them
to respond to changing environments and load. How-
ever, these approaches mostly target applications either
with a single thread of control, or where the program-
mer has explicitly added parallelism and synchroniza-
tion. EVENTWAVE aims to supports parallelism while
allowing programmers to reason sequentially.

Pilot job frameworks Pilot job systems support the
execution of a set of tasks on an elastic set of computa-
tional resources [7, 11, 15, 25, 27, 30]. The underlying
commonality of these systems is that an application must
be broken up into a set of isolated tasks. These tasks can
be organized either as a “bag of tasks,” where the tasks
can execute independently in any order [7, 15, 25], or as
a DAG of tasks, where the completion of one (or more)
tasks enables the execution of later tasks [11, 27, 30].
These models are fundamentally more restrictive than
EVENTWAVE’s: while tasks are roughly analogous to
EVENTWAVE’s events, tasks have very limited interac-
tion and cannot communicate with one another, while
events can be organized in arbitrary ways, and can com-
municate through context state. Furthermore, pilot job
frameworks use, effectively, a computation-centric ap-
proach to elasticity, where tasks are the basic unit of dis-
tribution, and adding resources affects how tasks are dis-
tributed. EVENTWAVE, in contrast, uses a data-centric
approach to elasticity, where state is the basic unity of
distribution. This facilitates state-based interactions be-
tween events and also leads to better locality.

Actor model The Actor Model is the basis for sev-
eral systems [18, 28]. Actors are collections of state
and code that communicate via message passing, with
each actor behaving atomically. There is a clear con-
nection between an actor and a context: the actor has
implicit parallelism because each entity is independent
of each other. Much like EVENTWAVE, Actors adopt a
data-centric approach to distribution, with computation
being co-located with its associated data. The primary
difference between the two models is that EVENTWAVE
provides event atomicity across multiple contexts, rather
than treating contexts as independent entities.

Orleans extends the Actor Model to allow transac-
tional execution across multiple actors and to support
elasticity [8]. However, the elasticity model of Orleans
is different from EVENTWAVE. In EVENTWAVE, elas-

ticity is achieved by partitioning state across different re-
sources, while Orleans achieves elasticity through state
replication, allowing parallel execution of the same ac-
tor at multiple physical nodes. Orleans’ programming
model trades off flexibility for consistency: Orleans’
transactional events have no restrictions on their exe-
cution, unlike EVENTWAVE’s event model. However,
Orleans’ replication-based approach to elasticity does
not provide sequential consistency. We note, however,
that EVENTWAVE may be complementary to Orleans.
An Orleans actor could be implemented using EVENT-
WAVE, allowing the use of EVENTWAVE’s elasticity
mechanism and hence providing stronger semantics.

Scalable databases Scalable databases, notably Elas-
Tras [12], MegaStore [1] and Cloud SQL Server [4] typi-
cally employ two-level structure to partition the data into
shards. ACID properties is guaranteed inside a shard.

At high level, EVENTWAVE and these systems use
the same basic design principles: state (or data) is par-
titioned and hosted by a set of nodes. The global par-
tition manager in Cloud SQL Server and the dynamic
partitioning mechanism of ElasTras are both similar in
principle to how EVENTWAVE maps contexts to nodes,
but both approaches aim at failure recovery.

Live migration Both virtual machine live migration
and database live migration [14] aim at redistributing the
state of a distributed system. At high level, their redistri-
bution is similar to EVENTWAVE’s migration of context
state. However, these systems solve a different problem,
attempting to achieve load balance in multi-tenant envi-
ronments, rather than providing elasticity.

9 Conclusions
Developing elastic cloud applications that can dynami-
cally scale is hard, because the elasticity complicates the
program’s logic.

We described EVENTWAVE, a new programming
model for tightly-coupled, stateful, distributed applica-
tions that provides transparent elasticity while preserv-
ing sequential semantics. An application is written as a
fixed number of logical nodes and the runtime provides
elastic execution on arbitrary numbers of physical nodes.

Our case studies suggest EVENTWAVE eases the
development effort for elastic cloud applications, and
EVENTWAVE applications scale efficiently.
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